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Abstract. The present paper provides mathematical model for the study of natural (free) vibration 
of non homogeneous tapered parallelogram plate on clamped boundary condition. Here non 
homogeneity (in material) of the plate’s means that the density and Poisson’s ratio varies circularly 
and exponentially respectively. For tapered, we assumed that thickness of the plate varies linearly 
in one direction. Bi parabolic temperature (parabolic in 𝜁-direction and parabolic in 𝜓-direction) 
variation on the plate is being viewed. Rayleigh Ritz method is used to solve the model (governing 
differential equation of motion). 
Keywords: parallelogram plate, density, thermal induced, vibration, circular variation. 

1. Introduction 

The study of vibration of tapered (non uniform) plates with non homogeneity in the material 
(non homogeneous plate) is the vast area of research due to its utility in various engineering 
applications like marine engineering, ocean engineering, optical instruments and mechanical 
engineering. Non homogeneous tapered plate plays significant role in engineering structures 
because of high tensile strength, durability and elastic behavior. All the engineering structure 
worked under great influence of temperature which causes non homogeneity. Therefore, with-out 
consideration of temperature the study of vibration means nothing. A significant work has been 
reported in these directions. 

An excellent work on vibration of plates with various shapes has been described by 
Chakraverty [1]. Chen et al. [2] discussed the free vibration of cantilevered symmetrically 
laminated thick trapezoidal plates. Gupta and Mamta [3] studied non linear thickness variation of 
non homogeneous rectangle plate using spline technique. Free vibration has been discussed by 
Gupta and Sharma [4] on trapezoidal plate with thickness variation under temperature effect. 
Rotary inertial effect in isotropic plates (uniform and tapered thickness) has been carried out in 
two companion papers by Kalita et al. [5, 6]. The study of vibration of non uniform and non 
homogeneous rectangular plate with temperature effect has been studied by Khanna and Kaur  
[7-9] with exponential variation in non homogeneity. Leissa [10] provided vibration of plates (of 
different shapes) on different combination of boundary (clamped, simply supported and free) 
conditions in his excellent monograph. Leissa et. al. [11, 12] studied approximate analysis of the 
forced vibration response of plates and vibration of completely free triangular plates. Transverse 
vibration and instability of an eccentric rotating circular plate is studied by Ratko [13]. Sharma et 
al. [14-16] discussed natural vibration on orthotropic non homogeneous of rectangular plate, non 
homogeneous square plate (with circular variation in density) and non homogeneous trapezoidal 
plate with temperature effect. 

The literature shows that the significant work has been done on vibration of non uniform 
(tapered) and non homogeneous plates with thermal gradient. Literature also emphasis on that, for 
non homogeneity either density or Poisson’s ratio varies linearly, parabolic and exponentially. But 
none of the researcher focused on other variation. This aspect provides good motivation to us to 
study the effect of circular variation in density as a new interesting aspect to frequency modes. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2017.18751&domain=pdf&date_stamp=2018-05-15
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Author also studies the effect of exponential variation in Poisson’s ratio as another parameter of 
non homogeneity (i.e., simultaneous variation in density and Poisson’s ratio) with the help of this 
model. 

The model presented in this paper computes the vibrational frequency modes (first two modes) 
of non uniform and non homogeneous clamped parallelogram plate. This model also provides 
effect of other aspects such as effect of temperature and thickness to frequency modes. 

2. Analysis 

2.1. Description of model 

A non uniform and non homogeneous parallelogram (thin) plate having skew angle 𝜃 is shown 
in Fig. 1. 

The skew coordinates for the parallelogram plate are: 𝜁 = 𝑥 − 𝑦tan𝜃, 𝜓 = 𝑦sec𝜃. (1)

The boundaries of the plate in skew coordinates are: 𝜁 = 0, 𝑎  and  𝜓 = 0, 𝑏. (2)

For natural (free) vibration of plate, deflection (displacement) is assumed as [8]: 𝜙(𝜁, 𝜓, 𝑡) = Φ(𝜁, 𝜓) ∗ 𝑇(𝑡), (3)

where Φ(𝜁, 𝜓) and 𝑇(𝑡) are known as maximum deflection (displacement) at time 𝑡 and time 
function respectively. 

The differential equation of motion (kinetic energy 𝑇௦  and strain energy 𝑉௦ ) for natural 
frequency of non uniform parallelogram plate is given by [10]: 𝑇௦ = 12 𝑝ଶcos𝜃 ඵ 𝜌𝑔Φଶ𝑑𝜁𝑑𝜓, (4)

𝑉௦ = 12cosଷ𝜃 ඵ 𝐷
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ଶ ቇଶ − 4sin𝜃 ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ
+2(sinଶ𝜃 + 𝜈cosଶ𝜃) ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ∂ଶΦ∂𝜓ଶቇ
+2(1 + sinଶ𝜃 − 𝜈cosଶ𝜃) ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ
−4sin𝜃 ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ ቆ∂ଶΦ∂𝜓ଶቇ + ቆ∂ଶΦ∂𝜓ଶቇଶ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

𝑑𝜁𝑑𝜓, (5)

where 𝜌 , 𝜈  and 𝑔  are known as density, Poisson’s ratio and thickness of the plate. Here  𝐷 = 𝐸𝑔ଷ 12(1 − 𝜈ଶ)⁄  is known flexural rigidity; 𝐸 is Young’s modulus. 

2.2. Assumptions for the model 

Due to the wide range and general scope of vibrations, we require little limitations in the form 
of assumptions in this study. 

1) The thickness of the plate is assumed to be linear in 𝜁-direction as shown in Fig. 2 as: 
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𝑔 = 𝑔଴ ൬1 + 𝛽 𝜁𝑎൰, (6)

where 𝛽, (0 ≤ 𝛽 ≤ 1) is known as tapering parameter. Thickness of plate become constant i.e., 𝑔 = 𝑔଴ at 𝜁 = 0. 

 
Fig. 1. Parallelogram plate with skew angle 𝜃 

 
Fig. 2. Tapered parallelogram plate 

2) For non homogeneity in plate’s material, we taken into consideration that the density and 
Poisson’s ratio of the plate varies circularly and exponentially in 𝜁-direction: 

𝜌 = 𝜌଴ ቎1 + 𝑚ଵ ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍ቏, (7)

𝜈 = 𝜈଴ ൤𝑒௠మ఍௔൨, (8)

where 𝑚ଵ , 𝑚ଶ , (0 ≤ 𝑚ଵ, 𝑚ଶ ≤ 1)  are known as non homogeneity constant corresponding to 
density and Poisson’s ratio respectively. 

3) The variation of temperature on the plate is considered as bi parabolic i.e., parabolic in 𝜁 
and parabolic in 𝜓 direction: 

𝜏 = 𝜏଴ ቆ1 − 𝜁ଶ𝑎ଶቇ ቆ1 − 𝜓ଶ𝑏ଶ ቇ, (9)

where 𝜏 and 𝜏଴ denotes the temperature excess above the reference temperature on the plate at any 
point and at the origin respectively. The temperature dependence modulus of elasticity for 
engineering structures is given by: 𝐸 = 𝐸଴(1 − 𝛾𝜏), (10)

where 𝐸଴ is the Young’s modulus at mentioned temperature (i.e., 𝜏 = 0) and 𝛾 is called slope of 
variation. 

Using Eq. (9), Eq. (10) becomes: 

𝐸 = 𝐸଴ ቈ1 − 𝛼 ቊ1 − 𝜁𝑎ଶଶቋ ቊ1 − 𝜓𝑏ଶଶቋ቉, (11)

where 𝛼, (0 ≤ 𝛼 < 1) is called temperature gradient, which is the product of temperature at origin 



2854. EFFECT OF DENSITY AND POISSON’S RATIO ON THERMAL INDUCED VIBRATION OF PARALLELOGRAM PLATE.  
AMIT SHARMA, ASHISH KUMAR SHARMA, VIJAY KUMAR 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1291 

and slope of variation i.e., 𝛼 = 𝛾𝜏଴. 
Using Eqs. (6), (8) and (11), flexural rigidity of the plate becomes: 

𝐷 = 𝐸଴𝑔଴ଷ ቈ1 − 𝛼 ቊ1 − 𝜁𝑎ଶଶቋ ቊ1 − 𝜓𝑏ଶଶቋ቉ ൤1 + 𝛽 𝜁𝑎൨ଷ 12 ൬1 − 𝜈଴ଶ𝑒ଶ௠మ఍௔൰൘ . (12)

Also, using Eqs. (6), (7), (8) and (12), Eqs. (4) and (5) becomes: 

𝑉௦ = 𝐸଴𝑔଴ଷ24cosସ𝜃 න  න

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧

⎣⎢⎢⎢
⎡ቈ1 − 𝛼 ൜1 − 𝜁𝑎ଶଶൠ ቊ1 − 𝜓𝑏ଶଶቋ቉ ቂ1 + 𝛽 𝜁𝑎ቃଷ

൬1 − 𝜈଴ଶ𝑒ଶ௠మ఍௔൰ ⎦⎥⎥⎥
⎤

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ଶ ቇଶ − 4 ቀ𝑎𝑏ቁ sin𝜃 ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ
+2 ቀ𝑎𝑏ቁଶ ൬sinଶ𝜃 + 𝜈଴ ൜𝑒௠మ఍௔ൠ cosଶ𝜃൰ ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ∂ଶΦ∂𝜓ଶቇ
+2 ቀ𝑎𝑏ቁଶ ൬1 + sinଶ𝜃 − 𝜈଴ ൜𝑒௠మ఍௔ൠ cosଶ𝜃൰ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ
−4 ቀ𝑎𝑏ቁଷ sin𝜃 ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ ቆ∂ଶΦ∂𝜓ଶቇ + ቀ𝑎𝑏ቁସ ቆ∂ଶΦ∂𝜓ଶቇଶ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

⎭⎪⎪
⎪⎪⎪
⎪⎬
⎪⎪⎪
⎪⎪⎪
⎫

௕
଴

௔
଴  𝑑𝜓𝑑𝜁, (13)

𝑇௦ = 12 𝑝ଶ𝜌଴𝑔଴ න  න ቐ቎1 + 𝑚ଵ ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍ቏ ൤1 + 𝛽 𝜁𝑎൨ቑ Φଶ𝑑𝜓௕
଴ 𝑑𝜁௔

଴ . (14)

In this model, we are computing frequency on clamped (along all the four edges) condition 
(i.e., on C-C-C-C), therefore the boundary conditions are: 

Φ(𝜁, 𝜓) = ∂Φ(𝜁, 𝜓)∂𝜁 = 0,     𝜁 = 0, 𝑎, Φ(𝜁, 𝜓) = ∂Φ(𝜁, 𝜓)∂𝜓 = 0,    𝜓 = 0, 𝑏. (15)

Therefore, two term deflection (i.e., maximum displacement) which satisfy the Eq. (15) could 
be represented by: 

Φ(𝜁, 𝜓) = ൬𝜁𝑎൰ଶ ൬𝜓𝑏൰ଶ ൬1 − 𝜁𝑎൰ଶ ൬1 − 𝜓𝑏൰ଶ ൤Ωଵ + Ωଶ ൬𝜁𝑎൰ ൬𝜓𝑏൰ ൬1 − 𝜁𝑎൰ ൬1 − 𝜓𝑏൰൨, (16)

where Ωଵ and Ωଶ are arbitrary constants. 

3. Solution of model for frequency equation 

To solve the model (obtain equation of frequency and vibrational frequency), we use Rayleigh 
Ritz technique (i.e., maximum strain energy 𝑉௦  must equal to maximum kinetic energy 𝑇௦ ). 
Therefore, we have: 𝛿(𝑉௦ − 𝑇௦) = 0. (17)
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Using Eqs. (13), (14) (15) and (16), Eq. (17) becomes: 𝛿(𝑉௦∗ − 𝜆ଶ𝑇௦∗) = 0, (18)

where: 

𝑉௦∗ = 1cosସ𝜃 න  න

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧

⎣⎢⎢⎢
⎡ቈ1 − 𝛼 ൜1 − 𝜁𝑎ଶଶൠ ቊ1 − 𝜓𝑏ଶଶቋ቉ ቂ1 + 𝛽 𝜁𝑎ቃଷ

൬1 − 𝜈଴ଶ𝑒ଶ௠మ఍௔൰ ⎦⎥⎥⎥
⎤

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ଶ ቇଶ − 4 ቀ𝑎𝑏ቁ sin𝜃 ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ
+2 ቀ𝑎𝑏ቁଶ ൬sinଶ𝜃 + 𝜈଴ ൜𝑒௠మ఍௔ൠ cosଶ𝜃൰ ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ∂ଶΦ∂𝜓ଶቇ
+2 ቀ𝑎𝑏ቁଶ ൬1 + sinଶ𝜃 − 𝜈଴ ൜𝑒௠మ఍௔ൠ cosଶ𝜃൰ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ
−4 ቀ𝑎𝑏ቁଷ sin𝜃 ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ ቆ∂ଶΦ∂𝜓ଶቇ + ቀ𝑎𝑏ቁସ ቆ∂ଶΦ∂𝜓ଶቇଶ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

⎭⎪⎪
⎪⎪⎪
⎪⎬
⎪⎪⎪
⎪⎪⎪
⎫

௕
଴

௔
଴  𝑑𝜓𝑑𝜁, 

𝑇௦∗ = න  න ቐ቎1 + 𝑚ଵ ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍ቏ ൤1 + 𝛽 𝜁𝑎൨ቑ Φଶ𝑑𝜓௕
଴ 𝑑𝜁௔

଴ . 
Here 𝜆ଶ = 12𝜌଴𝑝ଶ𝑎ସ 𝐸଴𝑔଴ଶ⁄  is known as frequency parameter. Eq. (18) consists of two 

unknown constants Ωଵ and Ωଶ (because of substitution of deflection function Φ(𝜁, 𝜓)). These two 
unknowns could be calculated as follows: ∂∂Ω௡ (𝑉௦∗ − 𝜆ଶ𝑇௦∗) = 0, 𝑛 = 1,2. (19)

After simplifying Eq. (19), we get system of homogeneous equation as: 𝑏ଵଵΩଵ + 𝑏ଵଶΩଶ = 0, 𝑏ଶଵΩଶ + 𝑏ଶଶΩଶ = 0. (20)

To obtain non-zero solution (frequency equation), the determinant of coefficient matrix 
(symmetric matrix) of Eq. (20) must zero i.e.: ฬ𝑏ଵଵ 𝑏ଵଶ𝑏ଶଵ 𝑏ଶଶฬ = 0. (21)

Eq. (21) is quadratic equation from which we get two modes as 𝜆ଵ (first mode) and 𝜆ଶ (second 
mode). 

4. Results and discussions 

To examine the behavior of modes and effect of plate’s parameters (non homogeneity 𝑚ଵ, 𝑚ଶ, 
temperature gradient 𝛼  and tapering parameter 𝛽 ), numerical computation for frequency 𝜆  is 
carried out for different combination of plate’s parameters. The value of 𝜈଴ is taken 0.345. All the 
numerical computation is done with the help of MAPLE (high level software). All the findings 
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are presented with the help of tables and graphs. 
Table 1 provides the frequency modes (first two modes) corresponding to non homogeneity 

constant (corresponding to Poisson’s ratio 𝑚ଶ and keeping density parameter 𝑚ଵ off) with fixed 
value of skew angle 𝜃 = 30° and aspect ratio 𝑎 𝑏⁄ = 1.5 for three different values of taper constant 𝛽 and temperature gradient. 𝛼 i.e., 𝛽 = 𝛼 = 0, 0.4, 0.8. From Table 1, we conclude that frequency 
for both modes increases, when the non homogeneity corresponding to Poisson’s ratio increases 
from 0 to 1 for all the three values of taper constant and temperature gradient (𝛽 = 𝛼 = 0, 0.4, 
0.8). Also, when the combined value of taper constant 𝛽 and temperature gradient 𝛼increases from 
0 to 0.8, frequency modes increases. The rate of increment in case of non homogeneity is much 
smaller (due to exponential variation) than the rate of increment in case of combined value of taper 
constant 𝛽 and temperature gradient 𝛼. 

Table 1. Non homogeneity constant corresponding to Poisson’s ratio (𝑚ଶ) vs.  
frequency parameter (𝜆) for 𝑚ଵ = 0, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 𝑚ଶ 𝛽 = 𝛼 = 0.0 𝛽 = 𝛼 = 0.4 𝛽 = 𝛼 = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 78.77 313.60 86.28 343.38 90.68 360.69 
0.2 79.94 318.24 87.63 348.77 92.14 366.65 
0.4 81.45 324.25 89.40 355.87 94.08 374.58 
0.6 83.44 332.14 91.76 365.31 96.71 385.31 
0.8 86.07 342.59 94.94 378.05 100.28 399.98 
1.0 89.60 356.61 99.24 395.40 105.16 420.26 

Table 2 provides the different set of data (frequency modes) corresponding to non 
homogeneity constant (variable value of Poisson’s ratio 𝑚2 and fixed value of density parameter 𝑚1 = 0.6) with fixed value of skew angle 𝜃 = 30° and aspect ratio 𝑎 𝑏⁄ = 1.5 for three different 
values of taper constant 𝛽 and temperature gradient. 𝛼 i.e., 𝛽 = 𝛼 = 0, 0.4, 0.8. From Table 2, 
one can easily see that the frequency behaviour (increases corresponding to non homogeneity and 
corresponding to combined value of thermal gradient and taper constant) is same as in Table 1. 
But due to implementation of another non homogeneity parameter (circular variation in density 
parameter) the frequency modes are less when compared to Table 1. 

Table 2. Non homogeneity constant corresponding to Poisson’s ratio (𝑚2) vs.  
frequency parameter (𝜆) for 𝑚ଵ = 0.6, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 𝑚ଶ 𝛽 = 𝛼 = 0.0 𝛽 = 𝛼 = 0.4 𝛽 = 𝛼 = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 

0.0 75.41 298.54 82.51 325.99 86.65 341.73 
0.2 76.53 302.96 83.79 331.11 88.04 347.37 
0.4 77.98 308.68 85.49 337.85 89.90 354.88 
0.6 79.88 316.18 87.75 346.81 92.41 365.04 
0.8 82.40 326.14 90.79 358.90 95.83 378.93 
1.0 85.78 339.48 94.91 375.36 100.50 398.13 

Table 3 gives frequency modes corresponding to non homogeneity constant (corresponding to 
density parameter 𝑚1 and keeping Poisson’s ratio 𝑚2 off) with fixed value of skew angle 𝜃 = 30° 
and aspect ratio 𝑎 𝑏⁄ = 1.5 for three different values of taper constant 𝛽 and temperature gradient. 𝛼 i.e., 𝛽 = 𝛼 = 0, 0.4, 0.8. From Table 3, we enlighten the fact that frequency for both decreases, 
when the non homogeneity corresponding to density parameter increases from 0 to 1. Here the 
frequency behave totally opposite (decreases corresponding to 𝑚1 ) to Table 1 (increases 
corresponding to 𝑚2). On the other hand frequency increases when the combined value of taper 
constant 𝛽 and temperature gradient 𝛼 increases from 0 to 0.8 as in Table 1. Here the rate of 
decrement is much smaller (due to circular variation) as compared to rate of increment in Table 1. 
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Table 4 provides the another set of data (frequency modes) corresponding to non homogeneity 
constant (variable value of density parameter 𝑚1 and fixed value of Poisson’s ratio 𝑚2 = 0.6) 
with fixed value of skew angle 𝜃 = 30° and aspect ratio 𝑎 𝑏⁄ = 1.5 for three different values of 
taper constant 𝛽 and temperature gradient. 𝛼 i.e., 𝛽 = 𝛼 = 0, 0.4, 0.8. From Table 4, one can 
easily get that frequency behaves same as in Table 3 (in all respect). But due to the implementation 
of other non homogeneity constant (exponential variation in Poisson’s ratio) the frequency for 
both modes is higher when compared to Table 3. Here the rate of decrement is same as in Table 3 
because of circular variation in density parameter. 

Table 3. Non homogeneity constant corresponding to density (𝑚1) vs.  
frequency parameter (𝜆) for 𝑚ଶ = 0, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 𝑚ଵ 𝛽 = 𝛼 = 0.0 𝛽 = 𝛼 = 0.4 𝛽 = 𝛼 = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 78.77 313.60 86.28 343.38 90.68 360.69 
0.2 77.60 308.33 84.97 337.27 89.28 354.02 
0.4 76.48 303.32 83.71 331.49 87.94 347.71 
0.6 75.41 298.54 82.51 325.99 86.65 341.73 
0.8 74.38 293.99 81.35 320.77 85.42 336.05 
1.0 73.40 289.64 80.25 315.79 84.25 330.65 

Table 5 accommodates the frequency modes corresponding to thermal gradient with fixed 
value of non homogeneity constant (corresponding to Poisson’s ratio 𝑚2 = 0 ), skew angle  𝜃 = 30° and aspect ratio 𝑎 𝑏⁄ = 1.5 for three different values of non homogeneity constant 𝑚1 
(correspondint to density) and tapering parameter 𝛽 i.e., 𝛽 = 𝑚ଵ = 0.2, 0.4, 0.8. From Table 5, it 
is interesting to note that when the temperature gradient on the plate increases from 0 to 0.8, 
frequency modes decreases for the all the three values of non homogeneity constant 𝑚1  and 
tapering paramenter 𝛽. Also, when the combined values of non homogeneity corresponding to 
density 𝑚1 and tapering parameter 𝛽 increases from 0.2 to 0.8, the frequency modes also increases. 

Table 4. Non homogeneity constant corresponding to density (𝑚1) vs.  
frequency parameter (𝜆) for 𝑚ଶ = 0.6, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 𝑚ଵ 𝛽 = 𝛼 = 0.0 𝛽 = 𝛼 = 0.4 𝛽 = 𝛼 = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 

0.0 83.44 332.14 91.76 365.31 96.71 385.31 
0.2 82.20 326.55 90.36 358.82 95.21 378.17 
0.4 81.01 321.24 89.03 352.66 93.78 371.43 
0.6 79.88 316.18 87.75 346.81 92.41 365.04 
0.8 78.79 311.36 86.52 341.25 91.10 358.97 
1.0 77.75 306.75 85.35 335.95 89.85 353.20 

Table 5. Thermal gradient (𝛼) vs. frequency parameter (𝜆) for 𝑚ଶ = 0, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 𝛼 𝑚ଵ = 𝛽 = 0.2 𝑚ଵ = 𝛽 = 0.4 𝑚ଵ = 𝛽 = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 85.47 339.42 92.17 364.85 105.38 414.25 
0.2 81.58 324.07 88.05 348.57 100.80 396.14 
0.4 77.49 307.96 83.71 331.49 95.98 377.17 
0.6 73.14 290.97 79.11 313.48 90.87 357.20 
0.8 68.49 272.92 74.19 294.39 85.42 336.05 

When we look at the Table 6, it tells how frequency modes behave for the fixed value of non 
homogeneity constant (Poisson’s ratio 𝑚2 = 0), skew angle 𝜃 = 30°, aspect ratio 𝑎 𝑏⁄ = 1.5 and 
variable value of non homogeneity constant (density parameter 𝑚1 =  0.2, 0.4, 0.8) and 
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temperature gradient (𝛼 = 0.2, 0.4, 0.8) corresponding to tapering parameter 𝛽 of the plate. From 
the Table 6, we enlighten the fact that when the tapering parameter of the plate increases from 0 
to 1, modes of frequency increases (due to linear variation in thickness). On the other hand, when 
the combined value of density parameter 𝑚1 and temperature 𝛼 increases from 0.2 to 0.8, modes 
of frequency decreases. 

In order to get good understanding of results and discussions (variation of plate’s parameter), 
graphical representation of Tables 1-6 presented in the form of Figs. 3-9. 

Table 6. Taper constant (𝛽) vs. frequency parameter (𝜆) for 𝑚ଶ = 0, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 𝛽 𝑚ଵ = 𝛼 = 0.2 𝑚ଵ = 𝛼 = 0.4 𝑚ଵ = 𝛼 = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 74.00 294.18 69.19 274.76 59.30 235.40 
0.2 81.58 324.07 76.36 302.80 65.62 259.84 
0.4 89.37 354.65 83.71 331.49 72.11 284.85 
0.6 97.31 385.75 91.20 360.66 78.72 310.28 
0.8 105.37 417.25 98.81 390.22 85.42 336.05 
1.0 113.52 449.07 106.50 420.08 92.20 362.08 

 
Fig. 3. Non homogeneity constant (𝑚2) vs. frequency (𝜆) for fixed 𝑚ଵ = 0, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 

 
Fig. 4. Non homogeneity constant (𝑚2) vs. frequency (𝜆) for fixed 𝑚ଵ = 0.6, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 
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Fig. 5. Non homogeneity constant (𝑚1) vs. frequency (𝜆) for fixed 𝑚ଶ = 0, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 

 
Fig. 6. Non homogeneity constant (𝑚1) vs. frequency (𝜆) for fixed 𝑚ଶ = 0.6, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 

  
Fig. 7. Thermal gradient (𝛼) vs. frequency (𝜆) for fixed 𝑚ଶ = 0, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 
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Fig. 8. Taper constant (𝛽) vs. frequency (𝜆) for fixed 𝑚ଶ = 0, 𝜃 = 30° and 𝑎 𝑏 =⁄  1.5 

5. Conclusions 

This model display the effect of plate’s parameter on vibration of non homogeneous tapered 
parallelogram plate (with the help of Tables 1-6 and Figs. 3-8). With the help of this model, author 
drags the attentions of the readers on two important aspects. Firstly, effect of simultaneous 
variation of Poisson’s ratio and density parameter (as non homogeneity effect) to vibrational 
frequency (in Table 2 and Table 4). The frequency is less in Table 2 (due to circular variation in 
density parameter) as compared to Table 1 (density parameter is off). The frequency is high in 
case of Table 4 (due to exponential variation in Poisson’s ratio) when compared to Table 3. 
Secondly, effect of circular variation in density to vibrational frequency (in Table 3). The 
frequency is decreasing corresponding to density parameter (in Table 3). But frequency is 
increasing corresponding to Poisson’s ratio (in Table 1). The rate of decrement/increment in 
frequency is less in Table 3 when compared to Table 1. The author also provides effects of 
temperature (in Table 5) and thickness (in Table 6) to vibrational frequency. This paper gives good 
appropriate numerical data of frequency modes which is helpful for researchers and scientists, 
making good optimal structural designs. 
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