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Abstract. Interrelation of various approaches to the definition of the concept of entropy 
determines its wide using in applications. We consider entropy characteristics used in various 
research techniques for investigation of complex dynamical systems (including symbolic ones) 
behaviour. Methods of analysis of dynamical systems phase portraits, which are based on Rényi 
entropy, fractal and multifractal characteristics, and results of numerical experiments are given. 
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1. Introduction 

Investigations of various real processes are often based on observations. As P. Bak [1] noted 
observations are mainly statistical in character, and the laws formalizing the observations are 
expressed by distribution functions for measurable values. It results in applying informational 
(statistical) approach to the studying complex system behavior and using characteristics based on 
obtained distribution functions. The concept of entropy introduced by R. Clausius in 1850 in 
thermodynamics subsequently began to take on more general meaning not related directly to 
thermodynamics. Clausius considered entropy of an isolated system as a measure of the system 
state changing under changes of temperature. The term entropy denoted the energy that does not 
perform work, and in any isolated system it can only grow. It was L. Boltzmann [2] who first 
introduced statistical approach in thermodynamics – he proposed to describe a system state by 
using its microstates. The extension of Boltzmann’s entropy to nonequiprobable distributions 
results in Gibbs-Shannon entropy, which is one of Rényi entropies set. In 1948 C. Shannon 
invented entropy as a term in information theory, A. Kolmogorov in 1958 created dynamical 
entropy in dynamical systems. Now the term entropy is widely used in mathematics, computer 
science and many other areas of exploration. 

In dynamical systems by entropy is meant a characteristic of a system complexity. Topological 
entropy describes the complexity of orbit structure and is the most important numerical invariant 
under topological conjunction. Another approach to the system dynamics study is statistical 
description of orbit behavior, and metric entropy of measure-preserving transforms is a statistical 
analog of topological entropy. Comprehensive information on entropy in dynamical systems and 
the relation between topological and metric entropy are given in [3, 4]. 

Of fundamental importance is the class of symbolic dynamical systems which are used for the 
coding smooth dynamical systems. The coding means that to any element of a finite partition is 
assigned a symbol from a finite alphabet and a trajectory is written as a symbol sequence in 
accordance with the transition of a trajectory from one partition element to another. On the space 
of sequences the shift map is considered such that one step along the trajectory is the shift of the 
corresponding sequence. Symbolic dynamical systems with a simple graphic presentation – 
topological Markov chains – are of frequent use. 

Practical application of symbolic dynamical systems is based on elaboration of applied 
symbolic dynamics methods. In 1898 J. Hadamar [5] applied trajectory coding to describe global 
behavior of geodesic on the surfaces with negative curvature. H. Morse and G. Hedlung [6] and 
R. Bowen [7] contributed significantly to the progress of the method. V. Alekseev [8] applied it 
for celestial mechanics problems. In 1983 G. Osipenko proposed the method of symbolic image 
in which trajectory transitions between partition elements are represented by an oriented graph. 
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Symbolic image is a topological Markov chain, and symbol sequences correspond to paths on the 
graph. This method was applied to approximation of invariant sets, Morse spectrum and invariant 
measures [9]. 

The dynamics of a system may be studied by analyzing its phase portrait. In this work, we 
consider the image analysis methods based on combining symbolic dynamics and information 
approach, and various types of entropies serve as connecting links between different problems and 
methods. The operating with symbolic sequences naturally leads to the calculation of a statistical 
characteristic of the system – relative frequency of a symbol occurrence, which corresponds to the 
frequency that a trajectory of an initial system visits a partition element. Hence, we obtain a 
measure of trajectory distribution in phase space, which provides calculation techniques for 
spectral characteristics – multifractal spectrum, Rényi spectra and divergences. 

One may model the dynamics of diffusion processes by constructing the Markov chain on an 
oriented graph corresponding to a digital image which is a phase portrait of the process. The flow 
is defined by pixel intensities and nearest neighbours. Then the stationary state of the chain is 
calculated, which maximizes so called weighted entropy. This value (interpreted as a “distance” 
between an initial state and the stationary one) may be used as a classifying sign in image analysis.  

These methods appear to have considerable promise for analysis of high resolution images 
with complex structure. We show the application of the construction of stationary flow on the 
graph and calculation of Rényi divergences to the analysis of biomedical preparation images. (All 
the images were provided by the department of morbid anatomy of Mariinsky hospital and medical 
center Terapeuticum in St. Petersburg.)  

2. Calculation and estimation of topological and metric entropy 

Topological entropy may be defined by different ways, for example through minimal 
coverings or separated sets [10]. For some systems it coincides with the growth rate of periodic 
orbits and may be calculated at once (linear extending maps, hyperbolic automorphism of torus). 
But for the most part of systems direct calculations are difficult and we should use methods of 
estimations. In 1993 S. Newhouse and T. Pignataro [11] proposed a method for estimating the 
topological entropy of a smooth dynamical system. The method is based on estimating the 
logarithmic growth rates of suitably chosen curves in the system. The method may be successfully 
applied for studying the complex system having strange attractors. In [12] the authors described 
the algorithm for obtaining rigorous lower bound for the topological entropy of planar 
diffeomorphisms based on approximation of stable and unstable manifolds of hyperbolic periodic 
points. Basing on these methods estimations of topological entropy were obtained for Henon and 
Ikeda map. Topological entropy with relative ease may be obtained for topological Markov chain 
– as the module of maximal eigenvalue of the adjacency matrix for the chain graph. 

The symbolic image method may be effectively applied to the problem of approximation of an 
invariant measure for a dynamical system. The existence of an invariant measure means the 
existence of a stationary flow on the symbolic image graph. To obtain it we should construct a 
stationary distribution for a Markov chain. Metric entropy of the distribution gives a lower bound 
for the topological entropy of symbolic image which is calculated as topological entropy of 
topological Markov chain. The algorithms of the construction of stationary flow were described 
and implemented in [13, 14], where we obtained a lower bound of topological entropy for delay 
map, double logistic map, Henon and Ikeda map. 

3. Entropy and image analysis 

3.1. Weighted entropy  

A description of a system dynamics by using oriented graph may be applied for images 
illustrating diffusion processes. The image is considered as a pixel lattice, being every pixel ݅ is a 
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vertex of the graph with the measure ݌௜ equal to the pixel intensity. There are edges from every 
vertex to nearest neighbours and for every edge (݅, ݆) its measure ݌௜௝ is ݌௜ divided on the number 
of neighbours. Norming the distribution ݌௜௝ we obtain a Markov chain on graph in which a vertex 
measure is equal to the sum of measures of outcoming edges. Construct a stationary distribution ݑ௜௝ (for every vertex the sum of measures of incoming edges is equal to the sum of measures of 
outcoming ones). It was shown in [15] that such a distribution maximizes weighted entropy: ݂(ݑ) = − ෍ ௜௝ݑ ln ௜௝௜௝ݑ௜௝݌ , (1)

which in accordance with maximum entropy principle means that the system goes from an initial 
state into the state with maximal entropy – stationary one.  

In [16] we proposed a model for digital image analysis which is based on the calculation of a 
stationary flow on the graph associated with given image. Weighted entropy is considered as a 
classification sign. The implementation of the algorithm and results of the classification of 
pharmacological ݃ܣ solution images are given in [17]. 

We consider an example of calculation of weighted entropy for liver images (given in Fig. 1) 
from 4 classes: plethora, dystrophy, cirrhosis and metastasis. In Table 1 the results of experiments 
are given. Component H of HSV palette seems to be more effective than others. 

 
a) Plethora 

 
b) Dystrophy 

 
c) Cirrhosis 

 
d) Metastasis 

Fig. 1. Images of liver tissue with plethora, dystrophy, cirrhosis and metastasis 

Table 1. Weighted entropy values in several palette components 
Image Grayscale H S V 

Plethora  0,00001861 0,13403192 0,00002513 0,00001609 
Dystrophy 0,00001713 0,12524680 0,00002104 0,00001625 
Cirrhosis 0,00001607 0,08331278 0,00002021 0,00001627 

Metastasis 0,00001676 0,09522161 0,00003831 0,00001648 

3.2. Multifractal spectrum versus entropy 

Digital images with complex texture are often fractals or multifractals. Fractal sets have a 
self-similarity property and may be described one numerical characteristics – fractal dimension. 
Multifractal sets are unions of several fractal subsets, which of them has its own fractal dimension, 
being these subsets are arranged in a complex intertwined manner. As numerous experimental 
data show, for complex textures there is a power law between the cell measure and the cell size. 
The set of these exponents is called singularity spectrum. All the cells having close exponent 
values form a fractal subset, and fractal dimensions of these subsets form multifractal spectrum. 

Basing on the Egglestone result about the Hausdorff dimension of the set of numbers in unit 
interval with given distribution of digits [18] the authors of [19] proposed to calculate the 
dimension of a measure {݌௜} support ܯ (the set of trajectories described by the given distribution) 
as: 

dim ܯ = − limே→ஶ ∑ ௜݌ ln ௜ே௜ୀଵln݌ ܰ . (2)
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As the measure {݌௜} depends on the cell size ݈ and ݈ = 1 ܰ⁄  Eq. (2) is equivalent to: 

dim ܯ = lim௟→଴ ∑ (݈)௜݌ ln ௜(݈)ே௜ୀଵ݌ ln ݈ , (3)

which is the expression for information dimension. 
The authors also propose to use direct multifractal transform of a given initial normed measure 

distribution and Eq. (3) for calculation of information dimensions of subsets that are supports of 
the initial measure and its multifractal transforms. 

In what follows we assume that ݌௜ ≈ ݈ఈ೔ , then ߙ௜ ≈ ln (݈)௜݌ ln ݈⁄ . Consider the generalized 
statistical sum ߮(݇) = ∑ ௜௞(݈)ே௜ୀଵ݌ , where ݇ – a real number and assume that there is the function ߬(݇) such that ߮(݇) ≈ ݈ఛ(௞). Given an initial distribution {݌௜} construct the sequence of measures ߤ(݇, ݈) = ,݇)௜ߤ} ݈)} obtained by direct multifractal transform: 

,݇)௜ߤ ݈) = ∑(݈)௜௞݌ ௜௞(݈)ே௜ୀଵ݌ . (4)

For each measure ߤ(݇, ݈) one can calculate the information dimension of its support by Eq. (3) 
and obtain a set ݂(݇) – dimensions of ߤ(݇, ݈) supports: 

݂(݇) = lim௟→଴ ∑ ,݇)௜ߤ ݈) ln ,݇)௜ߤ ݈)ே௜ୀଵ ln ݈ . (5)

We also calculate averaging of exponents over the measure ߤ(݇, ݈) and then the limit ߙ(݇) of 
the averaging when ݈ tends to zero: 

(݇)ߙ = lim௟→଴ ∑ ln ,݇)௜ߤ(݈)௜݌ ݈)ே௜ୀଵ ln ݈ . (6)

Hence Eqs. (5) and (6) define the set of dimensions (multifractal spectrum) ݂(݇) and the set 
of averaging exponents ߙ(݇) as functions of the parameter ݇. Excluding ݇ one may obtain the 
dependence ݂(ߙ). 

This method was applied in [20] to calculate Rényi spectrum. We applied it in [21] to classify 
biomedical preparation images.  

3.3. Rényi divergences 

To reveal difference between structures of two images one can calculate Rényi divergences of 
order ߙ (or ߙ-divergences) which for given probabilistic distributions ݌ = ݍ and {௜݌} =  are {௜ݍ}
defined as follows: ܦఈ(݌, (ݍ = ߙ1 − 1 ln ෍ ௜ଵିఈ௡௜ୀଵݍ௜ఈ݌ . (7)

It is known that values given by Eq. (6) are nonnegative for any ߙ and the Rényi divergence 
is a non-decreasing function of ߙ. 

For 1 = ߙ the divergence is given by the formula: ܦଵ(݌, (ݍ = ෍ ௜݌ ln ௜௡௜ୀଵݍ௜݌ , (8)

and called the Kullback-Leibler divergence. Note that up to sign Eq. (8) is the expression for 
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weighted entropy (1). To obtain a vector characteristic we applied direct fractal transform Eq. (4) 
to given initial measures and calculated Rényi divergences between members of obtained 
sequences of measures. The feature that may be used as a classifying sign is the rate of the growth 
of the vector. For images having similar structures this rate is lower than for images with different 
structures. This approach was applied in [22, 23] for biomedical preparation images analysis and 
classification. 

As an example, compare digital images of blood crystals from 3 classes – acute inflammatory 
process (bl1), chronic inflammatory process (bl2) and degenerative processes (bl3), which are 
shown from left to right on Fig. 2. The results of comparing of divergence vectors for ߙ = 1 in 
grayscale are shown on Fig. 3, the same in H component – on Fig. 4. We see that growth rates of 
divergence vectors are different. 

   
Fig. 2. Images of blood crystals: acute inflammatory process,  

chronic inflammatory process, degenerative process 

 
Fig. 3. Divergence vectors when comparing images from classes bl1, bl2 and bl3 in grayscale 

 
Fig. 4. Divergence vectors when comparing images from classes bl1, bl2 and bl3 in H component 

4. Conclusions 

Using the concept entropy in various subject areas is determined by the quest for applying a 
general characteristic to describe different processes as a whole. It is statistical character of 
observations of natural phenomena that leads to using distribution functions of measurable values, 



ENTROPIES IN INVESTIGATION OF DYNAMICAL SYSTEMS.  
NATALIA AMPILOVA, IGOR SOLOVIEV 

146 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. JUN 2017, VOL. 12. ISSN 2345-0533  

and entropy is described in these terms. It turns out that entropy characteristics may be obtained 
both for a system described analytically and for its phase portraits. For applications relating to 
digital image analysis the calculation of Rényi entropies and multifractal spectra makes possible 
the revealing essential peculiarities of image structure and solving classification problem. 
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