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Abstract. The health condition assessment of Electric Multiple Unit (EMU) traction motor ball 
bearing is one of the key issues of high-speed train running safety. In order to assess health 
condition of EMU traction motor ball bearing, an online-sequential extreme learning machine 
algorithm based on TensorFlow (TOSELM) is proposed. Samples data set is divided into normal 
condition and fault condition using vibration data of ball bearings. This paper uses health condition 
accuracy rate index to evaluate TOSELM algorithm performance. The proposed approach is 
verified by public data set and private data set. The experiment results show the proposed method 
is an effective method for ball bearing health status assessment. 
Keywords: electric multiple unit, TensorFlow, online-sequential extreme learning machine, ball 
bearing, condition assessment. 

1. Introduction 

The bearing vibration data can reflect healthy state of the high-speed train bearing. Therefore, 
it is of great significance to analyze the vibration data of high-speed train bearing to ensure the 
safe operation of the high-speed train. Vibration analysis is widely applied in the health condition 
assessment of ball bearings [1-18]. For example, Ahmadian uses two layer BP neural network and 
ultrasonic acoustic emissions to classify the health condition of ball bearings [14]. Deepak makes 
use of BP neural network to classify rolling ball bearing faults and discusses the effect of neural 
network parameter [15, 16]. But BP method need a lot of human labor to achieve good 
classification accuracy. Some scholars have improved it. For instance, Lei et al. propose a 
two-stage intelligent fault diagnosis method to classify the bearing health conditions [17]. The 
proposed neural network method directly learns features from raw vibration data and does not 
require human intervention. Tong puts forward a hybrid method using singular value 
decomposition and extreme learning machine to diagnose the faults of rolling ball bearings [18]. 
The experiment result is good, but need much time to extract fault feature. In brief, the above 
stated methods can get a good result, but they need a lot of human labor to extract feature and 
optimize algorithm parameters or require a lot of program running time.  

On the other hand, with new technologies, such as internet of things, big data, and wide 
applications of sensor, data volume has grown in an exponential manner. Big data analysis can 
discover insights from a huge volume of data and increasingly drives decision making in various 
industries, including the bearing’s health assessment [19]. The methods above processing big 
vibration data from the sensors, exposed many shortcomings such as the long processing time, 
many manual interventions and so on. Some scholars have made a valuable exploration of the 
methods of large data analysis. For example, Akusok et al. develop a HP-ELM toolbox for big 
data applications [20]. So, big vibration data analysis need a high demand for computing 
efficiency and computing method. HP-ELM toolbox is suitable for off-line classification problems, 
but it is not suitable for solving online classification problems. How to solve the evaluation of the 
health condition of on-line big bearing vibration data is a key issue? This paper attempts to solve 
this challenging problem on TensorFlow platform. TOSELM method based deep learning system 
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will be introduced to effectively handle the EMU ball bearings health condition assessment.  
The remainder of this paper is organized as follows. In Section two, The BP, ELM and 

OS-ELM algorithms are introduced briefly. Then, this paper describes data, extracts statistical 
features from data and briefly explains the concept of TensorFlow. TOSELM method is developed 
using TensorFlow system in section three. In Section four, to assess health condition of ball 
bearing, experiment and discussion of BP, ELM and TOSELM are conducted. Finally, 
conclusions are given in the last section. 

2. Related work 

Classification is the most commonly technique used analysis health status. The BP, ELM and 
OS-ELM algorithm can be used for classification; therefore, the three algorithms are feasible for 
evaluating the health status of ball bearings. This section is dedicated as BP, ELM and OS-ELM 
algorithm review. In this section, brief review of these algorithms, working process and 
characteristics are presented. 

2.1. BP neural network 

BP neural network was proposed by the research team headed by Rumelhart and McCelland 
in 1986 [21]. BP neural network is a multi-layer feedforward neural network. BP is an iterative 
learning algorithm, which uses generalized perceptual learning rules to update parameters in each 
round of the iteration. BP algorithm is based on gradient descent strategy to adjust the parameters 
in the negative gradient direction of the target. It is one of the most widely used neural network 
models. 

The main characteristic of BP is that the signal is transmitted forward and the error is back 
propagation. In forward transfer, the input signal is processed layer by layer from the input layer 
through the hidden layer until the output layer. The neuron status at each level affects only the 
next layer of neurons. If the output layer predictive value cannot get the desired output value, then 
it goes to back propagation and adjusts the weights and thresholds of each layer of the network 
according to prediction error. After several iterations, the predicted output of BP neural network 
approaches the expected output. The topology structure of BP neural network is shown in Fig. 1. ଵܺ, ܺଶ, …, ܺ௡ are the input value, ଵܻ, ଶܻ, …, ௠ܻ are the predictive value, and ௜ܹ௝ and ௝ܹ௞ is the 
network node weight in Fig. 1.  

 
Fig. 1. The topology structure of BP neural network 

BP neural network can be regarded as a nonlinear function, and the input and predictive values 
of the network are independent variables and dependent variables respectively. When the input 
node number is ݊ and the output node number is ݉, the BP neural network expresses the function 
mapping relationship from ݊ independent variables to ݉ dependent variables. In the design of BP 
network, it is generally considered from several aspects such as the number of layers in the 
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network, the number of neurons in each layer, the activation function, the initial value, and the 
learning rate. 

The disadvantage of BP neural network is slow convergence, large amount of calculation, long 
training time, easy to fall into local minimum and not interpretable. 

2.2. ELM 

ELM is a new neural network algorithm proposed by Huang [23]. Compared with the 
traditional neural network, ELM training speed is very fast and require less manual interference. 
The algorithm has a strong generalization ability. 

From the point of view of the neural network structure, ELM is a simple single hidden layer 
feedforward networks(SLFN). SLFN is shown in Fig. 2.  

 
Fig. 2. The topology structure of SLFN neural network 

For a single hidden layer neural network, it is assumed that there are ܰ arbitrary samples  
௜܆) ௜ܜ , ), where ܆௜ = ,௜ଵݔ] ,௜ଶݔ ⋯ , ்[௜௡ݔ ∈ ௡܀ ௜ܜ , = ,௜ଵݐ] ,௜ଶݐ ⋯ , ்[௜௠ݐ ∈ ௠܀ . For a hidden layer 
network with ܮ  hidden layer nodes, the neural network can be represented as follow  ݂(ݔ) = ∑ ઺௜௅௜ୀଵ ,௜܉)ܩ ܾ௜,  where ઺௜ represents the connection weight between the ݅ hidden layer (ܠ
neuron and the output neuron. It is a weight vector of the ݉ dimension. ܩ(⋅) is the output of the 
hidden layer neuron. Parameters of the hidden layer node are ܉௜ and ܾ௜. When the hidden layer 
nodes are additive type, ݂(࢞) = ∑ ઺௜݃(܉௜ ⋅ ܠ + ܾ௜)௅௜ୀଵ  where ݃(·) is the activation function. The 
input weight is ܉௜. The bias of the ݅th hidden layer node is ܾ௜. The output function of the neural 
network can be written as follows: ۶઺ = (1) ,܂

where: 

۶ = ൥܉)ܩଵ, ܾଵ, (ଵܠ ⋯ ,௅܉)ܩ ܾ௅, ⋮(ଵܠ ⋯ ,ଵ܉)ܩ⋮ ܾଵ, (ேܠ ⋯ ,௅܉)ܩ ܾ௅, ே)൩ܠ ,   ઺ = [઺ଵ் , ⋯ , ઺௅் ܂   ,்[ = ଵ்ܜ] , ⋯ ,  .்[ே்ܜ
When ܮ is equal to ܰ, Eq. (1) must have a solution. However, in practical problems, ܮ is often 

much smaller than ܰ, that is, there is an error between the network output and the actual output, 
then the cost function ۸ can be defined as: ۸ = (۶઺ − ۶઺)்(܂ −  How do we solve the optimal .(܂
weight vector to minimize the loss function ۸? ELM algorithm solves this problem in two 
situations: 

A) If ۶ is a column full rank, the best weight can be found by the least square. The solution is: 
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઺෡ = argminఉ ‖۶઺ − ‖܂ = ۶ற܂, 
where ۶ற = (۶்۶)ିଵ۶்.  

B) If ۶ is not column full rank, singular value decomposition is used to solve the generalized 
inverse of ۶ to compute the optimal weight.  

BP uses gradient descent iterations to update the weights between all layers, while ELM does 
not adjust the weights of the input layer and the hidden layer. These weights are randomly  
assigned, so the training speed of ELM is very fast. Many experimental results suggest that ELM 
algorithm has higher learning speed and generalization performance compared with the standard 
BP algorithm. 

2.3. OS-ELM 

The on-line sequential extreme learning machine (OS-ELM) is one of the improved extreme 
learning machine (ELM) algorithms [20], [22-24]. It has been widely used in data fitting, 
classification forecasting and other fields. OS-ELM algorithm is based on single hidden layer 
feedforward neural networks(SLFN). So, a brief introduction of OS-ELM is given first. The output 
of a single hidden layer feedforward neural networks with hidden nodes can be represented by: 

ே݂൫ݔ௝൯ = ෍ ઺௜௡௜ୀଵ ,௜܉൫ܩ ܾ௜, ௝൯ܠ = ܠ     ,௝ܜ ∈ ௜܉     ,௡܀ ∈ ݆     ,௡܀ = 1,2 … , ܰ, (2) 

where the nodes number in hidden layer is ܰ, the connection weight of the input layer and the 
hidden layer is ܉௜ and the hidden layer threshold is ܾ௜. The output weights of the ݅th hidden layer 
nodes to the output nodes is ઺௜. The input data is ܠ௝ and the output data is ܜ௝. Assume that the 
input samples are ܰ, and the training set of the ݆th samples is represented as: ܂ = ൛(ܠ௝, ௝ܠ|(௝ܜ = ,௝ଵܠ) ⋯ , ்(௝௡ܠ ∈ ௝ܜ     ,௡܀ = ൫ܜ௝ଵ, ⋯ , ௝௡൯ܜ ∈ ݆      ,௠܀ = 1,2, ⋯ , ܰൟ,  

where the input sample number is ݊ and the number of classification is ݉. 
OS-ELM algorithm includes random initialization phase and online continuous learning phase. 

OS-ELM algorithm is described as follows. 

2.3.1. Random initialization phase 

Select a partial data set ܂଴ from ܂, where ۼ଴ represents the initial number selected, and ۼ଴ is 
not less than ۼ. Hidden layer input weights ܉௜ and hide Layer threshold ܾ௜ are generated randomly. 
Calculate the output matrix of the initial hidden layer ۶଴: 

۶଴ = ቎ ,ଵ܉)ܩ ܾଵ, (ଵܠ ⋯ ,௅܉)ܩ ܾ௅, ⋮(ଵܠ ⋯ ,ଵ܉)ܩ⋮ ܾଵ, (ேబܠ ⋯ ,௅܉)ܩ ܾ௅,  ேబ)቏. (3)ܠ

It is known that the target output is ܂଴. ܂଴ = ,ଵܜ) ,ଶܜ ⋯ ,  ேబ)். To calculate the initial outputܜ
weight value ઺଴ is equaled to calculate the minimum value of ‖۶଴઺ −  ଴‖. Eq. (1) can be written܂
compactly matrix form ۶઺ = thus ઺ ,܂ = ۶ற܂. According to matrix theory, we have the minimal 
solution: ઺଴ = (۶଴் ۶଴)ିଵ۶଴்  ଴. (4)܂

From the equation ۶ற = (۶்۶)ିଵ۶் . For the sake of convenient expression, Eq. (4) is 
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rewritten as follows ઺଴ = ଴۶଴்ۻ ଴ۻ ଴ where܂ = (۶଴் ۶଴)ିଵ.  

2.3.2. Online continuous learning phase 

When the (݇ + 1)th sample data is received, we can calculate the output matrix ۶௞ାଵ of the 
hidden layer, get ۻ௞ାଵ from Eq. (3): ۻ௞ାଵ = ௞ۻ − ௞۶௞ାଵ்ۻ (۷ + ۶௞ାଵۻ௞۶௞ାଵ் )ିଵ۶௞ାଵۻ௞, (5)

where the unit matrix is ܫ. Therefore, the new output weight ઺௞ାଵ can be got from Eq. (4): ઺௞ାଵ = ઺௞ + ௞ାଵ۶௞ାଵ்ۻ ௞ାଵ܂) − ۶௞ାଵ઺௞). (6)

3. TOSELM model 

This paper uses Case Western Reserve University (CWRU) normal and faulty ball bearing test 
public data sets and private data sets to illustrate the effectiveness of the proposed algorithm [25]. 

3.1. Data description 

CWRU ball bearing experiments were conducted using a 2 hp Reliance Electric motor, and 
acceleration data was acquired from the motor bearings. Experimental data consists of two 
categories: one is the normal data and the other is the fault data. The latter include inner race fault, 
outer race fault and ball fault. Faults ranging from 0.007 inches to 0.040 inches in diameter were 
introduced separately at the inner raceway, rolling element and outer raceway. Vibration fault data 
was recorded for motor speeds from 1797 to 1730 RPM. 

The industrial ball bearing test of high speed train is carried out on NTN traction motor bearing 
test rig. The ball bearings used in specific type high-speed train is NTN 6311 deep groove ball 
bearings. In this paper, NTN 6311 ball bearing is tested on test rig. Acceleration sensor was used 
to collect the operation information of NTN 6311 deep groove ball bearings in order to monitor 
its health state. The test bearing runtime accumulates 732 hours on the test rig with a cumulative 
mileage of nearly 300,000 kilometers. The collected data can be divided into two types: radial 
vibration data of fault ball bearing and radial vibration data of normal ball bearing. 

3.2. Feature extraction 

The public ball bearing vibration data acquired from Case Western Reserve University Bearing 
Data Center. This data set has many vibration data files. This paper extracts features from the raw 
sensory data: B007-1.mat, B014-1.mat, Normal-1.mat, IR007-1.mat, IR014-1.mat, IR021-1.mat, 
1772.mat, OR007@6-1.mat, OR014@6-1.mat, OR021@6-1.mat. 

One of the challenges of assessing health condition of ball bearing lies in extracting the right 
correlated features. In order to obtain more comprehensive and accurate running health 
information and take account of the computation time, this paper selects the following features. 
The features include: maximum absolute value, absolute mean, peak-peak value, square mean  
root, kurtosis, crest factor, kurtosis factor, impulse factor, clearance factor and shape factor. The 
description and equations are shown in Table 1.  

Absolute mean represents the vibration signal amplitude absolute mean value. It is used to 
describe the stability of signals. Maximum absolute value denotes the maximum amplitude value 
of the vibration signal waveform. Peak-peak value describes the range of signal values. Square 
mean root represents the vibration signal energy and its stability and repeatability are better. The 
larger the kurtosis indicates the more impulse component in the vibration signal. Crest factor is an 
important parameter to reflect the development trend of bearing faults. The kurtosis factor, 
impulse factor and clearance factor can effectively diagnose the incipient impulse faults. Shape 
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factor has good stability and poor sensitivity. These features are fast and useful calculation index 
that can indicate the bearing health condition using vibration big data. The ten features were 
referred as features in this paper. Features are used to test the health state of ball bearings.  

Table 1. Features of vibration data 
Feature Equation Feature Equation 

Absolute mean ܺ௠ = 1݊ ෍ |௡
௜ୀଵ ௜| Crest factor ܺ௖௙ݕ = ܺ௣௣/ܺ௥௠௦ 

Max absolute value ܺ௠௩ = Kurtosis factor  ܺ௞௙ (|௜ݕ|)ݔܽ݉ = 1݊ ∑   ௜ସ௡௜ୀଵܺ௥௠௦ݕ

Peak-peak value  ܺ௣௣ = (௜ݕ)ݔܽ݉ − Impulse factor  ௜ܺ௙ (௜ݕ)݊݅݉ = ܺ௣௣/ܺ௠௩ 

Square mean root  ܺ௦௠௥ = ൬1݊ ෍ ඥ|ݕ௜|௡௜ୀଵ ൰ଶ
 Clearance factor  ܺ௖௙ = ܺ௣௣/ܺ௦௠௥ 

Kurtosis ܺ௞ = ௥௠௦ସݔ1 ෍ ௜ݕ) − ത௡௜ୀଵݕ )ସ Shape factor  ܺ௦௙ = ܺ௥௠௦/ܺ௠ 

Note: ݕ௜ is the vibration signal {ݕଵ, ,ଶݕ ⋯ , ௜, ܺ௥௠௦ݕ ത is the mean ofݕ ,{௡ݕ = ටଵ௡ ∑ ௜ଶ௡௜ୀଵݕ  

3.3. TOSELM algorithm 

Many applications of OS-ELM are running in a single computer environment. When dealing 
with high-speed train vibration big data, it is not only time-consuming, but also not well suited to 
the needs of the high-speed train business. This paper develops OS-ELM algorithm through 
TensorFlow open source software library, in order to improve the algorithm adaptability to huge 
ball bearings vibration data. 

TensorFlow was originally developed by the Google Brain team. It released on November 9, 
2015. TensorFlow is an open source software library for machine learning. The system is flexible 
and can be used to develop a variety of algorithms for deep neural network models [26]. It is a 
complete coding framework. TensorFlow computation tasks are expressed as data flow graphs. 
TensorFlow has its own definitions of constants, variables, and data operations. It uses session to 
execute the graph. 

In order to make good use of TensorFlow framework processing vibration big data, this paper 
proposes an improved OS-ELM algorithm named TOSELM on TensorFlow deep learning system. 
How does TensorFlow framework deal with ball bearing vibration big data? There are three kinds 
of technologies: batch generator, mutation and data flow graph can help solve this challenging 
problem. Tensorflow provides batch generator to process big data. First, it put the data into the 
queue. Second, select a TensorFlow reader, and then read the data from the queue, finally use the 
tf.train.batch or tf.train.shuffle_batch in order to generate custom batch size data. Meanwhile, 
TensorFlow introduces the concept of mutation. By mutation, it can change a variable value in the 
computation process, and the variable is carried into the next iteration. The concept of mutation is 
very consistent with the operation requirements of OSELM algorithm. The biggest characteristic 
of TensorFlow is the data flow graph. The data flow graph is a directed graph. The nodes in the 
graph represent the operations, and the edges between nodes represent the multidimensional array 
data involved in the computation. Tensor is the multidimensional array data. Tensor can have any 
dimension, and each dimension can have any length. The execution of computational graph can 
be regarded as the process of data flow from the input node gradually to all the intermediate nodes, 
and finally to the output node. TensorFlow provides great space and freedom for data calculation 
through data flow graph, and ensures the flexibility of algorithm implementation. Data flow graph 
can be used to express computation intuitively. In order to use the data flow graph, each node is 
symbolized, and the data flow direction indicates the order of computation process. TOSELM 
algorithm is shown in Table 2. 
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Table 2. TOSELM algorithm 
Input: 
Create a data flow graph through session; 
The training data set ܂ ,܆; 
The number of hidden layer nodes ۼ; 
The training data block ݇ + 1; 
Output: 
Randomly generated hidden layer input weight ܉௜, hidden layer threshold ܊௜; 
Calculates the initial hidden layer output matrix ۶଴ according to Eq. (3); 
Calculate the initial output weight ઺଴ according to Eq. (4); 
The hidden layer output matrix ۶௞ାଵ is computed with incremental data block ݇ ,ଵۻ) ;1 + ,ଶۻ ⋯ , ,௞ାଵ) is calculated according to Eq. (5) and Eq. (6); (઺ଵ, ઺ଶۻ … , ઺௞ାଵ) is calculated according to Eq. (6); 
Return ઺; 
Call session.run to perform the calculation. 

4. Experiment and discussion 

Bearing health condition assessment is a key issue of EMU condition-based maintenance. The 
assessment bearing health condition using vibration data has been a research topic for many years. 
It includes two mainstream methods: signal processing methods and classification algorithms [27]. 
This paper uses the latter.  

This paper proposes the below process to access the health condition of ball bearings as shown 
in Fig. 3. The Experiments were conducted on Case Western Reserve University ball bearing test 
data and NTN 6311 ball bearing test data. The selected bearings were tested on these experimental 
setups and the vibration signals were acquired at defined intervals. Then, the signals are converted 
to data for further analysis. 

Statistical features were deployed for feature extraction. Features are used as model input. 

 
Fig. 3. Flowchart of the proposed method 

The BP, ELM and TOSELM model will be used for assessing the ball bearings health 
condition. The proposed method was tested with the vibration data of ball bearings from Case 
Western Reserve Lab. To compare three algorithms performance, test accuracy and test run time 
are adopted. Accuracy is a criterion measuring the performance of a classification method. Model 
running time is an important algorithm index. If some models perform the same function and 
process the same data, the shorter running time model is the best. The program run time and 
ten-fold cross-validation test results of BP, ELM and TOSELM are shown in Table 3.  

The classification accuracy and average accuracy of the 10-fold cross validation test data set 
of BP, ELM, and TOSELM is in the left part of Table 3. From the average accuracy of the three 
algorithms, it can be seen that average test accuracy of ELM is 3.64 % higher than that of BP; the 
average test accuracy of TOSELM is 0.08 % higher than that of ELM. On the whole, TOSELM 
average test accuracy rate is the highest, ELM is the second, and BP is the lowest. From the right 
part of Table 3, one can see the running time and the corresponding average run time of the 10-fold 
cross validation test data set of BP, ELM and TOSELM. From the three algorithms run time, it 
can be seen that average test running time of ELM is 0.778 seconds faster than that of BP; average 
test running time of TOSELM is 0.002 seconds faster than that of ELM. Overall, the average 
running time of TOSELM is the least. From the above analysis results, we can see that TOSELM 
is the most suitable algorithm for evaluating the health condition of ball bearings in three 
algorithms. 

A group of experiments were conducted, in order to evaluate the feasibility of BP, ELM and 
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TOSELM on high-speed train. The experimental results are shown in Table 4. From the left part 
of Table 4, it can be seen that average test accuracy of ELM is 4.46 % higher than that of BP; the 
average test accuracy of TOSELM is 0.92 % higher than that of ELM. On the whole, TOSELM 
average test accuracy rate is the highest compared with BP and ELM. From the right part of 
Table 4, it can be seen that the running time of BP, ELM and TOSELM is 37.075 seconds, 
2.667 seconds and 2.485 seconds respectively. Overall, the average running time of TOSELM is 
the least. 

According to the above experimental results of Table 3 and Table 4, one can clearly see that 
TOSELM model evaluates the ball bearing health condition with a higher accuracy and shorter 
time, compared with BP and ELM. However, as the volume of data increases, the noise increases, 
which results in a lower test accuracy on NTN 6311 test set than that in Case Western Reserve 
University ball bearing test set. These results support the claims that TOSELM model is useful for 
the health condition assessment of high-speed train ball bearings. 

Table 3. The program test run time and test accuracy of CWRU ball bearing test data 

ID Test accuracy Test run time 
BP ELM TOSELM BP ELM TOSELM 

1 93.08 % 100 % 100 % 0.986 0.044 0.078 
2 94.23 % 100 % 100 % 0.908 0.051 0.041 
3 95.38 % 100 % 98.46 % 0.910 0.042 0.042 
4 96.15 % 98.46 % 100 % 0.057 0.046 0.048 
5 96.77 % 100 % 100 % 0.890 0.050 0.040 
6 96.67 % 100 % 100 % 0.903 0.044 0.044 
7 96.81 % 100 % 100 % 0.917 0.045 0.044 
8 97.02 % 99.23 % 100 % 0.906 0.079 0.035 
9 97.18 % 100 % 100 % 0.884 0.037 0.035 
10 97.23 % 99.23 % 99.23 % 0.895 0.035 0.041 

Average 96.05 % 99.69 % 99.77 % 0.825 0.047 0.045 

Table 4. The program test run time and test accuracy of EMU ball bearing test data 

ID Test accuracy Test run time 
BP ELM TOSELM BP ELM TOSELM 

1 100.00 % 98.75 % 99.00 % 35.051 2.924 2.292 
2 75.00 % 93.75 % 98.75 % 90.612 2.830 2.272 
3 83.33 % 93.75 % 93.75 % 7.881 2.646 2.352 
4 87.50 % 91.25 % 98.75 % 91.858 2.536 2.500 
5 90.00 % 83.75 % 88.75 % 12.057 2.624 2.538 
6 91.67 % 92.50 % 91.25 % 8.471 2.587 3.258 
7 92.86 % 96.25 % 77.50 % 10.975 2.847 2.449 
8 87.50% 92.50 % 98.75 % 86.448 2.640 2.260 
9 88.89 % 96.25 % 95.00 % 20.045 2.544 2.607 
10 90.00 % 92.50 % 99.00 % 7.348 2.489 2.316 

Average 88.67 % 93.13 % 94.05 % 37.075 2.667 2.485 

Professor Liu Feng provided basic ideas. Qingbin Tong and Qiming Niu discussed and 
provided many constructive suggestions. Junci Cao provided and preprocessed the bearing data 
of Case Western Reserve University. Yihuang Zhang conducted practical experiment and 
provided the actual data. 

5. Conclusions 

This paper proposes a health condition assessment model. It can address bearing health 
condition assessment issue that suits to a real time big data application. The proposed model is 
effective in removing the influence introduced by the operation condition environment and 
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improves the robustness in the bearing health condition assessment. The analysis of the practical 
vibration data demonstrated that the proposed index group is feasible and effective to indicate the 
health condition of the EMU bearing. Overall, the obtained results are important enough for further 
development of health condition assessment of ball bearings system and the proposed approach 
can be useful reference for specialists working in this field. 
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