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Abstract. An analytic dynamics model was presented for the three-stage planetary transmission
in the pitch control reducer for MW wind turbine based on the lumped-parameter method. The
mechanical characteristic of the contact components was analyzed using the stiffness factor
method. All the stiffness sub-matrices were combined to form the overall stiffness matrix of the
three-stage transmission. According to the analytic model and the parameters of the pitch control
gearbox, the movement differential equations were solved to investigate the natural frequencies
and the vibration modes. Then, the undamped and damping forced vibration response were
studied. A test rig was set up to measure the vibration displacement of the ring at the second stage
and the output shaft under the nominal load condition, the comparison of the analytic forced
vibration response with the experimental results validates the effectiveness of the
lumped-parameter dynamics model for the pitch control reducer. This paper provides a reference
for the dynamics optimization of multistage planetary transmission.
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1. Introduction

Planetary gear is an effective power transmission which has high torque-weight ratio, large
speed reduction in compact volume and co-axial shaft arrangement. They are widely used in the
automotive transmission, aircraft engine, pitch control and yaw drive in wind turbine. However,
as the blade of wind turbine suffers load in wide frequency range, the pitch control reducer may
have undesirable dynamics behavior which lead to unacceptable noise and damage. Therefore, it
is important to research the vibration of the pitch control reducer. Dynamics analysis of planetary
gear is essential for the reduction of noise and vibration.

Many researchers have developed lumped-parameter models and deformable gear models.
Cunliffe, et al. [1] explored the characteristic of vibration modes of a 13-degree of freedom for
single stage planetary system, and performed experiments to measure the input torque and planet
pin load. Kahraman [2, 3] investigated the dynamic property of planet transmission for single
stage using pure torsion vibration model, which involves translation and rotation degree of
freedom. Lin and Parker [4-6] also presented a series of papers on planetary dynamics in which
they examined the effect of support stiffness, mesh stiffness, inertia and operating speed on the
natural frequency. The sensitivity of natural frequency to operating speed was also analyzed to
estimate the gyroscopic effect. Yuksel and Kahraman [7] researched the dynamics of gear system
including wear status, they defined the wear deepness of mesh gear pair in the wear model and
effectively computed the contact pressure. Wu, et al. [8, 9] removed the rigid ring assumption to
an elastic one, and the corresponding effects on the modal property were investigated. Sun and
Shen [10] investigated the nonlinear frequency response characteristic of single stage planet
system containing the fluctuating mesh stiffness, and the influence of the time-variant mesh
stiffness, error and gear backlash on the nonlinear dynamics were also studied. Zhang, et al. [11]
established an integrated dynamics model including time-variant mesh stiffness, gyroscopic effect
and flexible ring to analyze the effect of flexibility of the ring on the natural performance of the
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planetary transmission. Xiao, et al. [12] researched the torsion dynamics about the three-stage
planetary transmission in shield machine. There are three types of vibration modes: rotational
mode, transnational and planet mode, these modes were associated in a compound planetary gear
system [13, 14] and a high-speed planetary system with gyroscopic effects [15].

Finite Element Method (FEM) was also used to study planetary gear dynamics due to the fact
that FEM can simulate the flexible components and analyze the contact status. Parker [16, 17]
proposed finite element contact method to research the vibration of planetary gear, proving that
the dynamic response is sensitive to the lower order vibration modes, but this finding need further
experimental validation in order to study other gear system with the sensitive stiffness model.
Abousleiman and Velex [18] developed a hybrid 3D finite element/lumped-parameter model and
used it to analyze the planetary gear dynamics with flexible annulus and carrier [19]. Vijayakar
[20, 21] developed a combined finite element and a contact mechanics model that permits relative
coarse mesh near the contact region, this program can effectively solve the dynamics problem.
However, Parker and Ambarisha [22] pointed out that the dynamics accuracy which the
lumped-parameter model predicted equals that of the FEM model.

Through the survey of literature, it can be found that most research focuses either on rotational-
transnational model for single stage or purely rotational dynamics for multistage. But many
gearboxes are composed by multistage of planetary system in actual engineering, and all the
components in planetary system have multi-degree of freedom. So, it needs to investigate the
vibration of multistage planetary transmission including both translation and rotation degree of
freedom for planet gearbox. Besides, all the aforementioned research has been little experimental
work directing the various theoretical models since the work of Cunliffe, et al. [1]. In this paper,
a vibration experiment is accomplished to verify the dynamics model.

2. Dynamics model of MW wind turbine pitch control reducer
2.1. Lumped-parameter analytical model

The lumped-parameter analytic model for single stage is established as shown in Fig. 1. The
planet gears are equally spaced. All planets at the same stage are assumed to have identical mass,
rotational inertia, support stiffness and time-invariant gear mesh stiffness. It is worthwhile
mentioning that the gear backlash, radial bearing clearance, frictional force arising from tooth
sliding motion, gear tooth spacing error and misalignment of the gears are not considered in this
study.

~K

Fig. 1. Lumped-parameter analytic model
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In the model, the gear mesh is treated as a linear time-invariant spring and a damping acting
along the mesh line [10]. All other supporting bearings are modeled as linear springs. Kj; and
K}y present the supporting stiffness of the sun and ring at the i stage, Kpy,;; is the supporting
stiffness of the j planet at the i stage. K;,.; represents the supporting stiffness of the carrier at the
i stage. K5, K,,,- and K, are the rotational stiffness of the sun, ring and carrier respectively, and
Kpij and K,,,;; are the mesh stiffness between the j planet and the sun or the ring, and Csp;; and
Cprij are the mesh damping.

The configuration of the wind turbine pitch control reducer which consists of three stages of
planetary system is shown in Fig. 2. The power is transformed from the sun at the first stage to
the carrier at the last stage, which is connected to the output shaft of the pitch control reducer. The
carrier connects the sun at the next stage by involutes spline. The spline connection is treated as a
torsion spring between the carrier and sun, providing torsion support stiffness K,; for the sun and
carrier in the dynamics model. K, and K,, are the supporting stiffness and torsion support
stiffness of the output shaft respectively in the dynamics model.

Ky,
K., K., | K, b

Fig. 2. Structure of the wind turbine pitch control reducer

2.2. Dynamics equations of the system

There are both three planets at the first and second stage, and four planets at the third stage,
including the sun, ring and the carrier at all three stages, so the component numbers are 6, 6, 7
from the first stage to the last stage orderly, and then the output shaft connected to the third carrier
also be considered, there are totally 20 components in the wind turbine pitch control reducer.
Three degrees of freedom (DOF) have been considered for each component including one
rotational DOF and two translational DOF, so 60 DOF for the wind turbine pitch control reducer
must be researched.

The differential equations of motion for all the components in three-stage planet gear train are:

M# + Cx + K(O)x = F, (1)

where M is the inertia matrix, C is the damping matrix, K is the stiffness matrix, F is the force
vector of externally applied torque. X is the vector of 60 degrees of freedom:

X = [xslﬂ Vs1 Us1, Xr1, Yr1 Urts (pplll Tpll' upll! (pp12' TplZ! up12' (pp13' Tp13! up13' Xc1r Yers
U1y X525 Ys2) Us2) Xy2) Vr2s Ur2s Pp215 Tp21 Up21s Pp22, Tp22) Up22) Pp23s Tp23s Up23s Xc2) Ve,
Uc2) X535 Vs3> Us3z) X935 V3o Ur3s Pp31y Tp3 Ups1 Pp32, Tp32) Up32, Pp33s Tp33, Up3sz, Pp34s

T
Tp34' up34' X3, Ye3r Uezs Xz Vo uz] 4

where x is the lateral displacement in the fixed XOY coordinate, y is the vertical displacement and
the rotational degree u is replaced by the line displacement along the line of mesh, u = r6, where
0 is the rotation angle of component and r is the base circle radius for the sun, ring and planets
and center radius for the carrier. ¢ and t represent the radial and tangential displacement
respectively in the movable @ot coordinate on the planet.

The degree of freedom (DOF)1-3 are x4, Y51, Ugq for the sun in the first stage, DOF 4-6 are
Xr1, Yr1> Urq Tor the ring, DOF 7-15 are @15, Tp14, Upy; for the planets, DOF 16-18 are xq, Y1,
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U, for the carrier in the first stage. DOF 19-21 are xg,, V52, Us, for the sun in the second stage,
DOF 22-24 are X,, ¥z, Uy, for the ring, DOF 25-33 are @3, Tpai, Upz; for the planets, DOF
34-36 are x.,, Y., U, for the carrier in the second stage, DOF 37-39 are xg3, Y3, Usz for the sun
in the third stage, DOF 40-42 are X3, Y3, U, for the ring, DOF 43-54 are @3, Tp3;» Upsif 07the
planets, DOF 55-57 are x.3, Y3, Uc3 for the carrier in the third stage, DOF 58-60 are x,, y,, u,
for the output shaft.

The inertia matrix M in the differential motion equation is given as:

1 151 1 rl Ip21
M = diag[My, M,, M;] = diag [mg;, Mgy, — 70 M1, My, —5 5 Myp11, Mpa11, — 53— Mp12s
Ts1 =1 Tp21
Ip12 Ip13 I cl 12 I r2 Ip22
Mp12, =7 Mp13, Mp13, —5—» Me1, Mer, =7 M2, Mz, —5, My, Myp, —5, Mypa1, My21,~5
rp12 Tp13 c1 Ts2 2 rp22
Ip22 Ip23 Icz Is3 Ir3
Mp22, Mp22, =5 Mp23, Mp23, —5— M2, Mo, —5 M3, M3, —5, My3, My3, =5, Myp31,
Tp22 rp23 Te2 53 3
1p3 Ip32 Ip33 Ip34- 13 Iz
Mp31,— 5 Mp32, Mp32, 53— Mp33, Mp33, ~ 53— Mp34, Mp34, ~5 M3, M3, —5, Mz, Mz, |,
rp31 rp32 rp33 rp34— 3 Tz
where Iy, I, I;jand I; (i = 1,2, 3; j =1, ..., n) present the rotational inertia for the sun, ring,

planet and the carrier, mg;, m,;, my;; and m, present the mass for the sun, ring, planet and the
carrier.

The stiffness factor method is suitable to model stiffness matrix K for the problem containing
plenty of complex coupled elements among these components. Each stiffness element in the
stiffness matrix associates with the translational force and rotational moment in corresponding
DOF. The stiffness is defined to be the force inducing one unit deformation. Mesh conditions of
the sun and planet at all stages are treated identical. All the force, mesh stiffness and support
stiffness for the sun and a planet are shown in Fig. 3.

S pij

Fig. 3. The mesh between the sun and planet

The mesh stiffness Kj,;; along the line of action between the sun and every planet can be
transformed to x, y and u directions in the fixed coordinate. Assuming that the sun deforms one
unit in the x direction, the support force F,; and the mesh force of all planets will be applied on
it, the decomposed components for all planets in the x direction and the support stiffness K ; are
superimposed to compose the first element in the stiffness sub-matrix Kg; of the sun. There is no
coupled element in y and z directions for the deformation of the sun in the x direction, so the
corresponding elements are 0 in the sub-matrix. The other stiffness elements can be obtained by
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the same method. The three order stiffness sub-matrix Kg; of the sun at single stage is:

- n

Kpsi + Z Kepijsin(@;; —ag) 0 0

Jj=1
n
K; =0 Kpsi + Z Kspijcos(pij —as) 0 ,
=1
n
0 0 Ky + Z Kopij + Kei
i = |

where K,;; is the mesh stiffness between the sun and the j planet at the i stage, ¢;; is phase angle
of the j planet, «, is external gearing angle. K,; is torsion spring between the carrier and sun, K,;
is zero because there is no spline connected the first sun.

The force and mesh status between the planet and ring is shown in Fig.4 (a), the support spring,
mesh spring, and the force of the planet are represented in the movable @ot coordinate, while that
of the ring are represented in the XOY fixed coordinate. The force status of the carrier and planet
is shown in Fig. 4(b).

Kei tpij

a) The ring and planet b) The carrier and planet
Fig. 4. The applied force status of mesh between components

The stiffness submatrix K,; for the ring at the i-stage is obtained by the stiffness coefficient
method:

_ n _

Kpr; + Z Krpiysin(ei; +a;) 0 0

=
n
K, =10 Kpri + Z Kypijcos(p;j+ar) 0 ,
=
n
0 0 Kuri + z Krpij
| = i

where K.p;; is the mesh stiffness of the ring and the j planet at the i stage, @, is the internal mesh
angle, a, = a;.
The stiffness sub-matrix for the carrier at the i stage K; can be obtained as follows:
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Kbci + nKbpij 0 0
K, =10 Kpei + nKppi; 0 )
0 0 Kuci + nKbpl'j + Kei

Based on the applied force of the sun, ring and carrier on the planet in three directions in the
movable @ot coordinate, the sub-matrix K,;; for the j planet is:

Kppij + Kspl-}-sinzas + K,pl-}-sinza, Kgpijsinagcosag — Kypijsina,cosa,  —Kgjsinag — Kp;jsina,
Kpij = [Kspijsinascosas — Kppijsina,.cosa,  Kpp;; + Kspi}-coszas + Krpi}-coszar —Kgpijcosag + Kppijcosa, |.
—Kpijsina; — Kpppjsina,. —Kpijcosas + K,p;jcosa, Kepij + Kipij

The other coupled stiffness elements between the sun and planet, the ring and planet, the carrier
and planet in the whole matrix are also modeled, the stiffness sub-matrix Kg;,; coupled between
the j planet and sun at the i stage is shown as follows:

Kspijsin(@;j — as)sinag Kopijsin(@;j — ag)cosag —Kspijsin(@;j — as)
Kipj = —Kgpijcos(@ij — as)sinag  —Kgpijcos(@;j — ag)cosas  Kepijcos(@;; — as)
—Kgpijsinag —Kspijcosag Kgpij
The stiffness sub-matrix K,;,; coupled between the j planet and ring at the i stage is:
—Kppijsin(@;; + ap)sina,  Kp,isin(@;; + a,)cosa, Kppijsin(@;; + a;)
Kiipj = Kypijcos(@;j + a,)sina, —Kpijcos(@;; + ay)cosa, —Kppiicos(@;; + ay)|.
Krpijsinar _Krpijcosar _Krpij
The stiffness sub-matrix K;,; coupled between the j planet and carrier at the i stage is:
—Kppijcos@s;  KppijSings; 0
Kcipj = —Kbpijsm(p3j _KbpijCOS(p3j 0
0 0 —Kppij

All the stiffness sub-matrices at the same stage are concentrated to form the whole stiffness
matrix for each stage, which is 18x18 orders for the first and second stage and 21x21 orders for
the third stage. The three subsystems of stiffness matrix are integrated as follows, where the
uncoupled parts are replaced by sub-matrix 0:

_Ksi 0 Ksipl Ksipz Ksip3 0 i

0 Kri Kripl Kripz KripS 0
Ksipl Kripl Kpil 0 0 Kcipl

Kl - Ksipz Kripz 0 Kpiz 0 Kcipz ’ (l B 1’2),
Ksip3 Krip3 0 0 Kpi3 Kcip3
.0 0 Kcipl Kcipz Kcip3 Kci R
_KSS 0 KsSpl Ks3p2 K53p3 K53p4 0 i
0 Kr3 Kr3p1 Kr3p2 Kr3p3 Kr3p4 0
Ks3p1 Kr3p1 Kp31 0 0 0 Kc3p1
K; =|Ksapz Kizpz 0O Kps, 0 0 Keap2|, (i =3).
Ks3p3 Kr3p3 0 0 Kp33 0 Kc3p3
K53p4 Kr3p4— 0 0 0 Kp34— Kc3p4
»0 0 Kc3p1 Kc3p2 Kc3p3 Kc3p4- Kc3 A
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According to the force status of the output shaft, the stiffness sub-matrix K, is:

K,, 0 0
KZ: O KbZ 0 .
0 0 K,

The overall system stiffness matrix concentrating the three subsystems and the output shaft for
the wind turbine pitch control reducer is:

K

50

0

0
K= o |
K,

Z

o o o
&

0
0 0
0 0

Rayleigh damping C is used in the dynamics equation which is proportion to the stiffness and
inertia [6]:
C =aM + BK. 2)

Rayleigh damping coefficients a and S are defined by the method [23] shown in Eq. (3)
according to the damping ratio &;:

=5 (o + pon). ®

There is a damping ratio &; corresponding to every order natural frequency w;. The first and
second order damping ratios are treated as the same, which are 0.007 for the steel material here
[22]. So, based on Eq. (6) and the first and second order natural frequencies, a and 8 can be
obtained.

The applied force consisting of the input and output parts is referred to Eq. (4):

F=Fy, + Foy. 4)

The external torque applies rotational force, so the force matrix for the three stages is referred as:

_ Tsl Tcl Tsz
F= 050’ 0 OIOIOlOIO)OIOJOIOIOPOIOJOIOl — O)Ol — OIOJOIO)OIOlOJOIOIOPOIO)OIOI

s1 cl s2

TCZ Ts3 Tz
-/ 0;01 —_ 010)OIOFOJOI0FOIOIOJOIOPOIOFOIOIOFOIOIOP I
Te2 Ts3 Tz

2.3. Structure parameters of the pitch control reducer

The structure parameters of the pitch control reducer are listed in Table 1. The module is 2 mm
for the first and second stages, 4 mm for the third stage. The external and internal mesh angle is
23.7°, 22.8° and 20° from the first to the third stage.

The mesh stiffness for all contact gears is calculated by the Ishikawa method [24] according
to the structure parameters in Table 1, and the rotation stiffness and support stiffness for each stage
are calculated by static finite element method. The rotation stiffness and support stiffness
calculated with the applied force and displacement in the FEM models are displayed in Table 2.
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Table 1. System parameters of the pitch control reducer

Stage Part |Tooth number|Mass (kg)|Radius of base circle (mm)
Sun 13 0.273 12.2
The firstm =2 mm | Ring 83 4.227 78
a,, = a, =23.7° |Planet 34 0.835 32
Carrier 1.6 47
Sun 16 0.644 15.04
The second m = 2 mm| Ring 98 3.804 92.09
a, = a, =22.8° |Planet 40 0.797 37.6
Carrier 2.74 56
Sun 13 1.405 24.43
The third m =4 mm | Ring 51 12.192 95.84
ay, = a, =20° Planet 19 2.096 35.7
Carrier 7.747 64
Output shaft 17.747 45
Table 2. Stiffness in the model (N/mm)
Stiffness The first stage | The second stage | The third stage
Support stiffness Kp; 3.16x10% 5.4x10% 7.19x10%
Support stiffness Kp,; 7.32x10° 8.63x10° 1.05x10¢
Support stiffness Kpp;; 8.34x10° 9.51x10° 1.35x10°
Support stiffness Kp; 8.1x104 3.72x10° 8.4x10°
Rotation stiffness Ky 7.06x10° 1.12x10° 1.3x10°
Rotation stiffness K, 9.04x10° 1.23x10° 1.52x10°
Rotation stiffness Ky, 4.08x10° 7.55x10° 1.12x10%
Rotation stiffness K,; 5.2x10° 7.41x10° 9.46x10°
Mesh stiffness Koy ; 8.16x10° 2.09x10° 3.17x10°
Mesh stiffness Kyp;; 1.11x10° 2.52x10° 3.91x10°

3. Model analysis of the pitch control reducer

The natural frequencies and vibration modes provide important information of a system for
avoiding away from resonance, minimizing response and optimizing the structural designing
industry. Therefore, it is necessary to analyze the vibration modal. There are a large number of
dynamic and static couple elements in the stiffness matrix in the dynamics equation, when solving
the differential equations, they need decoupling with the Modal Summation Technique [25] to
obtain the displacement vector. The responses for free vibration and forced vibration are
calculated. The eigenvalues of the undamped linear time-invariant equations for free vibration
satisfy the relationship [12] as follows:

Ko; = wfMg;, )

where w; is the i order natural frequency, ¢; is the i order vibration mode for the corresponding
component.

All system natural frequencies are listed in table 3 by solving Eq. (5). The first order natural
frequency is 675 Hz and the 60 order frequency is 34906 Hz. The input rotational speed of the
pitch control reducer is 1600 rpm, corresponding forced vibration frequency 26.67 Hz, which is
less than the first order natural frequency, so the system is far away from the resonance.

A natural vibration mode is the vibration shape of the system at the corresponding order natural
frequency, there are 3 basic kinds of vibration mode for planet transmission: rotational mode,
transnational mode and planet mode, which are shown in Fig. 5(a), (b) and (c) respectively. The
natural frequency in rotational mode is single root for the dynamics equation, all planets move in
the same phase, the carrier, ring and sun rotate without transverse motion. The natural frequency
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in transnational mode is double roots for the dynamics equation, the carrier, ring and
suntranslation have pure translation movement without rotation. The natural frequency in planet
mode is multiple roots for the dynamics equation, the number of multiple roots is N-3 (N is planet
number), the characteristic of the planet mode is that both translation and rotation motion of the
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carrier, ring and sun are zero, and only planet motion occurs.

Vibration modes

Vibration modes

5850

-0.5

Table 3. Natural frequency for system vibration

Order | Frequency | Order | Frequency | Order | Frequency
1 675 21 1849 41 6707
2 729 22 1897 42 6707
3 729 23 1897 43 7162
4 780 24 1975 44 7162
5 827 25 1988 45 7344
6 827 26 2251 46 7462
7 1114 27 2251 47 7462
8 1222 28 2355 48 8061
9 1243 29 3950 49 12011
10 1312 30 3961 50 12011
11 1312 31 4411 51 23406
12 1432 32 4411 52 23809
13 1432 33 4775 53 24697
14 1459 34 4924 54 24697
15 1615 35 4924 55 24991
16 1684 36 5758 56 26115
17 1684 37 5891 57 28305
18 1829 38 6096 58 24697
19 1829 39 6096 59 33863

20 1849 40 6404 60 34906

a) Rotational mode
Fig. 5. System vibration modes under mean gear mesh stiffness
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Fig. 6. System vibration modes under mean gear mesh stiffness
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There are 60 order frequencies and vibration modes, in order to avoid long space displaying
all 60 order vibration modes, partial vibration modes are shown in Fig. 6. Most components vibrate
at the first three orders of natural frequency, the vibration modes of the first frequency 675 Hz and
second frequency 729 Hz are shown in Fig. 6(a) and (b) respectively. f(n) is the n order natural
frequency, the ordinate is vibration mode for all 60 DOFs under the n order natural
frequency f(n).

The rotational mode is independent of the transverse support of the carrier, ring and sun, the
modes at the frequency 780 Hz and 1243 Hz are shown in Fig. 6(c) and (e) respectively. The
translation mode is independent of the rotational support stiffness of the carrier, ring and sun, such
as the mode at the frequency 1114 Hz shown in Fig. 6(d). The planet mode is insensitive to all the
support stiffness for carrier, ring and sun, this mode occurs at the 3950 Hz as shown in Fig. 6(f).

4. Dynamic response of the pitch control reducer
4.1. Decoupling of system vibration model

There are a large number of coupled elements in the stiffness matrix, so it is necessary to
decouple the vibration formulation when computing the dynamic response. The linear coordinate
transformation method [12] transforms displacement vector x for all DOFs from physical
coordinate to modal coordinate, the transformation process will uncouple the matrix. The
uncoupled equation is as follows:

x = P, (6)

where @ is main vibration mode matrix, 1 is modal coordinate array.
Substituting Eq. (6) to dynamics Eq. (1), the vibration formulation of the undamped dynamic
response is transformed as:

®™Mdij + ®TKdn = ¢TF. %)

Assuming ®TM® = My, ®TK® = K. The system suffers external harmonic force, Eq. (7)
will be transformed as:

M 1 + K ;n = F,,, + Fysinwt, ®)

where F,, is basic force of the harmonic excitation, F, is the amplitude of the harmonic force, w
is harmonic angular frequency.

The vibration displacement in the modal coordinate of the three-stage planet can be calculated
as:

Fn() | Fy@)sinwt — Fo (i) (w/wy ())sin(w, (1)
M, (i, Do [1— (/wp(D))*1Kq (0, 0) '

n;(t) = (€))

where 1;(t) is vibration displacement in the i modal coordinates.
Analytical solution of the vibration differential formulation in physical coordinate can be
obtained by transformation with Modal Summation technique [25].

4.2. Undamped dynamic response

The input parameters of the pitch control reducer are rotational speed 1600 r/min and torque
38.2 Nm for the first stage, and the speed and torque at the other stages can be computed by the
transmission ratio. Based on the above mentioned parameters of the pitch control reducer and the
uncoupled process, the undamped dynamic response of the planet system can be solved. Partial
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results are given in Fig. 7(a)-(f) which present vibration displacement for some DOFs. The
minimum vibration amplitude 0.113 mm belongs to the sun at the first stage in the rotation
direction as in Fig. 7(a), the maximum displacement amplitude of the system is 0.589 mm which
is related to the output shaft in the rotational direction.
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Fig. 7. Undamped displacement for part of response
4.3. Damping dynamic response

The Rayleigh damping coefficients @ and § are 4.906 and 9.96x107° respectively [6]. Based
on the calculated frequencies, Eq. (3) and the linear modal coordinate transformation in Eq. (6),
substituting the proportion damping C in Eq. (2) to dynamics Eq. (1), the damping dynamic
response of the pitch control reducer under the nominal load condition is solved with the above
Modal Summation Technique, part of the results is illustrated in Fig. 8(a)-(f). Compared to the
undamped vibration system, dynamic response of damping vibration obviously decreases. The
displacement amplitudes of the ring at the second stage illustrated in Fig. 8(c) and (d) are 0.092
mm in the x direction and 0.283 mm in rotational direction. The peak-peak values are 0.193 mm
and 0.621 mm in the x and rotational directions respectively. As illustrated in Fig. 8(e) and (f),
the displacement amplitudes of the output shaft are 0.304 mm in the lateral direction and
0.197 mm in rotational direction. The peak-peak value is 0.575 mm and 0.401 mm in the lateral
and rotational direction respectively.
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5. Experiment of dynamic response of pitch control
5.1. Testing rig

A testing rig is set up to measure the vibration performance of the pitch control reducer under
the input speed 1600 r/min and input power 6.4 KW. A tested gearbox of wind turbine pitch
control is tested with another accompanied gearbox on the rig as shown in Fig. 9(a). The power is
supplied by a direct current motor equipped with electronic speed control, and then transmitted
from the torque speed sensor, the tested gearbox, idler and the accompanied gearbox to the direct
current generator. The rotational speed decreases through the tested gearbox and then increases
through the accompanied gearbox. The vibration sensors, pressure sensors and temperature
sensors are all powered and fastened on the tested gearbox. The PLC and a data acquisition card
are equipped on the control cabinet orderly. The data collected by the sensors is tackled with the
LabView software, and then displayed on the screen as shown in Fig. 9(b).

On the tested gearbox, two vibration sensors were located at the ring at the second stage and
output shaft as shown in Fig. 10, three-dimension vibration acceleration in the radial, tangential
and axis direction can be tested. The type of vibration sensor is CA-YD-141 in the two positions
with 1-6000 Hz frequency response. The tangential displacement of the pitch control reducer in
test rig is the rotational displacement in analytic model.
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Fig. 8. Damping displacement for part of response
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a) Testing part b) Operating and display part
Fig. 9. Test rig of the pitch control reducer
the second ring the output shaft
T~

L

Fig. 10. Tested positions of the pitch reducer

5.2. Experiment data analysis

The vibration signal collected from the sensors is integrated to obtain the vibration
displacement. The radial displacement 7,., and tangential displacement u,., for the ring at the
second stage are shown in Fig. 11(a) and (b) respectively. The peak displacement r;., and
peak-peak value for the ring is 0.104 mm and 0.210 mm respectively, the vibration amplitude of
tangential displacement u,, is 0.311 mm, while the peak-peak value is 0.632 mm. The radial
displacement 7, and tangential displacement u, for the output shaft are shown in Fig. 11(c) and
(d). The radial peak vibration 7, for the output shaft is 0.293 mm, while the peak-peak value is
0.597 mm, the peak tangential vibration and the peak-peak value of u, for the output shaft are
0.223 mm and 0.413 mm respectively.
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Fig. 11. Tested vibration displacement
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5.3. Validation of the theoretical model

The calculated damping displacement and tested vibration of the ring and the output shaft are
illustrated in Table 4. The result shows that the amplitudes for the computation and test are
generally similar. The tested tangential displacement amplitude and peak-peak value are close to
the analytic rotational amplitude and peak-peak value.

Table 4. Vibration comparison of computation and testing

Vibration displacement Method | The second ring | Output shaft
. Analytic 0.283 0.197
Amplitude (mm) Test 0311 0.223
. Analytic 0.621 0.401
Peak-peak amplitude (mm) Test 0632 0413

The small deviation of the amplitude for the ring exists between the computation and test
because the rigid ring in the analytic model is flexible component in the tested gearbox and that
the damping of stirring lubrication oil is not considered in the model. The vibration of the output
shaft is influenced by other connected components, the vibration of the test rig and the operating
of generator also affect the test vibration, so the tested vibration of the output shaft is little larger
than the analytic result.

The experimental result generally agrees well with the theoretical computation and validates
the effectiveness of the theoretical model. The lumped-parameter dynamics model for the MW
wind turbine gearbox pitch control is fairly precise, and can provide theoretical basis for the
research of the dynamics of the planet gearbox.

6. Conclusions

An analytic lumped-parameter dynamics model was established for the gearbox of MW wind
turbine pitch control. The natural frequencies and the vibration modes of the gearbox were
analyzed and three types of vibration modes were observed. It is found that the pitch control
reducer is far away from resonance though calculation. Moreover, the undamped and damping
forced vibration response were studied, it is shown that the undamped vibration is more severe
than the damping vibration. Finally, the proportion damping forced response was compared
against the physical experimental vibration result. The little deviation validates the effectiveness
of the analytic model. This paper provides a reference of designing the dynamics characteristics
of planetary gears.
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