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Abstract. Numerical investigation is conducted into the nonlinear dynamic responses to  
fluid-structure interaction in deep-hole drilling shaft system. Based on the theories of pipes and 
tubes conveying fluid, the governing equation of the drilling shaft system is obtained taking into 
account of the fluid-structure interaction and the effect of the motion constraints. The nonlinear 
partial differential governing equation of motion is discretized in modal space using the Galerkin 
method and then transformed into a set of ordinary different equations. Numerical solutions of 
these equations are then obtained using the fourth order Runge-Kutta method. The influence of 
the forcing frequency and the support constraints on the dynamic behaviors of the drilling shaft is 
examined. The nonlinear dynamic behaviors of the drilling shaft system are presented by the 
bifurcation diagram and phase diagram. It has been found that the magnitude of support stiffness 
and the number and position of support constraints have a significant influence on dynamic 
behaviors of the drilling shaft system. The study in the paper provides an effective guidance to 
maintain the stability of the BTA deep-hole drilling shaft system through selecting the favorable 
operation parameters in deep hole drilling process. 
Keywords: nonlinear dynamic behaviors, fluid-structure interaction, Galerkin method, deep hole 
drilling. 

1. Introduction 

The deep-hole drilling shaft system is a complex system with internal interaction. It is difficult 
to predict and control such nonlinear dynamic behaviors as whirling vibration, tool chatter and 
cutting fluid disturbance, which result in an adverse effect on processing quality in deep-hole 
drilling process [1-5]. 

Recently, great importance has been attached to investigate the dynamic characteristics of the 
drilling shaft system in the deep hole drilling process. Chin [6, 7] established the three-
dimensional general equations for lateral, longitudinal and torsional motion of the shaft containing 
the fluid flow to investigate the deep-hole drilling shaft eigen properties based on the Euler beam 
theory. Kong [8, 9] constructed the dynamic model for rotating drilling shaft with multi-span 
supports using lots of 2-nodeTimoshenko beam element model with free-interface to investigate 
the nonlinear dynamic responses considering the effects of the mass eccentricity and the cutting 
force fluctuating and in addition, presented a modified Newton shooting method to obtain the 
periodic trajectories of the dynamic system and analyze the periodic dynamic behaviors of the 
drilling shaft system. Perng [10] developed equations of motion for two different models: a 
Timoshenko beam model and a Euler-Bernoulli beam model. He analyzed the eigen properties of 
spinning boring trepanning association (BTA) deep-hole drilling shaft containing flowing fluid 
and subject to compressive axial force. Ahmadi [11] presented a generalized stability model for 
drilling dynamics considering the regeneration of chip thickness due to the tool deflection in the 
lateral, torsional and axial directions. Al-Wedyan [12] presented an approach to investigate the 
whirling motion of the BTA deep hole drilling system by introducing the system excitation in the 
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form of internal forces between the drilling shaft and the workpiece. Matsuzaki [13] proposed an 
analytical model to study chatter vibration considering the support position of the drilling shaft in 
detail such as at the oil pressure head, the supporting pad and the base, and investigated 
numerically the stability of the self-excited vibration. 

The nonlinear vibrations of supported pipes conveying fluid have been studied before by other 
researchers [14-17]. Wang [18, 19] investigated the nonlinear dynamics of simply supported pipes 
conveying pulsating fluid with non-linear motion constraints. However, nonlinear dynamic 
behaviors of pipes conveying fluid with multi-span intermediate supports have rarely been 
discussed. At present, there are significant differences between the theoretically simplified model 
and the actual process situation with regard to the research of the dynamic behavior of the deep 
hole drilling shaft system. Moreover, most of the proposed models are biased in the one-way 
analysis, whereas the interaction is complex in the deep hole drilling system. Therefore, it is 
necessary to establish the interaction model to study the interaction effect and provide theoretical 
guidance for the actual drilling process. 

In this paper, the fluid-structure interaction model is established to investigate the nonlinear 
dynamic characteristics of fluid-structure interaction of the deep hole drilling shaft system. The 
effect of the motion constraints on the drilling shaft is discussed in detail when the situation of the 
drilling shaft supported by the auxiliary support and the oil pressure head is divided into four cases. 
The rich and complex nonlinear dynamic behaviors of the drilling shaft system are showed by the 
bifurcation diagram and phase diagram. 

2. The equation of motion 

In the drilling shaft system, the drilling shaft is fed in the axial direction while the workpiece 
rotates. The drilling shaft behavior of the BTA drill is investigated in transient state of the deep 
hole drilling process. As shown in Fig. 1, the drilling shaft is modeled as a Euler-Bernoulli beam 
which is clamping at one end and hinging at the other end [10].  

 
Fig. 1. Schematic diagram of the drilling shaft system 

Based on the theories of pipes and tubes conveying fluid, the governing equation of the drilling 
shaft system for lateral vibration is established taking into account of the interaction between the 
drilling shaft and the cutting fluid, and the effect of the motion constraints of the auxiliary support 
and the oil pressure head on the drilling shaft. The motion constraints of the auxiliary support and 
the oil pressure head is assumed to be linear springs. The equation of motion [18] is given by: 

ܯ) + ݉) ߲ଶݐ߲ݕଶ + ܷܯ2 ߲ଶݐ߲ݔ߲ݕ + ێێێۏ
ۍ ଶܷܯ + ܯ ݐ߲ܷ߲ (݈ − −(ݔ ൬1 + ܽ ൰ݐ߲߲ ܫ2ܣܧ න ൬߲ݔ߲ݕ൰ଶ ଵݔ݀

଴ ۑۑۑے
ې ߲ଶݔ߲ݕଶ + ൬1 + ܽ ൰ݐ߲߲ ܫܧ ߲ସݔ߲ݕସ

ݔ)ߜݕଵܭ+      − (௔ݔ + ݔ)ߜݕଶܭ − (௕ݔ = 0,  (1)

where ܯ is mass of the cutting fluid per unit length. ݉ is mass of the drilling shaft per unit length. ܷ represents flow velocity of the cutting fluid. ܣ is the cross sectional area of the drilling shaft. ܫ 
is the moment of inertia of the cross sectional area. ݈  is the length of the drilling shaft. ܧ  is 
Young’s modulus of the drilling shaft. ܽ is viscoelastic damping coefficient. ݔ௔ and ݔ௕ are the 
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distance from the origin along the central axis line of the drilling shaft. ܭଵ and ܭଶ are the support 
stiffness at the position of ݔ௔ and ݔ௕, respectively. ݔ is the coordinate along the central axis line 
of the drilling shaft. ݐ is the time. ݔ)ݕ,  is ߜ .ݐ and ݔ is the transverse displacement function of (ݐ
the Dirac delta function. 

It is convenient to introduce the dimensionless quantities as follows: 

ߟ = ݕ݈ ߦ   , = ݔ݈ ,   ߬ = ൬ ܯܫܧ + ݉൰ଵ/ଶ ଶݐ݈ ݑ   , = ൬ܫܧܯ൰ଵ/ଶ ߚ    ,݈ܷ = ܯܯ + ݉ ,   ݇ = ܫଶ2݈ܣ ߙ , = ൬ ܯܫܧ + ݉൰ଵ/ଶ ݈ܽଶ ௔ߦ   , = ௔݈ݔ ௕ߦ   , = ௕݈ݔ ,   ݇ଵ = ܫܧଵ݈ଷܭ ,   ݇ଶ = ܫܧଶ݈ଷܭ . 
And the equation is rearranged as: 

ߙ ߲ହߦ߲ߟସ߲߬ + ߲ସߦ߲ߟସ + ൤ݑଶ + ඥߚ ߲߬ݑ߲ (1 − ൨(ߦ ߲ଶߦ߲ߟଶ + 2ඥݑߚ ߲ଶ߲߬ߦ߲ߟ + ߲ଶ߲߬ߟଶ − ݇ ߲ଶߦ߲ߟଶ න ൬߲ߦ߲ߟ൰ଵ
଴

ଶ ߦ݀
݇ߙ2−      ߲ଶߦ߲ߟଶ න ଵߦ߲ߟ߲

଴ ߲ଶ߲߬ߦ߲ߟ ߦ݀ + ݇ଵߦ)ߜߟ − (௔ߦ + ݇ଶߦ)ߜߟ − (௕ߦ = 0. (2)

The cutting fluid velocity in the drilling shaft is assumed to be harmonically fluctuating and 
the dimensionless flow velocity ݑ is defined as: ݑ = ଴(1ݑ + sin߱߬), (3)ߤ

where ߤ and ߱ represents the perturbation amplitude and forcing frequency, respectively; ݑ଴ is 
the mean flow velocity. 

3. Method of solution  

The solutions of the dimensionless non-linear partial differential equation are discretized to 
the time and position functions using the Galerkin method. It is assumed that the non-dimensional 
displacement at any point ߦ can be expressed as: 

,ߦ)ߟ ߬) = ෍ ߶௜(ߦ)ே
௜ୀଵ ௜(߬), (4)ݍ

where ݍ௜(߬) represents the unknown time-dependent generalized coordinates and ߶௜(ߦ) is the 
corresponding orthogonal eigenfunction of the beam, which is assumed to be fixed at one end and 
simply supported at the other end, given by: ߶௜(ߦ) = cosߣ௜ߦ − coshߣ௜ߦ − ߦ௜ߣ௜(sinߪ − sinhߣ௜ߪ ,(ߦ௜ = cosߣ௜ + coshߣ௜sinߣ௜ + sinhߣ௜ , (5)

where the eigenvalues ߣ௜ are the solution of the transcendental equation: tanߣ௜ = tanhߣ௜. (6)

In this study, the series Eq. (4) is truncated at ܰ = 10. 
Thus, the first ten values of ߣ௜ that satisfy the above Eq. (6) are shown in Table 1. 
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Table 1. The value of ߣ௜ ߣ௜ Value of ߣ௜ ௜ߣ Value of ߣ௜ߣଵ 3.92660246 ଺ߣ ଶߣ19.63495408 7.06858275 ଻ߣ ଷߣ22.77654674 10.21017612 ଼ߣ ସߣ25.91813939 13.35176878 ଽߣ ହߣ29.05973205 16.49336143 ଵ଴ߣ 32.20132470

Substituting Eq. (4) into Eq. (2), multiplying both sides of Eq. (2) by the ݆th eigenfuction ߶௝(ߦ) 
and integrating from 0 and 1, the following equation in matrix form can be obtained: ܙሷ + ሶܙ۱ + ܙ۹ + ۶ + ۴ = ૙, (7)

where ۱ and ۹ are ܰ × ܰ matrices, and ۶ ,ܙ and ۴ are ܰ × 1 matrices. They can be defined as: ܙ = ,ଵݍ) ,ଶݍ … , ே)், ۱ݍ = ۰଴ି ଵ൛۰ߙଷ + 2ඥ۰ݑߚଵൟ, ۹ = ۰ బିଵ൛۰ଷ + ଶ۰ଶݑ + ൫ඥݑߤߚ଴߱cos߱߬൯(۰ଶ − ۰ସ)ൟ, ۶ = ۰଴ି ଵሼ−݇۰்ܙହ۰ܙଶܙ − ሶܙ۰ହ்ܙ݇ߙ2 ۰ଶܙሽ, 
۴ = ۰଴ି ଵሼ۴૚ + ۴2ሽ = ۰଴ି ଵ

۔ۖەۖ
ଵ݇ۓ ێێۏ

൭෍ۍێێ ߶௜(ߦ௔)ݍ௜ே
௜ୀଵ ൱ ߶ଵ(ߦ௔)

൭෍ ߶௜(ߦ௔)ݍ௜ே
௜ୀଵ ൱ ߶ଶ(ߦ௔)ۑۑے

ېۑۑ + ݇ଶ ێێۏ
൭෍ۍێێ ߶௜(ߦ௕)ݍ௜ே

௜ୀଵ ൱ ߶ଵ(ߦ௕)
൭෍ ߶௜(ߦ௕)ݍ௜ே

௜ୀଵ ൱ ߶ଶ(ߦ௕)ۑۑے
ېۑۑ
ۙۘۖ
ۖۗ. 

And the elements of ۰଴ through ۰ହ are shown as follows: 

,݅)଴ܤ ݆) = න ߶௜ଵ
଴ ,݅)ଵܤ      ,ߦ݀(ߦ)௝߶(ߦ) ݆) = න ߶௜ଵ

଴ ,݅)ଶܤ ,ߦ݀(ߦ)௝ᇱ߶(ߦ) ݆) = න ߶௜ଵ
଴ ,݅)ଷܤ      ,ߦ݀(ߦ)௝ᇱᇱ߶(ߦ) ݆) = න ߶௜ଵ

଴ ,݅)ସܤ ,ߦ݀(ߦ)௝(ସ)߶(ߦ) ݆) = න ௜ଵ߶ߦ
଴ ,݅)ହܤ      ,ߦ݀(ߦ)௝ᇱᇱ߶(ߦ) ݆) = න ߶௜ᇱ(ߦ)߶௝ᇱ(ߦ)ଵ

଴  ,ߦ݀
where ݅, ݆ represents the ݅th row and the ݆th column of the matrix, respectively.  

To solve it simply, the state vector is introduced as follows: ܈ = ቄܙܙሶ ቅ. (8)

Thus, Eq. (7) is transformed into its first-order form: ܈ሶ = ܈ۯ + ۲ + ۵, (9)

where ۯ is 2ܰ × 2ܰ matrices and ۲ and ۵ are 2ܰ × 1 matrices. They can be defined as: ۯ = ቂ ܁ ۹−܂ −۱ቃ ,   ۲ = ቂ ۶ቃ−ۿ ,   ۵ = ቂ ۴ቃ−ۿ ܁   , = ܂   ,ே×ே۽ = ۷ே,   ۿ =  .ே×ଵ۽
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4. Numerical results and discussion 

In order to study the effect of support constraints on the vibration of the drilling shaft system, 
the support conditions are divided into the following four cases: (1) In the case of ݇ଵ = 0 and ݇ଶ = 0, the drilling shaft system is without support constraints. (2) In the case of ݇ଵ ≠ 0 and ݇ଶ = 0, the shaft system is only supported at the position of ߦ௔. (3) In the case of ݇ଵ = 0 and  ݇ଶ ≠ 0, the drilling shaft system is only supported at the position of ߦ௕. (4) In the case of ݇ଵ ≠ 0 
and ݇ଶ ≠ 0, the drilling shaft system is supported at the position of ߦ௔ and ߦ௕ at the same time. 

The parameters of the drilling shaft system are listed in Table 2. In the study, letting the 
dimensionless quantity ߙ ଴ݑ ,0.0005 = ߤ ,3.5 = ௔ߦ ,0.4 = = 0.6 and ߦ௕ = 0.8, respectively. 

Table 2. The parameters of the drilling shaft system 
Young’s 
modulus ܧ (Pa) 

Density of the 
drilling shaft ߩ௭ (kg/m3) 

Density of the 
cutting fluid ߩ௙ (kg/m3) 

Internal 
diameter ݀ଵ (mm) 

External 
diameter ݀ଶ (mm) 

Length ݈ (m) 

2.14×1011 7.8×103 0.865×103 20 26 5 

The numerical solutions of Eq. (9) are obtained by the fourth order Runge-Kutta method. 
The displacement and velocity of the midpoint of the drilling shaft are given by: 

,0.5)ߟ ߬) ≅ ෍ ߶௜(0.5)ݖ௜(߬)ே
௜ୀଵ ሶߟ    , (0.5, ߬) ≅ ෍ ߶௜(0.5)ݖ௜ାே(߬)ே

௜ୀଵ . (10)

4.1. Vibration characteristics of the drilling shaft without support constraints 

Fig. 2 is the bifurcation diagram of the drilling shaft system with forcing frequency. The 
abscissa is the forcing frequency and the ordinate represents the lateral vibration displacement of 
the midpoint of the drilling shaft. In the calculations to construct the bifurcation diagram, the 
initial vibration process of the drilling shaft is omitted and only the situation is recorded when the 
drilling shaft vibration is relatively stable. whenever the vibration velocity at the position of ߦ = 
0.5 tends to zero from positive or negative (ߟሶ(0.5, ߬) ≅ ∑ ߶௜(0.5)ݖ௜ାே(߬)ே௜ୀଵ → 0), the midpoint 
displacement at that time is recorded. Thus, the vibration displacement contains positive and 
negative values in the bifurcation diagram. 

 
Fig. 2. Bifurcation diagram of the drilling shaft with forcing frequency for ݇ଵ = 0 and ݇ଶ = 0 

As shown in Fig. 2, it can be found that, with the increasing of the forcing frequency, the 
drilling shaft system shows extremely rich dynamical behaviors, such as a variety of forms of 
periodic motions, quasi-periodic motion and chaotic motion. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Fig. 3. Phase diagram of different levels of forcing frequency: a) ߱ = 10.8, phase-chaos,  
b) ߱ = 13.6, period-1 motion, c) ߱ = 20, period-3 motion, d) ߱ = 28.2, period-4 motion,  

e) ߱ = 36.8, quasi-periodic motion, f) ߱ = 39.6, quasi-periodic motion,  
g) ߱ = 40.8, period-2 motion, h) ߱ = 48.6, period-1 motion 

As can be seen from Fig. 3, quasi-periodic motion and chaotic motion can be observed in most 
of the regions of 1 < ߱ < 11.5, 27 < ߱ < 37.5 and 47.5 < ߱ < 50, where a few of the periodic 
motions are hidden as illustrated in Fig. 3(h).  

However, the periodic motion mainly appears in the other regions. Of course, these regions 
contain a minority of the quasi-periodic motion and chaotic motion as shown in Fig. 3(f). 
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4.2. Effect of support constraints at the position ofࢇࣈon the vibration of the drilling shaft  

In this case, the drilling shaft is restrained by support constraints at the position of ߦ௔. From 
Fig. 4(a), (b) and (c), it is found that the common feature of the three is that the stable motion 
almost appears in the same regions such as 1 < ߱ < 18, 18 < ߱ < 26 and 28.5 < ߱ < 44.5 for 
different values of support stiffness ݇ଵ. The emergence of local stable regions of the system is due 
to the support constraints at the position of ߦ௔. In addition, there exists three bifurcation starting 
points, which are at the forcing frequency of ߱ = 18, ߱ = 26 and ߱ = 44.5, respectively. The 
bifurcation region is expanded with the increase of the forcing frequency. 

However, the motion form of the drilling shaft system is different in the bifurcation regions 
for different levels of support stiffness ݇ଵ. Periodic motion appears, as shown in Fig. 4(a). The 
drilling shaft system undergoes periodic motion, as can be seen in Fig. 4(b). Chaotic motion  
occurs, as can be found in Fig. 4(c). 

In the absence of support constraints, the system always presents nonlinear characteristics, as 
shown in Fig. 2. After the linear constraints is imposed to the drilling shaft, the nonlinear 
characteristics of the system is obviously improved. Chaotic and quasi-periodic motion rarely 
appear, and most importantly, stable motion appears. With the increase of forcing frequency, 
restabilization is repeatedly detected in Fig. 4. This indicates that linear constraints plays a key 
role in the dynamic characteristics of nonlinear system. Linearity of the linear constraints itself 
has been incorporated into the nonlinear system. Thus, the system contains both linear and 
nonlinear characteristic. The specific performance of the dynamic characteristics of the system 
depends on the forcing frequency. 

 
a) 

 
b) 

 
c) 

Fig. 4. Bifurcation diagram of the drilling shaft with forcing frequency for different levels of the support 
stiffness ݇ଵ at the position of ߦ௔: a) ݇ଵ = 2×105, b) ݇ଵ = 2×106, c) ݇ଵ = 2×107 

4.3. Effect of support constraints at the position of ࢈ࣈ on the vibration of the drilling shaft 

From Fig. 5(a), (b) and (c), it is obtained that the motion form is almost the same in the whole 
region for different values of support stiffness ݇ଶ, which implies that the magnitude of the support 
stiffness ݇ଶ at the position of ߦ௕ plays little role in the vibration displacement of midpoint of the 
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drilling shaft system. Periodic motion occurs in the bifurcation regions of ߱ =  6.5, ߱ =  8, 
9.5 < ߱ < 12, 14 < ߱ < 18 and 24.5 < ߱ < 48.5. For other forcing frequency values, the stable 
regions are shown in Fig. 5(a), (b) and (c), respectively. Moreover, these stable regions emerge as 
a result of the support constraints at the position of ߦ௕. 

As shown in Fig. 5, the bifurcation diagram of the drilling shaft system is similar to that of  
Fig. 4. Similarly, restabilization is also repeatedly found in Fig. 5. However, the difference of the 
distribution and quantity of the stable regions is due to the change of the location of support 
constraints.  

 
a) 

 
b) 

 
c) 

Fig. 5. Bifurcation diagram of the drilling shaft with forcing frequency for different levels of the support 
stiffness ݇ଶ at the position of ߦ௕: a) ݇ଶ = 2×105, b) ݇ଶ = 2×106, c) ݇ଶ = 2×107 

4.4. Coupled effect of support constraints at the position of ࢇࣈ and ࢈ࣈ on the vibration of the 
drilling shaft 

Representative combination levels of the support stiffness ݇ଵ and ݇ଶ are studied. As can be 
seen in Fig. 6, the difference of dynamic characteristics of the system is extraordinarily obvious 
with respect to different combination levels of the support stiffness ݇ଵ and ݇ଶ.  

As shown in Fig. 6(a), it can be seen that the drilling shaft system undergoes periodic-1 motion. 
From Fig. 6(b), it is found that quasi-periodic motion and chaotic motion occur. In Fig. 6(c), the 
movement of the drilling shaft system is quasi-periodic motion and chaotic motion in the whole 
region, except for the forcing frequency ߱ =  26 (periodic-3 motion), ߱ =  36.5 (periodic-1  
motion) and ߱ = 41.5 (periodic-5 motion). 

When single support constraints are imposed on the drilling shaft, the magnitude of the support 
stiffness has little effect on the dynamic characteristics of the system, as shown in Fig. 4 and  
Fig. 5. However, different combination levels of the support stiffness exert remarkable influence 
on the dynamic characteristics of the system, as can be seen in Fig. 6, when two support constraints 
are imposed on the drilling shaft. Moreover, the bifurcation diagram in Fig. 6 is not a linear 
superposition of the corresponding bifurcation diagram in Fig. 4 and Fig. 5. This indicates that 
there is the coupling effect due to the two linear constraints in the nonlinear system, which plays 
an important role in the dynamic characteristics of the system. In addition, it should be pointed 



2684. NUMERICAL INVESTIGATION ON NONLINEAR DYNAMIC RESPONSES TO FLUID-STRUCTURE INTERACTION IN BTA DEEP-HOLE DRILLING 
SHAFT SYSTEM. GUOHONG MA, XINGQUAN SHEN 

5470 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. NOV 2017, VOL. 19, ISSUE 7. ISSN 1392-8716  

out that no restabilization is found with the increasing of forcing frequency. 

 
a) b) 

 
c) 

Fig. 6. Bifurcation diagram of the drilling shaft with forcing frequency for different combination levels of 
the support stiffness ݇ଵ and ݇ଶ at the position of ߦ௔ and ߦ௕: a) ݇ଵ = 2×106, ݇ଶ = 2×105,  

b) ݇ଵ = 2×106, ݇ଶ = 2×107, c) ݇ଵ = 2×107, ݇ଶ = 2×106 

5. Conclusions 

In this investigation, the influence of the forcing frequency and support constraints on the 
dynamic behaviors of the drilling shaft system has been illustrated. The numerical results provide 
guidelines for maintaining the system stability by selecting the appropriate forcing frequency of 
the cutting fluid supply and the different support constraints. The following main conclusions have 
been drawn in this study.  

Single support constraints can improve the nonlinear characteristics of the system. In the 
absence of support constraints, the system always presents nonlinear characteristics. After the 
drilling shaft is subjected to single support constraints, chaotic and quasi-periodic motion rarely 
appear, and most importantly, stable motion appears. In addition, restabilization is repeatedly 
detected.  

Different combination levels of support stiffness have a significant effect on nonlinear 
dynamic behaviors of the system owing to the coupling effect of linear support constraints at 
different positions.  

It ought to be pointed out that, the influence of distribution position of the support constraints 
on dynamic characteristics of the drilling shaft system is studied in a transient state of the drilling 
shaft. However, the position of the support constraints relative to the drilling shaft is variable in 
the drilling operations, which results in the change of the dynamic characteristics of the system. 
Therefore, the change of the position of the support constraints on the dynamic characteristics 
should be further studied. 
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