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Abstract. The solution of inverse problems has many applications in mathematical physics. 
Regularization methods can be applied to obtain the solution of ill-conditioned inverse problems 
by solving a family of neighboring well-posed problems. Thus, it is significant to investigate the 
regularization methods to increase the accuracy and efficiency of the solution of inverse problems. 
In this work, a new regularization filter and the related regularization method based on the singular 
system theory of compact operator are proposed to solve ill-posed problems. The Cauchy problem 
of Laplace equation of the first kind is a kind of well-known ill-posed problem. Numerical tests 
show that the proposed regularization method can solve the Cauchy problems more efficiently 
under a proper selection of regularization parameters. Numerical results also show that the 
proposed method is especially effective in solving ill-posed problems with big perturbations. 
Keywords: ill-posed problems, regularization filter, regularization algorithm, the convergence of 
solution. 

1. Introduction 

In engineering technologies, there are a large amount of inverse problems in mathematical 
physics from different fields, such as seismic exploration, image processing, load identification, 
and so on. In most cases, the inverse problems of mathematical physics are ill-posed, and a large 
amount of ill-posed problems can be transformed into the first kind Fredholm integral equations, 
which can be discretized into a system of linear algebraic equations, and by solving it the solution 
of the problem of mathematical physics can be obtained. However, the discretized algebraic 
equations are normally also ill-posed. So, the regularization methods for solving this kind of 
problems have become the focus in this research field, in which the selection of regularization 
parameters has gotten much attention. 

The research of regularization theory and method for ill-posed problems can be traced back to 
1923, when one of the world’s most famous mathematicians Hadamard conducted a study and 
gave a description of ill-posedness of the Cauchy problem of linear partial differential equations. 
In the 1940s, Tikhonov an academician of the former Soviet Union started to systematically study 
the theories and methods of ill-posed problems, and a widely used Tikhonov regularization 
method was put forward. Then a very classical monograph, Solutions of Ill-Health Problems, was 
published in the 1970s. Since then many researchers have devoted to the research and put forward 
different forms of regularization methods. This paper presents a new regularization method after 
a careful study of the existing regularization methods. So, let us start with the equation that we are 
going to solve: 

Let ܆ and ܇ be Hilbert Spaces, ۹ ∈ ,܆ሺܮ :ሻ, where ۹܇ ܆ →  is a bounded continuous linear ܇
operator [1, 2]. We discuss the typical mathematical expression of linear inverse problems 
consisting in the solution of linear operator equation: ۹ܠ	 = ܠ				,ܡ	 ∈ ܡ			,܆ ∈ ܴሺ۹ሻ ⊂ 	.܇ (1)

Eq. (1) is usually an ill-posed problem, i.e. the solution of problem need not be unique or does 
not depend continuously on the right-hand side, and the second situation is discussed in most cases, 
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which means that if the data on the right hand side have small perturbations, large deviations of 
the solution will appear. The data ܡ in Eq. (1) has perturbations, the expression of the distorted 
data can be expressed as: ߜܡ = ܡ ߜ	+ ∗ ૌ ∗ ߜܡ				,ܡ ∈ ܴሺ۹ሻ,	 (2) 

where ૌ is a diagonal matrix with random elements coming from [–1, 1], ߜ is the indicator of 
perturbation. 

The core of the article is how to solve the following equation effectively: ۹ܠ	 = ܠ				,ఋܡ	 ∈ ఋܡ			,܆ ∈ ܴሺ۹ሻ,	 (3) 

and establishing an effective regularization method is the key task.  
This article is organized as follows: In Section 2, we propose a new regularization filter and 

the related new regularization method and prove its rationality. In Section 3, we give an accuracy 
estimate of the solution and present a method for the selection of regularization parameters for the 
new regularization method. In Section 4, we test the new regularization method by solving the 
first kind Fredholm integral equation and demonstrate the stability and validity of the new 
regularization method. 

2. Construction of new regularization method 

The existing regularization methods are mostly based on the perturbation theory and the 
continuation method, and typical representatives are the Tikhonov regularization method, the 
iterative methods, and other improved methods. In this section, we propose a new filter factor and 
correspondingly establish a new regularization method. In addition, we prove that the new 
regularization method is valid from the view of mathematics. 

The Tikhonov regularization method is composed of the following filter factor: 

,ߙሺݍ ሻߤ = 2ߤ2ߤ + ߙ ߙ				, > ߤ			,0 > 0,	 (4) 

where ߙ is a regularization parameter, ߤ is the singular value of matrix ۹. 
The solution of Eq. (3) with Tikhonov regularization method can be expressed as: ߜߙܠ = ሺ۹∗ ∗ ۹ + ۷ሻ−1ߙ ∗ ۹∗ ∗ 	.ߜܡ (5) 

We define a new filter factor (ߤ ,ߙ)ݍ as follows: ݍሺߙ, ሻߤ = sin ൤2ߨ ൬ ߤߤ + ൰൨ߙ ߙ			, > ߤ			,0 ∈ ሺ0, ‖۹‖].	 (6) 

Theorem 2.1 If (ߤ ,ߙ)ݍ is a filter factor given by Eq. (6), we have [3-5]: 
1) 0 < ,ߙሺݍ ሻߤ < ߙ ,1 > ߤ ,0 ∈ ሺ0, ‖۹‖]; 
2) limఈ⟶଴ݍሺߙ, ሻߤ = ߤ ,1 ∈ ሺ0, ‖۹‖]; 
,ߙሺݍ (3 ሻߤ < గଶఈ ߙ ,ߤ > ߤ ,0 ∈ ሺ0, ‖۹‖]; 
4) 1 − ,ߙሺݍ ሻߤ ≤ గమఈ଼ఓ ߙ , > ߤ ,0 ∈ ሺ0, ‖۹‖]. 
Proof obviously, 1) and 2) are valid, so we only need to prove 3) and 4). 
3) It is easy to know that sinሺܽሻ < ܽ and 0 < ܽ < 1, so we have: 
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,ߙሺݍ ሻߤ = sin ൤2ߨ ൬ ߤߤ + ൰൨ߙ ≤ 2ߨ ൬ ߤߤ + ൰ߙ < 2ߨ ߙߤ ߙ			, > ߤ			,0 ∈ ሺ0, ‖۹‖].	 (7)

4) We prove this conclusion in two different situations: 
When: ߤߙ ≥ 1,			1 − ,ߙሺݍ ሻߤ < 1 < ߤߙ ≤ ߤ8ߙଶߨ .	 (8)

When: ߤߙ ≤ 1,			1 − ,ߙሺݍ ሻߤ = 2sinଶ ൤4ߨ ൬ ߤߙ + ൰൨ߙ < ଶ8ߨ ଶߤଶߙ < ߤ8ߙଶߨ .	 (9)

According to Theorem 2.1, we are sure that Eq. (6) is a reasonable regularizing filter, and the 
approximate solution of Eq. (3) can be defined as: 

ఈఋܠ = ܴఈ ∗ ఋܡ =෍ݍሺߙ, ௝ߤሻߤ ൫ܡ, ௝ஶݔ௝൯ݕ
௝ୀଵ ,	 (10)limఈ→଴ܴఈ۹ܠ = ܠ						,ܠ ∈ 	,܆ (11)

where ܴఈ: ܇ →  :is defined as follows ܆

ܴఈ = sin ቈ2ߨ ሺ۹∗ ∗ ۹ሻଵଶ ൬ሺ۹∗ ∗ ۹ሻଵଶ + ۷൰ିଵ቉ߙ ∗ ሺ۹∗ ∗ ۹ሻିଵଶ,				ߙ > 0.	 (12)

The corresponding formula for solving Eq. (3) is as follows: 

ఈ,ఉఋܠ = sin ቈ2ߨ ሺ۹∗ ∗ ۹ሻଵଶ ൬ሺ۹∗ ∗ ۹ሻଵଶ + ۷൰ିଵ቉ߙ ∗ ሺ۹∗ ∗ ۹ሻିଵଶ ∗ ఋܡ + 	,ߚ (13)

where ઺ is a vector with the elements the correction factors. 

3. Optimum selection of the regularization parameters 

In order to obtain a stable and accurate approximate solution of Eq. (3), some regularization 
methods are usually adopted. The regularized approximate solution ܠఈఋ = ܴఈ ∗  :ఋ has the natureܡ
when ߜ → ఈఋܠ ,1 → ߙ where the regularization parameter ,ܠ =  ሻ must be properly selected. Inߜሺߙ
this way, the regularization solution ܠఈఋ  can continuously depends on the right hand side data of 
Eq. (3). In general, if the unknown solutions of ill-posed problems are not confined to a certain 
range, the regularization solution ܠఈఋ  may converge to the real solution ܠ very slowly. In order to 
get a faster convergence rate of ∥ ఈఋܠ − ܠ ∥, the approximate solutions of Eq. (3) need to be 
restricted to some source collections. We define a subspace of ܆ :܆ఈ ∶= ܴ ൬ሺ۹∗ ∗ ۹ሻଵଶ൰ ∶= ሼܠ ∈ :܆ ఈ‖܆‖ < ∞ሽ,	 (14)

where: 
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ఈ‖܆‖ = ቌ෍ߤ௝ି ଶห൫ܠ, ௝൯หଶஶݔ
௝ୀଵ ቍଵ ଶ⁄ .	 (15) 

Thus, we can give an accurate estimate of the solution error by using the following theorem. 
Theorem 3.1 Assume that the following conditions are met: 
a) ∥ ఋܡ − ܡ ∥< ܰ, where ܰ is a constant; 
b) ۹: ܆ → ܡ ,is a compact linear operator and injective one-to-one ܇ ∈ ܴሺ۹ሻ; 
c) ۻఈ,ா = ሼܠ ∈ :܆ ∥ ܆ ∥ఈ≤ ܠ ሽ, the source conditionܧ ∈  .ఈ,ா is requiredܯ
Then we have: 

ฮܠఈఋ − ฮܠ ≤ ܰߙ2ߨ + 8ߙଶߨ 	.ܧ (16) 

Proof: According the triangle inequality, we have: ฮܠఈఋ − ฮܠ ≤ ฮܴఈ൫ܡఋ − ൯ฮܡ + ‖ܴఈܡ − ‖ܠ 	≤ 	 ‖ܴఈ‖ܰ	 + ‖ܴఈܡ − 	,‖ܠ (17) 

Using the properties of singular system of ۹ and Eqs. (3), (4) in theorem 2.1, we obtain: ‖ܴఈ‖ < 	,ܰߙ2ߨ (18) ‖ܴఈܡ − ‖ܠ =෍ [1 − ,ߙሺݍ ሻஶ௝ୀଵߤ ]ଶห൫ܠ, ௝൯หଶݔ ≤ ቆߨଶ8ߙ ቇଶ 	.ଶܧ (19) 

So, we have the error estimate Eq. (16) and now we need to know how to get the suitable 
values of its regularization parameters. 

For actual engineering problems, the prior information of the solution is generally unavailable. 
Thus, it is difficult or impossible to determine a suitable value for the regularization method, and 
the error to the actual measurement is unknown. In this case, the L-curve method is often used to 
select the proper regularization parameters [6, 7]. If the proper regularization parameters are 
selected by the L-curve method, it is possible to achieve an optimal asymptotic convergence rate 
in the iterative calculation. Based on the L-curve method [6, 7], we use the ergodic searching to 
find the proper regularization parameters, i.e. to ensure that the sum of absolute value of ൫۹ܠఈ,ఉఋ − ఋ൯ܡ  is as small as possible. In other words, we need to try as much as possible 
combinations of the regularization parameters (ߚ ,ߙ) to find the smallest value in all those sums 
of absolute value of ൫۹ܠఈ,ఉఋ − ఋ൯ܡ  and the corresponding combination of regularization 
parameters (ߚ ,ߙ) is just the suitable values for the new regularization method. 

4. Numerical tests 

In order to demonstrate the stability and validity of the new regularization method proposed in 
this article, we now test the method by solving the first kind Fredholm integral equation. The first 
kind Fredholm integral equations are usually ill-posed, and when the Fredholm integral equation 
is discretized into a linear algebraic equation, the matrix equation is also ill-posed. In this case, 
the direct inversion of the matrix cannot reach the real solution normally and some regularization 
methods need to be used. Here is an example of the first kind Fredholm integral equation: 

න 1ݏݐ݁
0 ݏሻ݀ݏሺݔ = 	1				ሻ,ݐሺݕ ≤ ݐ ≤ 1.	 (20) 
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If ݕሺݐሻ = ௘೟శభିଵ௧ାଵ , it is easy to know that ݔሺݏሻ = ݁௦ is the only solution of Eq. (20). 
To solve the numerical solution of the first kind Fredholm integral equation, firstly, we 

discretize Eq. (20) into a linear algebraic equation. Let ݊ be the number of discretization to the 
independent variable, we name the following numerical equation: ݏ௝ = 	 ݆݊ ௜ݐ						, = 	 ݅݊ ,						ܽ௜,௝ = 1݊ ݁௧೔௦ೕ	,					݅, ݆ = 0,1, … , ݊,	
ܡ = ሺݕ௜ሻ = ቌ݁ቀ௜௡ାଵቁ − 1݅݊ + 1 ቍ,	۹ = ൫ܽ௜,௝൯௡∗௡,	
and we can get the approximate equation as follows: 

න 1ݏݐ݁
0 ݏሻ݀ݏሺݔ ≈෍	ܽ݅,݆݊

݆=0 	.൯݆ݏ൫ݔ (21)

By this means, we turn Eq. (20) into a linear algebraic Eq. (21). For simulating the real 
problems of mathematical physics, we give some perturbations on the right-hand side of Eq. (1) 
and get Eq. (3). For this system, the direct solution is unstable and as the number of discretization 
nodes increases, the error increases. Therefore, it is necessary to apply the regularization algorithm 
to obtain a better solution. 

Now we solve Eq. (3) by the Tikhonov regularization method and the new regularization 
method, respectively, and the accuracy and anti-interference performance of the two methods are 
compared under different interference conditions. 

We define ܯ is the sum of absolute value of ൫۹ܠఈ,ఉఋ − ߜ ఋ൯. Whenܡ = 0.01 and ݊ = 60, using 
the ergodic searching treatment to find the relationship between ܯ  and the combinations of 
regularization parameters (ߚ ,ߙ), the most suitable value of parameters (ߚ ,ߙ) can be found. The 
results are shown in Fig. 1. When ߜ = 0.1 and ݊ = 60, the results are shown in Fig. 2. 

 
Fig. 1. Relationship between ܯ and (ߚ ,ߙ)  

with small perturbation ߜ = 0.01 

 
Fig. 2. Relationship between ܯ and (ߚ ,ߙ)  

with big perturbation ߜ = 0.1 

When ߜ = 0.01 and ݊ = 60, the theoretical solution of Eq. (3) and the solutions of different 
regularization methods are shown in Fig. 3. While ߜ = 0.1 and ݊ = 60, the results are shown in 
Fig. 4. It can be seen from Figs. 3 and 4 that the new regularization method proposed in this article 
presents much better results than those by conventional Tikhonov method for both small and big 
perturbations, which shows the validity and stability of the new method. 
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Fig. 3. Comparison of numerical results  

with small perturbation ߜ = 0.01 

 
Fig. 4. Comparison of numerical results  

with big perturbation ߜ = 0.1 

5. Conclusions 

To improve the solution accuracy of ill-posed problems, in this paper we propose a new 
regularization method and prove its rationality from the view of mathematics. Furthermore, we 
demonstrate the convergence of its solution and present a selection method of the regularization 
parameters when using the new regularization method. Numerical tests have been made for 
solving the first kind Fredholm integral equation and comparing the results with the classical 
Tikhonov regularization method. Numerical results show that the present method can provide 
much better approximation of true solution, especially in the case of the ill-posed problems with 
big perturbation. Because of regularization methods are applied to obtain the solution of  
ill-conditioned inverse problems by solving a family of neighboring well-posed problems, if we 
want to get good numerical results, the error in practical engineering of measuring progress 
requires high, otherwise will enlarge the final result of the error, the new regularization method 
which reduces the need for measurement errors. A disadvantage of the new regularization method 
is the ergodic searching of its regularization parameters, which needs huge computational cost and 
should be further optimized in the coming research. 
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