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Abstract. The extension of the adaptive estimation theory for nonlinear correlation-extremum 
systems with random structure to the case when the measurements noise model is a spatial-time-
varying Gaussian-Markov colored process is presented and the new signal processing algorithms 
are derived which provide the system operation in varying and uncertain external conditions. 
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1. Introduction 

A common practice of much of the work in the area of signal processing in the stochastic 
dynamic systems carried out in the past has been associated with the state dynamics and 
measurements modelling with nonlinear (sometimes extremely) functions of the state variables 
and with corresponding digital filtering algorithms. One of the widely used estimation algorithms 
in terrestrial and magnetic field navigation systems, in most of the target tracking systems, and in 
the other areas of applications up to now is an extended Kalman filter (EKF), which performs only 
relatively robust under operating conditions adequately described in the state and the measurement 
models, and under natural or artificial disturbances such as abrupt increasing of the measurements 
noise, informative signal interruption, discontinuous jump of the estimated process features (the 
last may occur as a result of abrupt target maneuvers), and etc., the behavior of EKF becomes 
undamped and often ends in diverge. 

The causes of the Kalman filter diverge have been first analyzed by Kalman R. E. [1] and 
Knoll A. [2] and generalized by Sage A. P. and Melse J. L. in [3]. 

The asymptotic properties of different estimators as a complicated problem is still an open area 
for further researches. 

In most practical applications of filtering theory, the uncertain measurements noise models are 
sometimes represented by Gaussian processes with unknown probabilistic characteristics (one of 
the causes of a filter diverge), and the variations of these characteristics and their identification in 
different conditions play an important role to ensure the stochastic dynamic systems reliability 
and operation under environment influences. It is specifically necessary to avoid the often-used 
concept of adding considerable dynamics pseudo-noise to open the filter bandwidth since this 
tends to veil the differences between the real and the inadequately described models. 

An adaptive Kalman filtering algorithm for the standard linear problem under an irregular 
environment where all variances of zero-mean Gaussian white (system and observation) noises 
are unknown a priori is obtained in [4] with the modified Kalman gain matrix, which is considered 
as its “optimal estimate” that depends only on the given data. In [5] an EKF, implemented in radar 
coordinates, includes together the features based on the introducing model noise into the state 
estimate covariance matrix before propagation (to increase the robustness of the filter by 
appropriately distributing the model noise based on the observed trajectory and filter update 
interval), and on using both static and dynamic model noise terms where the last are adjusted 
according to the observed track errors and cause the filter to weight new measurements more. 

 Another limitation of the Kalman filtering schemes (linear or suboptimal extended one) is in 
the fact that they can process only time-varying signal functions. 
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One of the earlier approaches to process the spatial-time-varying signals such as 
two-dimensional infra-red target images by means of a Kalman filter enhanced by a correlator was 
proposed in [6]. 

A further difficulty in the nonlinear signal processing may occur when the measurements 
models contain colored noises as the covariance matrix is positively semi-definite that has an 
adverse effect on the filter gain computations. 

Some previous work has already dealt with the linear filtering problem for time-varying 
systems using measurements containing colored time-varying noise, since one of the first 
researches [7]. The spatial-time-varying filtering problem in the additive spatial-time-varying 
colored noise has been investigated in [8]. All of these researches refer only to state estimation in 
the classical stochastic dynamic systems (SDS) with deterministic structure.  

Thus, a theoretical investigation was necessary to describe more adequately the SDS and the 
environment influences on the system to ensure the SDS robustness and operation in different 
conditions (for example, a tracking system convergence after a target maneuver has occurred). 

In [9-11] the correlation-extremum methods were originally applied to signal processing for 
the systems with random structure and the nonlinear estimation algorithms using spatial-time-
varying signals in spatial-time-varying Gaussian white noise (STVGWN) were derived. 

In this research, the new estimation algorithms have been derived using a spatial-time-varying 
measurements model with the spatial-time-varying Gaussian-Markov colored noise (STVGMCN) 
in conjunction with both nonlinear correlation-extremum system and system with random 
structure. 

1.1. Problem under consideration 

Consider the following nonlinear estimation problem for the dynamic state process described 
by a stochastic differential equation (Eq. (1)) [9]: ( ) =  ( )( , , ) + ( )( ),   ( )  =  ,    (  =  1, ), (1)

where ( )  is the -dimensional, in general case, state vector, which contains the random, 
unknown, and time-varying parameters vector = ( , … , ) , with initial Gaussian value ( ), ( )( , , ) is the nonlinear deterministic vector function ( )( , , ) = ( )( , , ) , ( =  1, ) which satisfies Lipschitz conditions, ( ) is the known control vector, which may 
depends on the state vector estimates components, ( ) is a stationary Markov process taking 
values in the set {1, 2,..., } (number of the state). Here ( )( ) is a vector process of the state 
Gaussian white noise with diagonal intensity matrix ( )( ) = ( )( ) , ( =  1, ). 

The following measurement Eq. (2): ( , , ) =  ( )( , , , ) + ( )( , , ),       =  1, , (2)

describes the observable signal ( , , )  as the -dimensional spatial-time-varying process, 
where ,  are the space variables – space coordinates at any point – ∈  =  [ ,  ] ,  ∈   =  [ ,  ] ,  is the time variable ∈ = [ ,  ] , ( )( , , , )  is the vector of 
spatial-time-varying signals of different physical nature, ( )( , , )  is the vector process of 
STVGMCN type. 

The spatial-time-varying signal position on the image plane  can be determined by 
parameters vector ( ) = ( , ) , ( ) = ( , ) . Then the signal may be written as ( )( , , , ) = ( ) − , − , .  

The changes of the structure are assumed to be Markov process with -finite states and the 
transition intensities ( ) and ( ), where , =  1, . The behavior of the system with random 
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structure may be explicated by the example of a tracking system in the cases of a maneuvering 
target tracking interruption or of great estimation errors, when the target remains in each state for 
a random period of time, and the Markov process models describe the stochastic continuous 
process of target dynamics and digital process of the structure changes. 

Given the nonlinear estimation problem defined above for Eq. (1-2), we would like to find the 
finite-dimensional dynamical system whose output is the best minimum variance estimate of the 
joint Markov process ( ( ), ( )) , for ≥ 0, where the suboptimal estimate ( ) of Markov 
process ( ) is the conditional mathematical expectation, and the optimal estimate of discrete 
process ( ) by the a posteriori probability criterion will be such a value of  that makes the value 
of the a posteriori probability ( ) maximum (the sign ^ means the a posteriori function value). 

1.2. Solution of the algorithms synthesis and analysis problem 

The solution of the spatial-time-varying signal processing algorithms synthesis and analysis 
problem presented in this paper is based on a combination of two theories – the correlation-
extremum systems theory and the theory of stochastic systems with random structure. 

The algorithms synthesis for correlation-extremum systems with random structure [9-11] was 
based on the generalized Fokker-Plank-Kolmogorov-Stratonovich equation for the evolution of 
joint conditional probability density function of the state dynamics ( ) and the system structure ( ) given the observed spatial-time-varying data ( , , ) ( ,  ,  | ( , , ),  ≤ ≤  )  =( ,  , ) =  ( )( , ) (Eq. (3)):  ( )( , ) = −  ( )( , )       − 12 ( )( , )  Φ( )( , , ) − Φ( )( , , ) ( )( , )   
      + ( )( )  ( ) ( ) ( )( , ) − ( )( , ) ,      ( , ),      = 1, , 

(3)

where ( ) is the a posteriori probability of the th state, Φ( )( , , ) is the derivative of the 
likelihood function logarithm in the th state (  is the variable, ∈ ), ( )( , ) is the probability 
density flow vector in the th state: 

( )( , ) = ( )( , ) ( )( , ) − 12  ( )( , ) ( )( , )  , 
where ( )( , ) is the local rate vector, ( )( , ) is the diffusion matrix, ( , ) is the initial 
value of probability density of the state dynamics ( ). 

The a posteriori probability density for the whole dynamics process is defined by the following 
expression ( , ) = ∑  ( ) ( )( , ) . The suboptimal estimate of the state is the 
probabilistically weighted average ( ) = ∑  ( ) ( )( ). 

The presence of the state probability estimate equations (Eq. (4)) (differential or discrete (for 
a discrete problem statement)) in the estimation algorithms and the relation between these 
equations are the main distinctive characteristics of signal processing in systems with the random 
structure [9, 10]: 
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( ) = − ( ) ( ) + ( )( )  ( ) 
      + 12 ( ) Φ( )( , , ) ( )( , )  −  ( ) Φ( )( , , ) ( )( , )   . (4)

The a priori state probabilities ( ) are determined according to Kolmogorov equations: ( ) = − ( ) ( ) + ( )( )  ( ). 
In this research, the principle of the likelihood function maximum for the STVGMCN ( , , ) is first extended to the systems with random structure. 
The solution of the problem in this paper has been obtained in Gaussian approximation of the 

a posteriori probability density. In the algorithms synthesis, to simplify the derivation, it was 
supposed that the signal or image position along one of the axes (e.g., in  direction) was known 
denoting the signal ( )( , , ) = ( )( − , ) , and the state parameter  without index   =  . Then the measurement equation (Eq. (2)) takes the form: ( , ) =  ( )( − , ) + ( )( , ), (  =  1, ). 

The spatial-time first-order filters (shaping filters) with the transfer function ( , ),  ( ( ), = ⁄ , ( ), = ⁄ )  are used to transform the STVGWN ( )( , )  with 
spectral densities ( ) in the case of stationary measurements noise (and may be ( )( ), in the 
case of nonstationary noise) to the Gaussian-Markov colored spatial-varying and time-varying 
noises, correspondingly: ( )( , ) = ( )( , ) ( , ) , where ( )( , )  is the exponentially 
correlated process (STVGMCN) with spatial-time correlation function ( )(Δ , Δ ) =( ) exp − Δ − Δ , ( ) = ( ) 2⁄ , and frequency characteristics: ( ) = ( +⁄ ); ( ) = ( + )⁄ ; where  and  are the spatial and temporal frequencies, the values  
and  determine the spatial and temporal correlation intervals;  ( )( , ) =  ( )( , )    ( )(  , ) =  ( )( , ) ( )   ( )(  , ) ( ) , where 
the components ( )( , )  and ( )(  , )  are formed in the cuts of the ( )( , )  process by 
orthogonal planes for =  and = , ( , = 1, ) assuming the spatial and time processes 
regenerations (or transformations) to be independent. 

The STVGMCN model is represented by two components of the time-varying ( )( , ) and 
spatial-varying ( )( , )  narrowband background described by the Langevin first order 
differential equations (Eq. (5)), first written for the systems with random structure: ( )( , ) = −  ( )( , ) + ( )( , ), ( )(  , ) = −  ( )(  , ) + ( )(  , ),     , =  1,  . (5)

For the case when the structure changes represent Markov process with two states ( = 1, 2) 
and the transition intensity ( ) the new solution of nonlinear filtering problem in STVGMCN for 
systems with random structure has been obtained in the form of the following correlation-
extremum algorithms for computing the a posteriori probabilities of state (Eq. (6)), the state 
estimates (Eq. (7)), and the covariance (Eq. (8)). 

The differential equation for the a posteriori probabilities of state is presented below: 



NONLINEAR SIGNAL PROCESSING IN SYSTEMS WITH RANDOM STRUCTURE FOR THE CASE OF SPATIAL-TIME-VARYING COLORED GAUSSIAN-
MARKOV NOISE. TATIANA P. KOLOSOVSKAYA 

276 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. SEP 2017, VOL. 13. ISSN 2345-0533  

  ( )  = − − 1 −  ( ) 2 ( ) 2  + ( ) Δ ( ) − 1 ( ) Δ ( ) + ( )  
      − 1 ( ) Δ ( ) + ( ) − 2 ( ) Δ ( )Δ ( ) + 1  ( ) Δ ( )Δ ( )  
      + 1 ( ) Δλ( )Δ ( ) ( )( ) + ( ) + ( )  ( ) 
     + −   ( ) 2 ( ) 2  + ( ) Δ ( ) − 1 ( ) Δ ( ) + ( )  
      − 1 ( ) Δ ( ) + ( ) − 2 ( ) Δ ( )Δ ( ) + 1  ( ) Δ ( )Δ ( )  
      + 1 ( ) Δ ( )Δ ( ) ( )( ) + ( ) + ( ) 1 −  ( ) , ( ) = 1 −  ( ), 

(6)

where  ( ) is the a posteriori probability of the second state, Δ ( )( ) is the state estimate error Δλ( )( ) = ( ) − ( )( ), ( )( ) is the variance of the a posteriori probability density function ( )( ) = 〈[( ( ) − ( )( )] 〉, ( = 1,2 ); ( ) Δλ( ),  is the spatial correlation function in the 
th state ( ) Δ ( ), = 〈 ( ) ( − ( ), ) ( )( −   , )〉 , (or for the scalar measurement: ( ) Δ ( ), = 〈 ( )( − ( ), ) ( )( −   , )〉), 
( ) Δ ( ) = ( )( −  , ) ( ) − ( ), ,     ( ) = ( ) − ( ),  , 
( ) Δ ( ) = ( )( −  , ) ( ) − ( ), ,     ( ) = ( ) − ( ),  , 
( ) =  12 ( ) ( )(  , ) ( ) − ( ), , 
( ) =  12 ( ) ( )(  , ) ( ) − ( ), . 

( ) is the specific spectral intensity of the STVGWN ( )( , ) in the th state, ( ) = ( )⁄ . 
The equations (Eq. (6)) have been derived using the assumption of the “unpowered” 

parameters. This assumption means that the integrals [ ( )  – ( ), ]  and (  , )  , which represent the signal power and are explicitly independent of the estimate 
parameter, may be included in the  and  coefficients, and the integrals of the squared signals 
derivatives, with respect to  and , may be involved in the ( ) and ( ) terms. 

The estimates ( )( )  and covariances ( )( )  in each state are combined to obtain the 
suboptimal (as the system is nonlinear) estimate ( ) and covariance ( ) for the whole process 
by using a weighted sum, where the weighting factor is the a posteriori probabilities of states ( ). 

Using the obtained derivatives of the likelihood function logarithm with respect to the 
estimates in each state and some rearrangements, the following state estimate equation (Eq. (7)) 
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has been derived: 

( )( ) = ( ) ( ), , − ( )( )2 ( ) 2 ( ) Δ ( ),Δ ( ) + 1  ( ) Δ ( )Δ ( )  

      + 1 ( ) Δ ( )Δ ( ) + ( )( ) ( ) +    ( )   ( ) ( )( ) − ( )( ) , 
( )( ) = ( ),     ( , = 1,2,     ≠ ), ( ) = ( ) ( )( ) + ( ) ( )( ), 

(7)

where: 

( ) =    12 ( )  ( ) 2 ( )(  , ) ( )  – ( ), +  1 ( )(  , ) ( )  – ( ),  
      + ( )(  , ) ( )  – ( ), + 1 ( )(  , ) ( ) − ( ),        + 1 ( )(  , ) ( ) − ( ), + ( )(  , ) ( ) − ( ),        + 1 ( )(  , ) ( ) − ( ), . 

(As a remark: in many cases the measurements signals and noises are (or are supposed to be) 
uncorrelated). In this solution, the spatial-time-varying signals are processed in parallel by two 
estimators exchanging information between them, each based (for example) upon a particular 
model of target dynamics intensity and adaptive expansion or contraction of the target tracker field 
of view attained by generating the probabilistically weighted average of the two filter state 
estimates. 

The variance equation (Eq. (8)) is presented below: 

( )( ) = 2 ( )( ) ( ) ( ), ,   ( ) + ( )( )2 ( ) 2 ( ) Δ ( )Δ ( ) + 1  ( ) Δ ( )Δ ( )  
      + 1 ( ) Δ ( )Δ ( ) + ( )( ) ( )∗ + ( )( ) +  ( )  ( ) ( )( ) − ( )( )       + ( )( ) − ( )( ) ,     ( )( ) ,      , = 1,2,     ≠ , ( ) =  ( ) ( )( ) +  ( ) ( )( ), 

(8)

where: 

( )∗ = 1( )  ( ( )) 1 ( )(  , ) ( )  – ( ), + ( )(  , ) ( ) − ( ),  
     + 1 ( )(  , ) ( ) − ( ), + 1 ( )(  , ) ( ) − ( ),       + ( )(  , ) ( ) − ( ), + 1 ( )(  , ) ( ) − ( ), . 

(9)

The variance equations (Eq. (8)) are the new Riccati-type differential equations derived 1) for 
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systems with random structure 2) with cross correlation functions (their second derivatives) 3) for 
signal processing in STVGMCN. 

The filtering algorithm for correlation-extremum systems with random structure for estimation 
of signal position along the  axis has been derived, similarly, and for both components of the 
state vector ( ) and ( ) the appropriated adaptive estimation algorithm has been derived. 

Signal processing in the presence of the STVGMCN is a more general form of the estimation 
problem, which allows one 1) to obtain the solution for the measurement STVGWN [9, 10], 
modifying the equations (Eqs. (6-8)), considering → ∞, → ∞, and in this fashion maximizing 
the corresponding bandwidths, and 2) to receive the background model reflecting the real 
environmental conditions more adequately by changing the parameters of the STVGMCN  

 and . 
Using the proposed algorithms based on the systems with random structure theory there is no 

need in experimental or artificial tuning the gain matrix to avoid diverge as it was necessary for 
nonlinear filters in systems with a deterministic structure.  

The obtained linearized solution of the derived algorithms allows to receive the a priori 
performance evaluation of the signal processing system in different conditions. 

It can also be noticed that the new algorithms take advantages of recent increases in processor 
speeds satisfying the required computational burdens, and of the correlation-extremum signal 
processing properties. 

2. Conclusions 

The proposed new correlation-extremum algorithms for computing the a posteriori 
probabilities of states, the state estimates, and the variance, are obtained using the theory of 
Markov processes and stochastic systems with random structure for the adaptive estimation 
problem, when the state and the parameter models follow Markov processes, and the 
measurements are the nonlinear spatial-time-varying signals of different physical nature where the 
measurements noise is the spatial-time-varying Gaussian-Markov colored process first considered 
as a measurement noise model in systems with random structure to describe more adequately the 
environmental influences on SDS. 

The proposed extension of the correlation-extremum methods to the theory of Markov 
processes and systems with random structure provides adaptive features for the combined system 
by generating the probabilistically weighted average of the state estimates, with the gain first as 
an analytical function (not as an experimentally or artificially modified value) depending on the 
spatial cross-correlation function derivatives and the a posteriori probabilities of states, and 
assures the complex SDS with random structure reliability and operation in varying and uncertain 
external conditions. 

There are many potential military and civil application areas of the derived nonlinear spatial-
time-varying signal processing algorithms, in particular in such nonlinear SDS as tracking, 
navigation systems, robotics equipped with image sensors (e.g., radar, optics, and etc.) using the 
spatial-time-varying measurements information of different nature fields. 
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