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Abstract. Manufacturing stepped rods with segments of sizes proportional to stresses induced in 
operation is often used to reduce the material consumption in various fields of technology, for 
example, in the aircraft industry, where the requirements for the weight of structural elements are 
high. The vibration problems of continuous systems, i.e. systems which masses are considered 
distributed, are close to the resistance of materials and elasticity theory problems. They are 
described by partial differential equations. In this case, we consider a homogeneous isotropic 
material, obeying Hooke’s law. Of all the vibration problems of continuous systems, the transverse 
vibration problems of shafts and beams is of greatest practical importance. The simplest examples 
of vibrations of prismatic rods were studied in the 18th century in works on acoustics. But before 
solving problems of practical importance, the problems of stepped beams, it had taken another 
two hundred years and the development of approximate methods of solving differential equations. 
The paper presents a solution to the problem of determining the fundamental frequencies of 
bending vibrations of two-stepped rods with various boundary conditions, using the approximate 
Lagrange-Ritz method. The calculation error does not exceed 2.6 %. The fundamental frequency 
of vibration is defined considering different lengths and stiffness ratios of stepped rod segments. 
The obtained results can be used in solving practical problems in various fields of technology. 
Keywords: bending vibrations, stepped rod, fundamental frequency of vibration. 

1. Introduction 

A rod with a mass distributed along its length is considered as a system with an infinite number 
of degrees of freedom. The position of the rod at any time is determined by its elastic line, which 
is a function of two variables: the coordinates along the length (ݔ) and the time (ݐ). To determine 
the fundamental vibrations of such systems, the ratios of the theory of bending of rods, known 
from the discipline Resistance of materials, are used. There are exact solutions for plain rods with 
various types of supports. The exact solutions are obtained using so called “fundamental beam 
functions”. For rods and rod systems, which elements have a variable cross-section, finding exact 
methods for calculating frequencies and principal modes of vibration is a very difficult problem. 
Therefore, it is urgent to develop and use approximate methods for solving such problems [1-10]. 

2. Object and subject of research 

The research considers the bending vibrations of single-span stepped rods with the same and 
different types of supports at the ends: hinged at both ends, fixed at both ends, hinged at one end 
and fixed the other end. A stepped rod consists of several segments with dimensions taken in 
accordance with the ability to resist the stresses induced by loads (more stressed segments have a 
larger cross-section, less stressed ones have a smaller cross-section). A rod in bending is also 
called a beam. The fundamental frequency of vibration is defined considering different lengths 
and stiffness ratios of stepped rod segments. 
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3. Solution 

3.1. A stepped rod fixed at both ends 

A rod consisting of three segments has a span ݈. The segments at supports have length ݈݇ and 
stiffness ܫܧ, the middle segment has length (1-2 ݇)݈ and stiffness ݊ܫܧ (see Fig. 1). 

 
Fig. 1. A stepped rod fixed at both ends  

To define the fundamental vibration frequency squared for a rod, the approximate  
Lagrange-Ritz method [10] can be used. In accordance with the method, the ݇ th vibration 
frequency squared can be defined by the following equation: 

߱௞ଶ = න ሻሿଶ௟ݔሻሾ߶ଵᇱᇱሺݔሺܫܧ
଴ ݔ݀ න ݉ሺݔሻ߶ଵଶ௟

଴൙ ሺݔሻ݀(1) ,ݔ

where ߮ଵሺݔሻ is a deflection function; ݉ሺݔሻ is the mass per unit length of a rod. 
Let us take the deflection function of the rod in the given coordinate system as follows: ߶ଵሺݔሻ = ܽ ൬1 − cos ݈ݔߨ2 ൰, (2)

where ܽ – const. 
The given function satisfies all boundary conditions. With all necessary transformations 

completed, taking into account the average value of mass per length unit, we obtain the following: 

߱ଵଶ = ସ3݈ସ݉ߨܫܧ64 ⋅ ൥12 ൬݇ + sin4ߨ4݇ߨ ൰ + ݊ ൭14 − 12 ൬݇ + sin4ߨ4݇ߨ ൰൱൩, (3)

where ݉ = 2൫݇ ⋅ ݉௬௖ + 0,5ሺ1 − 2݇ሻ ⋅ ݉௢௖൯ – is the average mass per unit length. 
By substituting the parameters ݊ = 1 and ݇ = 0 (or 0.5) into the Eq. (3), which corresponds to 

a plain rod, we obtain the following: 

߱ଵଶ = ሺ1,519ߨሻଶ݈ଶ ⋅ ඨܫ݉ܧ, 
which differs from the exact solution [1]: 

߱ଵ = ሺ1,5ߨሻଶ݈ଶ ⋅ ඨܫ݉ܧ   by  2.64 %. 
Thus, the solution Eq. (3) gives acceptable result. 
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3.2. A stepped rod with hinged ends 

A rod consisting of three segments has a span ݈. The segments at supports have length ݈݇ and 
stiffness ݊ܫܧ, the middle segment has length (1-2 ݇)݈ and stiffness ܫܧ (see Fig. 2). 

 
Fig. 2. A rod with hinged ends 

Let us use the Lagrange-Ritz method. We take a deflection function as follows: ߶ଵሺݔሻ = sin (4) .ݔ݈ߨ

The given function satisfies all boundary conditions. With all necessary transformations 
completed, taking into account the average value of mass per length unit, we obtain the following: 

߱ଵଶ = ସ݈ସ݉ߨܫܧ4 ⋅ ൤12 ൬݇ − sin2ߨ2݇ߨ ൰ ⋅ ሺ݊ − 1ሻ + 14൨, (5)

where ݉ = 2൫݇ ⋅ ݉௢௖ + 0,5ሺ1 − 2݇ሻ ⋅ ݉௬௖൯ – is the average mass per unit length. 
By substituting the parameters ݊ = 1 and ݇ = 0 (or 0.5) into the Eq. (5), which corresponds to 

a plain rod, we obtain the exact solution [1]: 

߱ଵ = ଶ݈ଶߨ ⋅ ඨܫ݉ܧ. 
3.3. A stepped rod fixed at one end and hinged at the other end 

A rod consisting of two segments has a span ݈. The segment on the side with fixed end has 
length ݈݇ and stiffness ܫܧ, the segment on the side with hinged end has length (1-݇)݈ and stiffness ݊ܫܧ (see Fig. 3). 

 
Fig. 3. A stepped rod fixed at one end and hinged at the other end 

Let us use the Lagrange-Ritz method. For a deflection function we take the equation of the 
elastic line of a plain rod under uniformly distributed load ݍ along the entire length: ߶ଵሺݔሻ = ܣ ⋅ ሺ−݈ଷݔ + ଷݔ3݈ − ସሻ, (6)ݔ2
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where ܣ =  .ܫܧ48/ݍ
The given function satisfies all boundary conditions. With all necessary transformations 

completed, taking into account the average value of mass per length unit, we obtain the following: ߱ଵଶ = 19݈ସ݉ܫܧ630 ⋅ ሾሺ108ሺ1 − ݇ሻଷ − 216ሺ1 − ݇ሻସ + 115,2ሺ1 − ݇ሻହሻ ⋅ ሺ݊ − 1ሻ + 7,2ሿ, (7)

where ݉ = ሺ1 − ݇ሻ ⋅ ݉௢௖ + ݇ ⋅ ݉௬௖ is the average mass per unit length. 
By substituting the parameters ݊ = 1 and ݇ = 0 (or 1) into the Eq. (7), which corresponds to 

a plain rod, with number ߨ intentionally introduced, we obtain the following: 

߱ଵ = ሺ1,251ߨሻଶ݈ଶ ⋅ ඨܫ݉ܧ. 
Which differs from the exact solution [1]: 

߱ଵଶ = ሺ1,25ߨሻଶ݈ଶ ⋅ ඨܫ݉ܧ   by  0.3 %. (8)

Thus, the solution Eq. (7) gives acceptable result. 

4. Numerical investigations 

Let us define the influence of the lengths and varying stiffness ratios of a stepped rod on its 
fundamental frequency of vibration. A steel stepped rod with different types of supports at its ends 
has the following parameters: span ݈ = 6 m, the smaller cross-section dimensions of the rod is  ℎ×ܾ = 16×5 cm (second moment of area ܫ௫ = 1707 cm4), the larger cross-section dimensions of 
the rod is ℎ×ܾ =  16×8 cm (second moment of area ܫ௫ =  2731 cm4), elastic modulus  ܧ = 2∙105 MPa. 

A parameter ݊ =  1707/2731 =  0.625. Mass per unit length for the segment of smaller 
cross-section is ݉௢௖ = 0.05∙0.16∙1∙7850 = 62.8 kg/m and for the segment of larger cross-section 
is ݉௬௖ = 0.08∙0.16∙1∙7850 = 100.48 kg/m. The parameter ݇ is varying in such way that a plain 
rod with ݊ܫܧ stiffness turns into a stepped rod with ݊ܫܧ and ܫܧ stiffness, and then into a plain rod 
with ܫܧ stiffness. Equivalent mass of all three rods increases proportionally. The calculation is 
performed using the obtained Eqs. (3), (5), (7). Results of the calculation are shown in Table 1 
and Fig. 4.  

Table 1. Results of numerical study of stepped rods with various types of supports 
Type of 
supports Fixed at both ends (Fig. 1) Hinged at both ends (Fig. 2) Fixed at one end and hinged 

at the other end (Fig. 3) 
Mass ݉,  
kg / m ݇ Vibration frequency ߱, 

sec-1 according to Eq. (3) ݇ Vibration frequency ߱, 
sec-1 according to Eq. (5) ݇ Vibration frequency ߱, 

sec-1 according to Eq. (7) 
62.8 0 143.824 0.5 63.922 0 99.777 

70.336 0.1 121.344 0.4 53.007 0.2 82.538 
77.872 0.2 119.317 0.3 54.109 0.4 79.187 
81.64 0.25 116.705 0.25 54.119 0.5 79.113 

85.408 0.3 114.271 0.2 53.803 0.6 79.88 
92.944 0.4 113.067 0.1 52.416 0.8 81.06 
100.48 0.5 143.819 0 63.919 1 99.773 
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a) Fig. 1 

 
b) Fig. 2 

 
c) Fig. 3 

Fig. 4. Vibration frequency curves for rods of various stiffness with various types of supports 

5. Conclusions 

Using the Lagrange-Ritz method, there have been obtained some approximate solutions to the 
problem of bending vibrations of stepped rods with various types of supports. The calculation 
error does not exceed 2.6 %, which is accurate enough for engineering calculations. 

Numerical studies have shown the influence of the lengths and varying stiffness ratios of a 
stepped rod on its fundamental frequency of vibration. 
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