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Abstract. The ball screw system is one of the crucial components of machine tools and predicting 
its remaining useful life (RUL) can enhance the reliability and safety of the entire machine tool 
and reduce maintenance costs. Although quite a few techniques have been developed for the fault 
diagnosis of the ball screw system, forecasting the RUL of the ball screw system is a remaining 
challenge. To make up for this deficiency, we present a model-based method to predict the RUL 
of the ball screw system, which consists of two parts: health indicator (HI) construction and RUL 
prediction. First, we develop a novel HI, weighted Mahalanobis distance (WDMD). Unlike the 
Mahalanobis distance (MD), which is constructed by fusing original features directly, the WDMD 
is formed with some selected features only, and the features are weighted before integration. 
Second, an exponential model is developed to describe the degradation path of the ball screw 
system. Then, the particle filtering algorithm is employed to combine the WDMD and the 
degradation model for state estimation and RUL prediction. The proposed approach is verified by 
a dataset obtained from an experimental system designed for accelerated life tests of the ball screw 
system. The results show that the WDMD has a more apparent deterioration trend than the MD 
and the proposed exponential model performs better than both the linear model and the nonlinear 
model in RUL prediction. 
Keywords: remaining useful life, prediction, ball screw system, health indicator, degradation 
modeling, Mahalanobis distance. 

1. Introduction 

Health monitoring is an important task in condition-based maintenance (CBM), and it focuses 
on two aspects: diagnostics and prognostics [1-5]. The diagnostics include detecting the presence 
of failure and identifying the characteristics of faults, such as types, locations, and damage levels 
[6-8], whereas the target of prognostics is to forecast the remaining useful life (RUL) of systems 
in advance [9, 10]. With accurate RUL prediction results, predictive maintenance or replacement 
can be arranged to occur at an appropriate time, which can reduce the unnecessary costs caused 
by unscheduled maintenance. Therefore, RUL prediction has triggered a growing amount of 
research recently. 

The ball screw system is a basic component in machine tools, and it is used for precision 
positioning. A ball screw is the main part of a ball screw system, and it is assembled to the machine 
base with bearings [11], as illustrated in Fig. 1. Driven by a servo motor, the ball screw can 
transform the rotary motion into the linear motion, and then the carriage attached to the ball screw 
by the ball nut can move linearly. The ball screw system is an essential part of the machine tool, 
and its performance has a direct influence on the machining quality and the productivity of the 
machine tool [12]. However, the ball screw system often works under tough conditions, and it will 
degrade. Therefore, it is of prime significance to estimate the health status of the ball screw system 
and predict its RUL, which can improve the reliability and efficiency of the machine tool and 
reduce maintenance costs. 
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Fig. 1. The ball screw system 

Although many techniques have been developed for the fault diagnosis of the ball screw 
system [13-15], RUL prediction of the ball screw system is a remaining challenge. Generally, RUL 
prediction approaches can be classified into two categories: data-driven techniques, and 
model-based techniques [16]. For data-driven approaches, the RUL estimation models are 
established from historical data through machine learning techniques, e.g., artificial neural 
network [17], support vector machine [18], and neuro-fuzzy systems [19]. These methods need no 
prior knowledge about the concerned system but require a large amount of historical failure data. 
However, it is both formidable and time-consuming to acquire adequate data for the ball screw 
system due to the high reliability of the ball screw. In model-based approaches, empirical models 
are constructed to represent the deterioration process of systems. With the condition monitoring 
data, the model parameters and the health state of a specific system can be updated. Based on the 
model, the estimated health status, and the updated parameters, the probability distribution of the 
RUL can be obtained. Different from data-driven techniques, model-based approaches can make 
use of both prior knowledge and real-time monitoring information. Therefore, they may work well 
in the prognostics of the ball screw system. However, some challenges still remain in the 
model-based methods. 

One challenge of model-based prognostics is how to establish an appropriate health indicator 
(HI) of the plant damage level. With a proper HI, the degradation modeling can be simplified, and 
the prediction accuracy can be improved. Features extracted by signal processing techniques have 
been widely used as HIs. Camci et al. used time-domain features to reflect the bearing health state 
and presented a strategy to evaluate the quality of features for prognostics [20]. Kim et al. 
employed frequency-domain features to identify degradation states [21]. Singleton et al. obtained 
a bearing HI by using the Choi–Williams distribution and proved that the time-frequency-domain 
feature could indicate the bearing’s performance in its incipient stage of deterioration [2]. The 
above features depict signals from different aspects, and any given feature is only sensitive to a 
particular defect in a specific deterioration stage [2, 22]. During the degradation process of the 
ball screw system, various faults may co-occur, and thus the health state of the ball screw system 
cannot be represented with one feature or several features extracted from one domain. To obtain 
a suitable HI, we should take advantage of multiple features in different domains. Nie et al. 
presented an HI construction approach which utilized the Mahalanobis distance (MD) to fuse 
various features [23]. Then, Wang et al. applied this strategy to bearing prognostics [24]. Using 
the MD, the information buried in multiple features can be integrated into a single index. However, 
some features may have a weak correlation with the degradation process and will have no effect 
or even negative influence on the incorporation result. Therefore, in this paper, the original 
features extracted with different signal processing techniques are evaluated, and the representative 
ones are selected and weighted to form a novel HI named weighted Mahalanobis distance 
(WDMD). 

Another challenge of the model-based approach is building a suitable model to describe the 
equipment degradation process. Peng and Tseng proposed a general linear model to predict the 
mean-time-to-failure of products [25]. Liu et al. developed a nonlinear autoregressive model to 
depict the nonlinear degradation process and used particle filtering (PF) to combine the model and 
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condition monitoring data for RUL prediction. Zhao et al. utilized the Paris model to describe the 
propagation of the gear crack and forecast the failure time distribution with Bayesian inference 
[26]. Gebraeel et al. presented an exponential model to represent the deterioration process of 
bearings [27]. Si presented a nonlinear model based prognostics method and applied it to battery 
RUL prediction [28]. Among these studies, the exponential model is one of the most prevalent 
models. Since the exponential model describes the exponential form degradation process well, it 
has been widely used for RUL prediction and has been further improved by many investigators 
[9, 29-31]. Motivated by the above researches, we introduce an exponential model for the 
degradation modeling of the ball screw system. Then, the PF is employed to integrate the real-time 
HI with the degradation model for state estimation and RUL prediction. 

The major contributions of this work are summarized as following: 
1) A model-based approach is introduced for ball screw system RUL prediction, which is a 

novel attempt in machine CBM. 
2) A new HI, i.e., WDMD, is proposed, which is an improvement of the MD presented in [23]. 

Unlike the MD, the WDMD is formed from selected features only, and they are weighted before 
integration. Hence, the WDMD can be more sensitive to the defect development of the ball screw 
system. 

3) Based on the previous studies in degradation modeling, a new exponential model is 
presented to describe the deterioration path of the ball screw system. 

The rest of this paper is organized as follows. Section 2 introduces the basic theory about the 
PF. The proposed model-based method for RUL prediction of the ball screw system is described 
in Section 3, and Section 4 implements the proposed approach with a dataset acquired from an 
experimental system designed for accelerated tests of the ball screw system. The study’s 
conclusions are presented in Section 5. 

2. Particle filtering 

The PF is an algorithm which attempts to approximate the system state by a series of particles 
with corresponding weights. Unlike the Kalman filtering, the PF is not restricted to the Gaussian 
assumption, and it can also address nonlinear problems. Accordingly, the PF has been widely used 
for prognostics [31-33]. 

2.1. Bayesian theory 

Most dynamic systems can be described by the following two models: a process model and an 
observation model: 𝐱 = 𝑓(𝐱 , 𝐧 ), (1) 𝐲 = ℎ(𝐱 , 𝐯 ), (2) 

where 𝐱  is the actual state at time 𝑡 , and 𝐲  denotes the corresponding observation. 𝑓(⋅) and  ℎ(⋅) represent the state transition function and the observation function, respectively. 𝐧  is the 
independent and identically distributed (i.i.d.) process noise, whereas 𝐯  is the i.i.d. observation 
noise. 

Let 𝐱 : = {𝐱 , 𝐱 , … , 𝐱 }  and 𝐲 : = {𝐲 , 𝐲 , … , 𝐲 }  denote all the available states and 
observations, respectively, and suppose the states follow a first order Markov process, i.e., 𝑝(𝐱 |𝐱 : ) = 𝑝(𝐱 |𝐱 ). With the application of the Bayesian theory, the posterior probability 
density function (PDF) of the state 𝐱  at 𝑡 , namely, 𝑝(𝐱 |𝐲 : ), can be calculated recursively 
using the following equations: 𝑝(𝐱 |𝐲 : ) = 𝑝(𝐱 |𝐱 )𝑝(𝐱 |𝐲 : )𝑑𝐱 , (3) 
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𝑝(𝐱 |𝐲 : ) = 𝑝(𝐲 |𝐱 )𝑝(𝐱 |𝐲 : )𝑝(𝐲 |𝐲 : ) , (4) 

where 𝑝(𝐱 |𝐲 : )  stands for the prior PDF at 𝑡 , and 𝑝(𝐱 |𝐱 )  is the transition density 
determined by the process model. 𝑝(𝐲 |𝐱 ) denotes the likelihood defined by the observation 
model, and 𝑝(𝐲 |𝐲 : ) represents the evidence, as expressed by: 𝑝(𝐲 |𝐲 : ) = 𝑝(𝐲 |𝐱 ) 𝑝(𝐱 |𝐲 : )𝑑𝐱 . (5) 

2.2. Particle filtering 

Generally, it is impractical to solve Eq. (3) and Eq. (4) analytically, so the PF is utilized to 
approximate the posterior PDF by: 

𝑝(𝒙 |𝒚 : ) ≈ 𝜔 𝛿 𝒙 − 𝒙 , (6) 

where {𝐱 }  represents the particles, and {𝜔 }  denotes the associated weights. 𝑁  is the 
number of particles, and 𝛿(⋅) stands for the Dirac function. 

Particles {𝐱 }  are sampled from an importance PDF 𝑞(𝐱 |𝐲 : ), and their weights can be 
calculated by: 

𝜔 = 𝜔 𝑝(𝐲 |𝐱 )𝑝(𝐱 |𝐱 )𝑞(𝐱 |𝐱 , 𝐲 : ) . (7) 

For easy implementation, the transition density, 𝑝(𝐱 |𝐱 ) , is often selected as the 
importance PDF, i.e., 𝑞(𝐱 |𝐱 , 𝐲 : ) = 𝑝(𝐱 |𝐱 ), and then Eq. (7) becomes: 𝜔 = 𝜔 𝑝(𝒚 |𝒙 ) (8) 

The procedures of the standard PF are summarized as following [34]: 
1) Initialization: Set 𝑘 = 0, and sample particles {𝐱 }  from the initial distribution 𝑝(𝐱 ). 

Also, initialize the weight of each particle as 𝜔 = 1/𝑁. 
2) Importance sampling: Set 𝑘 = 𝑘 + 1, and calculate the transition density 𝑝(𝐱 |𝐱 ) with 

Eq. (1). Set the importance PDF 𝑞(𝐱 |𝐲 : ) = 𝑝(𝐱 |𝐱 ) , and then draw particles {𝐱 }   
from it. 

3) Weights updating: Update the weights with newly obtained measurements with Eq. (7), and 
then normalize the weights with the following: 

𝜔 = 𝜔∑ 𝜔 . (9) 

4) Resampling: Remove particles with small weights and copy particles with large weights. A 
resampling implementation is described in detail as following [33]: 

a) Set 𝑑 = 1: 𝑁, and generate a random value 𝑢  from the uniform distribution 𝑈(0,1). 
b) Set 𝑗 = 1: 𝑁, and calculate the cumulative distribution function of weights as ∑ 𝜔 . If ∑ 𝜔 ≥ 𝑢 , duplicate 𝐱  as a new particle 𝐱  with the weight of 1/𝑁, and go back to Step a; 

otherwise, set 𝑗 = 𝑗 + 1, and return to Step b. 
5) State estimation: Estimate the current state with the resampled particles and the associated 

weights by: 
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𝐱 = 1𝑁 𝐱 . (10) 

Then, return to Step 2 and repeat Step 2–5 for the next inspection time. 

3. The framework of the proposed method 

In this work, we propose a model-based method for ball screw system prognostics. Vibration 
data collected from an experimental system for accelerated life tests of the ball screw system are 
employed to validate the presented methodology. The prognostic approach consists of two 
modules: HI construction and RUL prediction, as shown in Fig. 2. In the first module, multiple 
original features are extracted from the signals with multiple signal processing techniques, and 
then these features are selected and weighted to form the new HI, WDMD. In the second module, 
the PF is utilized to integrate the proposed exponential model with the real-time WDMD for health 
state estimation and parameters update, and then the RUL can be predicted. More detailed 
information about the presented approach is provided below. 

 
Fig. 2. Flowchart of the proposed method 

3.1. HI construction 

3.1.1. Generation of original features 

In this section, the original features are obtained with time-domain techniques, 
time-frequency-domain techniques, and trigonometric functions [35]. 

Time-domain methods often calculate signal statistics to indicate a specific system’s health 
state. In this investigation, ten statistics features are utilized as initial features. Time-frequency 
methods attempt to mine signal characteristics simultaneously from both the time domain and the 
frequency domain, and they are very suitable for the analysis of nonlinear and nonstationary 
signals. In this study, two widely used time-frequency methods, wavelet packet decomposition 
(WPD) and empirical mode decomposition (EMD), are used to extract the time-frequency-domain 
features. Specifically, the vibration data are analyzed by the WPD for three layers, and the features 
are produced by computing the energies and the energy ratios of coefficients in nodes. 
Additionally, the EMD is employed to decompose the vibration signals, and a series of 
components called intrinsic mode functions (IMFs) are generated. Twelve features are obtained 
by calculating the energy moments of the former six IMFs and their ratios according to Eq. (11) 
and Eq. (12), respectively [36]: 𝐸 = (𝑗 ⋅ Δ𝑡) |𝑐 (𝑗 ⋅ Δ𝑡)| , (11) 
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𝑅 = [𝐸 , 𝐸 , … , 𝐸 ]∑ 𝐸 , (12) 

where 𝑛 denotes the number of the data points, and 𝑗 is the sequence number of a data point. Δ𝑡 
represents the sampling interval of a signal, and 𝑐  is the 𝑖th IMF. 

In addition to the above features, two features are also extracted with trigonometric functions. 
Specifically, the raw vibration signals are first transformed to different scales using trigonometric 
functions, and then the standard deviations (SDs) of the scaled sequences are calculated as features 
[35]. In this research, two trigonometric functions, the inverse hyperbolic sine and the inverse 
tangent, are selected to process the vibration data, and the two corresponding features are obtained 
using the following two equations: SD of asinh(𝑋) = 𝜎 log 𝑥 + 𝑥 + 1 / , (13) SD of atan(𝑋) = 𝜎 𝑖2 log 𝑖 + 𝑥𝑖 − 𝑥 . (14) 

Although the presented method is based on the 40 original features shown in Table 1, it is not 
restricted to them. After generating enough initial features that represent the degradation of the 
ball screw system from multiple perspectives, we attempt to mine the most useful information 
hidden in these features to form an appropriate HI for RUL prediction, which is described in detail 
below. 

Table 1. The original feature set extracted from the vibration data of the ball screw system 
Class Feature  

Time-domain features 

Y1: Average absolute amplitude Y2: Skewness 
Y3: Kurtosis Y4: Root mean square  

Y5: Waveform factor  Y6: Crest factor  
Y7: Impact factor  Y8: Peak-to-peak value 

Y9: Standard deviation Y10: Clearance factor  

Time-frequency-domain features 

Y11-Y18: Energies of eight wavelet packet coefficients 
Y19-Y26: Energy ratios of eight wavelet packet coefficients 

Y27-Y32: Energy moments of the former six IMFs 
Y33-Y38: Energy moment ratios of the former six IMFs 

Features extracted with  
trigonometric functions 

Y39: SD of asinh(X) 
Y40: SD of atan(X) 

3.1.2. Feature selection 

To accurately represent the performance of the ball screw system, a group of original features 
are generated from the signals, as described in Section 3.1.1. However, some features are not 
sensitive to the damage propagation, which may have a negative effect on the HI construction. 
Consequently, we need to select the most effective features to construct the HI. In this paper, a 
widely used index, trendability, is employed to measure the quality of features. The trendability 
is defined by Eq. (15), and it reflects the correlation between a feature and the time [37]: 

𝜌 = ∑ (𝑍 − �̅� ) (𝑌 − 𝑌 )∑ (𝑍 − �̅� ) ∑ (𝑌 − 𝑌 ) , (15) 

where {𝑍 } :  denotes the inspection time instants during the working life of the ball screw 
system, {𝑌 } :  is the 𝑖 th original feature illustrated in Table 1, and 𝐾  represents the total 
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number of time indexes. �̅�  and 𝑌  stand for the average values of {𝑍 } :  and {𝑌 } : , 
respectively. The results obtained by Eq. (15) are confined in the range [0, 1]. A feature with a 
higher trendability correlates more to the degradation process, and it is more proper for RUL 
prediction. 

To remove features which are not obviously relevant to the deterioration development of the 
ball screw system, only the features whose trendability values exceed 0.5 are chosen for further 
processing. However, some of the selected features may represent similar variation trends, and 
they may have the same influence on the HI construction. To reduce the computational cost, the 
redundant information needs to be identified and removed. In this study, a correlation clustering 
algorithm [38] is used to recognize the similar features according to their correlations between 
each other. To determine the number of clusters, a PBM-index [39] is introduced, which is 
described by: 

PBM(𝐻) = 1𝐻 ⋅ 𝐸𝐸 ⋅ 𝐷 , (16) 

where 𝐻 denotes the number of the clusters, and 𝐸  is a given constant. Here, 𝐸 = ∑ 𝐸  with 𝐸 = ∑ 𝑢 ⋅ 𝑟 , and: 𝐷 = max, 𝑟 . (17) 𝑀  is the number of features, [𝑢 ] ×  is a partition matrix. 𝑟  denotes the correlation 
coefficient between the ℎth clustering center and the 𝑚th feature. 𝑟  represents the correlation 
coefficient between the center of the 𝑖th cluster and the center of the 𝑗th cluster. The actual number 
of clusters is the 𝐻 that maximizes the PBM-index. 

After determining the number of clusters, the selected features are divided into several classes. 
Let the number of clusters be 𝐻∗ , and there are 𝐻∗  classes. Features which contain similar 
information about the deterioration evolution are clustered into one class, and the feature with the 
highest trendability in each class is selected as the representative feature of its class. Accordingly, 𝐻∗ representative features are obtained after this procedure. 

3.1.3. Feature fusion 

In order to take advantage of multiple features and fuse the useful information they represent, 
the MD is employed to integrate them into an HI [23]. Specifically, the HI is formed by calculating 
the MD between the given feature vector and the set of feature vectors obtained in normal 
conditions; this reflects the deviation of the status at a certain inspection interval from the healthy 
state. Therefore, the MD can indicate the health state of the equipment. During this process, each 
feature is treated equally, and thus they make the same contribution to the fusion result. However, 
the features may have different sensitivities to the defect development of the ball screw system, 
and those with high sensitivity should have a large impact on the integration process. Hence, an 
HI called WDMD is developed based on the MD in this paper, as defined by: 𝑊𝐷𝑀𝐷 = 1𝐻∗ (𝐅 − 𝛍)𝐖𝐂 𝐖(𝐅 − 𝛍) , (18) 

where 𝐅 = [𝐹 , 𝐹 , … , 𝐹 ∗] denotes the feature vector composed of representative features at 𝑡 , 𝐂 is the covariance matrix of a dataset that contains feature vectors consisting of typical 
features obtained in the healthy state, and 𝜇 represents the mean of the data set. Here: 𝐖 = diag(𝑤 , 𝑤 , … , 𝑤 ∗), (19) 
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where 𝑤  denotes the normalized weight of the representative feature 𝐹 , i.e., 𝑤 = 𝜌 ∑ 𝜌∗⁄ , 
which reflects its sensitivity to the degradation of the ball screw system. 

3.2. RUL prediction 

Due to the complex and heterogeneous working conditions, the ball screw system usually 
deteriorates stochastically. Therefore, we attempt to describe the degradation path of the ball screw 
system with an exponential Wiener process model, as denoted by: 𝑠 = exp 𝛽𝑡 + 𝜀(𝑡 ) , (20) 

where 𝛽 is a random variable, and 𝜀(𝑡) = 𝜎𝑊(𝑡) is a centered Brownian motion representing the 
stochastic effect. 

For convenience, Eq. (20) is transformed into a linear form by using the logged observations, 
as represented by:  𝑧 = ln(𝑠 ) = 𝛽𝑡 + 𝜀(𝑡 ). (21) 

According to Eq. (21), we can obtain the following difference equation: 𝑧 = 𝑧 + 𝛽(𝑡 − 𝑡 ) + 𝜂 , (22) 

where 𝜂 = 𝜎(𝑊(𝑡 ) − 𝜎(𝑊(𝑡 )) obeys 𝑁(0, 𝜎 Δ𝑡 ) with Δ𝑡 = 𝑡 − 𝑡 . For simplicity, 
let 𝚯 = [𝛽, 𝜎] represent the model parameters. 

After degradation modeling, the model parameters and the health state of the system can be 
estimated by combining the model and the condition monitoring information. At 𝑡 ,  let  𝐲 : = {𝑦 , 𝑦 , … , 𝑦 }  represent the available logged measurements, and suppose the model 
parameters 𝚯 are known. Because the error increments 𝜂  are i.i.d. normal random variables, the 
conditional joint PDF of 𝐲 :  can be obtained by: 

𝑝(𝐲 : |𝚯) = 1√2𝜋𝜎 Δ𝑡 × exp − (𝑦 − 𝛽𝑡 )2𝜎 𝑡 − (𝑦 − 𝑦 − 𝛽Δ𝑡)2𝜎 Δ𝑡 . (23) 

In practice, the parameters 𝚯 are usually unknown. However, based on their prior PDF 𝑝(Θ ) 
and Eq. (23), we can determine their joint posterior PDF 𝑝(𝚯 |𝐲 : ) at 𝑡  through the Bayesian 
theory. After the health state estimation and parameters update, the PDF of the RUL at 𝑡  can be 
predicted. 

The definition of the RUL at 𝑡  can be expressed as: 𝐿 = inf{𝑙 : 𝑧(𝑡 + 𝑙 ) ≥ 𝛾|𝒚 : , 𝚯 }. (24) 

where inf{⋅} represents the lower bound of a variable, 𝛾 is a predefined failure threshold, and 𝑧(𝑡 + 𝑙 ) is the predicted health state at 𝑡 + 𝑙 , which can be calculated by: 𝑧(𝑡 + 𝑙 ) = 𝑧 + 𝛽 𝑙 + 𝜎 𝑊(𝑡 + 𝑙 ) − 𝑊(𝑡 ) . (25) 

According to the independent increment property of the Brownian motion, the PDF of the RUL 
at 𝑡  can be represented as: 

𝑓 |𝚯 ,𝐲 : (𝑙 |𝚯 , 𝐲 : ) = 𝛾 − 𝑧2𝜋𝑙 𝜎 exp − (𝛾 − 𝑧 − 𝛽 𝑙 )2𝜎 𝑙 . (26) 
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In this paper, the PF is utilized to combine the HI and the degradation model for updating 
parameters, estimating the health state, and predicting the RUL. To update the parameters along 
with the health status, parameters 𝛽 and 𝜎 are regarded as latent states of the system as well as the 
health state 𝑧. Then the state space model of the system become 𝐱 = [𝑧 , 𝛽 , 𝜎 ], and the RUL 
prediction process with the PF includes the following steps: 

1) At initial time 𝑡 , sample particles {𝐱 }  from the initial distribution 𝑝(𝐱 ) and initialize 
the particle weights by 𝜔 = 1/𝑁. 

2) Once a new measurement 𝑦  is obtained at 𝑡 (𝑘 ≥ 1), sample particles {𝐱 }  according 
to the importance PDF defined by the following state transition functions: 𝑧 = 𝑧 + 𝛽 (𝑡 − 𝑡 ),𝛽 = 𝛽 ,𝜎 = 𝜎 .  (27) 

3) Update the particle weights 𝜔  by: 

𝜔 = 𝜔 12𝜋(𝜎 Δ𝑡 ) exp − (𝑧 − 𝑧 )2(𝜎 Δ𝑡 ) ,       𝜔 = 𝜔∑ 𝜔 . (28) 

4) Resample particles {𝐱 }  from {𝐱 }  according to {𝜔 } , using the resampling 
algorithm described in Section 2.2. 

5) Update the health state and the model parameters at 𝑡  with Eq. (10). 
6) With the estimated HI, �̂� , and the model parameters, 𝛽  and 𝜎 , predict the RUL by: 

𝑓 |𝚯 ,𝐲 : 𝑙 𝚯 , 𝐲 : = 𝛾 − �̂�2𝜋𝑙 𝜎 exp − (𝛾 − �̂� − 𝛽 𝑙 )2𝜎 𝑙 . (29) 

7) Set 𝑘 = 𝑘 + 1, return to Step 2 and repeat Step 2-6 until �̂� > 𝛾. 

4. Applications and discussions 

In this section, a dataset collected from an experimental system designed for accelerated life 
tests of the ball screw system is utilized to validate the proposed method’s effectiveness. 

4.1. Experimental system and vibration data 

Since the ball screw is a highly reliable product, it usually takes a long time for the ball screw 
system to fail. Consequently, it is difficult to acquire the condition monitoring data during the 
entire working life of the ball screw system. To make up for this deficiency, we designed and 
manufactured an experimental system to conduct accelerated life tests for the ball screw system. 
With the experimental platform, the degradation speed of the ball screw system is expedited by 
increasing the system load, which causes the time amount for the system to become invalid to be 
reduced. Thus, adequate degradation data can be collected to study ball screw system diagnostics 
and prognostics. Fig. 3 shows the overview of the experimental system, and it consists of two 
parts: the testbed for the accelerated life test of the ball screw system, and the control cabinet. 

The testbed depicted in Fig. 4 can simulate the actual movement of the ball screw system and 
exert the load on the ball screw. To collect the condition monitoring data, two uniaxial 
accelerometers are fixed on the bearings at the drive end and the floating end, respectively, and a 
triaxial accelerometer is attached to the ball nut, as illustrated in Fig. 5. The main dimensions of 
the ball screw are listed in Table 2. During the testing process, the rotating speed was 1,000 rpm, 
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and the screw rotation was controlled by the servo motor. The ball screw was subjected to a load 
of 100 N axially throughout the test, which was produced by the magnetic powder brake and 
transmitted by the gear and rack.  

 
Fig. 3. The experimental system for accelerated life tests of the ball screw system 

 
Fig. 4. The testbed for accelerated life tests of the ball screw system 

 
Fig. 5. Installation positions of accelerometers 

Table 2. Parameters of the ball screw 
Parameters Value 

Screw diameter (mm) 40 
Screw length (mm) 750 
Screw pitch (mm) 10 

Ball diameter (mm) 7.144 
Circles of nut 3 

In the test, vibration signals were collected every 30 min, and the sampling frequency was 
5,000 Hz. We used a digital microscope to observe the wear status of the ball screw and take 
pictures, as described in Fig. 6. With the microscope, we can obtain the enlarged view of the ball 
screw, as illustrated in Fig. 6(b). By increasing the magnification times, we can see more details 
about the condition of the ball screw, as shown in Fig. 6(c) and Fig. 6(d), which display the 
photographs of the ball groove before and after the test, respectively. It is seen that pittings 
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appeared on the surface of the screw at the end of the test. Vibration signals acquired from uniaxial 
accelerometer 1 throughout the test are shown in Fig. 7. In the beginning, the vibration data 
remained relatively stable, and then small increases occurred. In the late stage of the degradation, 
the signals increased rapidly until the ball screw system failed. 

 
Fig. 6. a) The screw, b) the enlarged view of the screw, c) the enlarged view of the  

ball groove before the test, d) the enlarged view of the ball groove after the test 

 
Fig. 7. Vibration signals of the ball screw system 

4.2. HI construction of the ball screw system 

To construct the HI for the ball screw system, 40 original features, as listed in Table 1, were 
extracted from the raw vibration data. Then we calculated the trendability of each feature, as 
depicted in Fig. 8. To select features that appropriately correlated to the defect development and 
propagation, features whose values of trendability were 0.5 or below were removed, and then 22 
features were obtained. To identify the redundant information among these features, they were 
clustered with the correlation clustering algorithm; the PBM-index values with different cluster 
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numbers are shown in Fig. 9. The index achieved its maximum value when 𝐻 = 3, so these 22 
features were divided into three classes. After clustering, the feature with the highest trendability 
in each class was chosen as the representative feature for its cluster. Accordingly, we obtained 
three typical features for feature fusion. To compare the representative features, they were 
normalized and displayed in Fig. 10. It is observed that different typical features represent distinct 
deterioration trends of the ball screw system. Specifically, Y5 contains abundant information 
about the early stage of the degradation, and Y12 describes the fluctuation in the middle of the 
damage propagation. Furthermore, Y32 is sensitive to the late stage of the degradation. 

 
Fig. 8. Trendability of  

original features 

 
Fig. 9. PBM-index values with  

different cluster numbers 

To take advantage of each typical feature, the MD was employed to fuse the information 
represented by the features. Before calculating the MD, the representative features were weighted 
according to their values of trendability. Then we could obtain the WDMD at any measurement 
time using Eq. (18), as depicted in Fig. 11. To verify the benefits of the WDMD, the MD of 40 
original features were calculated for comparison, as shown in Fig. 12. It is seen that the WDMD 
indicates a more evident deterioration tendency during the entire lifecycle. To compare these two 
HIs quantitatively, the trendability values of the WDMD and the MD were calculated, as 
illustrated in Table 3, and it is found that the trendability value of the WDMD is higher than that 
of the MD. Therefore, the WDMD is more sensitive to the degradation development of the ball 
screw system, and it is more suitable for RUL prediction. 

 
Fig. 10. Representative features 

 
Fig. 11. The WDMD of the ball screw system 

Table 3. Trendability values of the WDMD and the MD 
Health indicator MD WDMD 

Trendability 0.6013 0.8525 

0 5 10 15 20 25 30 35 40
Feature number 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Tr
en

da
bi

lit
y 

0 5 10 15 20 25
Number of clusters 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

PB
M

0 50 100 150
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fe
at

ur
e 

Sample number 

Y5
Y12
Y32

0 50 100 150
0

5

10

15

20

25

30

35

40

45

Sample number 

W
ei

gh
te

d 
M

ah
al

an
ob

is 
di

sta
nc

e



2884. REMAINING USEFUL LIFE PREDICTION OF THE BALL SCREW SYSTEM BASED ON WEIGHTED MAHALANOBIS DISTANCE AND AN 
EXPONENTIAL MODEL. JUAN WEN, HONGLI GAO 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1703 

 
Fig. 12. The MD of the ball screw system 

4.3. RUL prediction of the ball screw system 

In this section, the PF was used to integrate the WDMD with the presented exponential model 
for model parameters update, health state estimation, and RUL prediction. The number of particles 
was set to be 1,000. Fig. 13 shows the estimation results of the WDMD during the whole 
degradation process, and it is seen that the proposed model can track the deterioration path well. 

 
Fig. 13. WDMD estimation results. 

The update process of the model parameters 𝛽  and 𝜎  is displayed in Fig. 14. As more 
measurements became available, 𝜎 converged to a stable value after 12 samples with fast speed. 
In contrast, 𝛽 experienced fluctuations during the estimation process. At each inspection time 
index, the PDF of the RUL can be predicted with the estimated health state and model parameters. 

 
a) 

 
b) 

Fig. 14. The update process of model parameters: a) 𝛽, b) 𝜎 

To manifest the merits of the presented model, both the linear Wiener process model [40] and 
the nonlinear Wiener process model [28] were employed for comparison. The means of the 
predicted RUL by three models at different measurement intervals are shown in Fig. 15. The 
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proposed model converged to the real RUL after 83 points, whereas the other two models differed 
greatly from the actual RUL value at this stage. Among these three models, the linear model 
generated the largest prediction errors, because the degradation of the ball screw system did not 
increase linearly. The RUL estimation results of the nonlinear model were more accurate than 
those of the linear model, but it also could not estimate the RUL accurately until the end of the 
deterioration stage. For the presented exponential model, it forecasted the RUL with large errors 
in the beginning since there were not enough WDMD values. As more measurements became 
available, the prediction errors were reduced, and the predicted value converged to the real RUL 
gradually. 

 
Fig. 15. The means of the predicted RUL by three models at different inspection time indexes 

To compare the models mentioned above quantitatively, we calculated the prediction errors at 𝑡  by: 

𝑒 = 𝐿∗ − 𝐿𝐿∗ × 100 %, (30) 

where 𝐿∗  is the real value of the RUL, and 𝐿  denotes the predicted RUL. 
The prediction errors of the three models at all time indexes were calculated using Eq. (30). 

For comparison, we divided the results of each model into three intervals and calculated the 
percentage of points in each interval, as shown in Table 4. It is observed that the proposed model 
predicts the RUL for 52.08 % of points with a prediction error of no higher than 30 %, whereas 
the nonlinear model’s percentage of points with prediction errors of 50 % or lower is only 30.56 %. 
The linear model estimates only 4.86 % of points with prediction errors of 50 % or lower. 
Therefore, the proposed model can predict the RUL of the ball screw system with the lowest 
prediction error. 

Table 4. Comparison of prediction errors produced by different models 

Model The percentage of points lying in different prediction error intervals 𝑒 ≤ 30 % 30 % < 𝑒 ≤ 50 % 𝑒 > 50 % 
Linear model 2.08 % 2.78 % 95.14 % 

Nonlinear model 13.19 % 17.36 % 69.44 % 
Proposed model 52.08 % 27.78 % 20.14 % 

The superior properties of the presented model can be explained as follows. The ball screw 
system deterioration has an exponentially growing trend comprehensively, so that the exponential 
model can describe the degradation process best. In addition, the Brownian motion parameter is 
considered and updated with the PF in our method, which can indicate the Brownian error in real 
time. Hence, the proposed model can improve the accuracy of ball screw system RUL estimation. 
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5. Conclusions 

In this study, we introduced a model-based method for ball screw system RUL prediction.  
First, we developed a new HI, named WDMD, by weighted fusion of selected features, and the 
experimental results show that the WDMD is more sensitive to the degradation process of the ball 
screw system than the MD and is therefore more suitable for ball screw system RUL prediction. 
Second, we introduced an exponential Wiener process model to describe the degradation path of 
the ball screw system. Compared with the linear model and the nonlinear model, the exponential 
model generates the best RUL prediction results. 

However, there are still some restrictions in this study. For instance, the proposed method 
cannot estimate the RUL accurately during the first half of the ball screw system’s lifetime because 
of fluctuations. At these time indexes, the exponential model is not capable of describing the 
deterioration, and then the corresponding predicted RUL has a large gap with the actual value. 
Consequently, future work will consider developing more general models to comprehensively 
enhance the RUL prediction accuracy of the ball screw system. 
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