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Abstract. Short term time series forecasting model with different internal smoothing techniques 
is presented in this paper. Computational experiments with real world time series are used to 
demonstrate the influence of different smoothing techniques in fitness. Algebraic forecasting 
results with any internal smoothing model outperformed results of the algebraic forecasting 
without smoothing. 
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1. Introduction 

Time series forecasting is important area in many fields of science, engineering and finance. 
Time series forecasting aim is to build model from previously observed values and to use it to 
predict future values. Conditionally, these methods can be classified into long-term, medium and 
short-term time series forecasting techniques [1]. The class of short-term forecasting techniques 
include models with a short future horizons. A one-step forward future horizon is adequate for 
short-term time series forecasting [1] delivering methods which are widely used in finance  
[3-5]; electricity price/load, solar and wind energy forecasting problem [6, 7]; passenger demand 
[8] and many others. 

Many publications of short term time series forecasting concentrates on practical applications 
of classical linear and statistical methods for day-ahead forecasting. Simplest of them are moving 
average and simple exponential smoothing [9], Holt-Winters methods [10] or Autoregressive 
Integrated Moving Average type models (ARIMA, ARMAX, ARMAX, SARIMA etc.) [11, 12]. 
In spite of numerous amount of forecasting models and techniques, there cannot be a universal 
forecasting model that could be applied for all situations. 

An algebraic prediction techniques based on the identification of the skeleton algebraic 
sequences in short-term time series is developed in [13-15]. The main objective of this paper is to 
analyze error components and internal smoothing influence to mixed smoothing forecasting model 
of an algebraic interpolant [15]. Since the main purpose of this model is to remove noise term 
from time series and to identify algebraic sequence, it is very important to calibrate well suited 
object function. The goal is to develop such a predictor which could produce reliable forecasts for 
short time series under investigation. 

This paper is organized as follows. Algebraic prediction with mixed smoothing is discussed in 
Section 2; computational experiments are discussed in Section 3 and concluding remarks are given 
in the last section. 

2. Algebraic model with mixed smoothing 

The algebraic time series forecasting model with smoothing procedure has been introduced in 
[14, 15]. The main idea of the smoothing procedure is based on conciliation between the variability 
of the algebraic interpolant and the smoothness of moving average time series estimates – instead 
of trying to make a straight forward projection of this algebraic model into the future. There is 
made an assumption that real world time series observations ሼݔ௞ሽ , ݇ =  0, 1, …, 2݊	  are 
contaminated with an additive noise ሼߝ௞ሽ, ݇ = 0, 1, …, 2݊. Skeleton algebraic sequence can be 
identified by removing this noise: ݔ෤௞ = ௞ݔ െ ݇ ,௞ߝ = 0, 1, …, 2݊. 
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Fig. 1. A schematic diagram illustrating the algebraic time series forecasting method by cancelling noise 

from original observations: thick dots denote the original time series, solid line denotes the corrected time 
series, ܲܣ – algebraic forecasting for original time series; ߝܲܣ – algebraic forecasting for the corrected 

time series; ܣܯ – forecasting using smoothing method for the corrected time series 

The objective function is constructed in order to compress this noise [15]: ܨሺߝ଴, ,ଵߝ … , ଶ௡ሻߝ = 1∑ |௜ߝ| ൅ ܽ ∙ ܧ ൅ ܾ ∙ ଶ௡ାଵݔ̅| െ ොଶ௡ାଵ|ଶ௡௜ୀ଴ݔ ,	 (1) 

where ̅ݔଶ௡ାଵ  is a smoothing component for the one step ahead future value; ݔොଶ௡ାଵ  algebraic 
prediction using recurrent linear sequences presented in [13-15] when sequence order is ݊; ܧ is 
the error computed between the observations ሼݔ෤௞ሽ , 	݇ =  0, 1, …, 2݊  and the reconstructed 
algebraic skeleton ሼݔො௞ሽ, ݇ = 0, 1, …, 2݊. Parameters ܽ and ܾ are penalty proportions between 
different terms in the denominator of the fitness function. Evolutionary algorithms are used to find 
near optimal sequence of corrections [13-15].  

In this study we determine the influence of the error term ܧ and preferred smoothing model 
on the forecasting accuracy.  

3. Computational experiments 

All computations use electricity supply in Euro area (EA11-2000, EA12-2006, EA13-2007, 
EA15-2008, EA16-2010, EA17-2013, EA18-2014, EA19) time series (2008-01-01 to 2016-04-31 
monthly data by Gigawatts per hour) [16]. Data scale in Fig. 2 is divided by 10000. The model 
builds on the initial 21 observations. The accuracy of the predictions is computed using RMSE 
metrics. The order of the algebraic model in this case is determined to be ݊ = 4. 

 
Fig. 2. Electricity supply in Euro area (EA11-2000, EA12-2006, EA13-2007, EA15-2008, EA16-2010, 

EA17-2013, EA18-2014, EA19) time series where monthly data are observed from 2008-01-01 to  
2016-04-31 

3.1. A dependence of the forecasting accuracy on components of the target function 

Let us consider object function case where	ܽ = ܾ = 0. In this case Algebraic forecasting model 
does not involve error metrics and smoothing factor into the optimization process.  External 
smoothing is performed by averaging 100 reconstructed algebraic skeletons for every single 
prediction instead. Root mean square error (RMSE) is computed for predicted values. Forecasting 
errors is presented in Fig. 3(a) where RMSE = 0.9447.  



THE INFLUENCE OF THE SMOOTHING COMPONENT ON THE QUALITY OF ALGEBRAIC FORECASTS.  
KRISTINA POSKUVIENE 

126 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. DEC 2017, VOL. 16. ISSN 2345-0533  

Now consider object function case where ܽ = 1 and ܾ = 0. Forecasting errors are sufficiently 
reduced when Error component is involved into optimization procedure. Now the results are 
obtained without using any smoothing. Forecasting errors is presented in Fig. 3(b) where  
RMSE = 0.3664.  

Even better prediction results are obtained when a smoothing parameter is used in the object 
function (the case where ܽ =  0 and ܾ =  1). Smoothing component there is moving average 
forecasting at ݏ = 2 – MA(2). As we can see in Fig. 3(c), the forecasting errors of such model are 
lowest RMSE = 0.1405. Mixed algebraic prediction model (where ܽ = ܾ =  1) does not 
outperform these results: Fig. 3(d) RMSE = 0.1586. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. Electrical supply time series forecasting errors for: a) algebraic prediction (AP) with external 
smoothing (ܽ = ܾ = 0), b) AP with error component (ܽ = 1, ܾ = 0), c) AP with internal smoothing  

(ܽ = 0, ܾ = 1), d) AP with mixed smoothing ܽ = ܾ = 1 

3.2. A dependence of the forecasting accuracy on components of the target function 

We continue computational experiments with electrical supply time series and compare the 
functionality of the Algebraic prediction with different smoothing models. We consider object 
function case where ܽ = 0 and ܾ = 1. Moving average (MA), simple exponential smoothing (SES) 
and ARIMA models are tested on electrical supply time series. The best smoothing models are 
obtained when MA parameter is ݏ =  2, SES parameter is ߙ = 0.85  and ARIMA(1,1,0). 
Forecasting errors are presented in Fig. 4. It is clear that algebraic time series forecasting with 
internal smoothing SES(0.85) outperforms MA(2) and ARIMA(1,1,0). RMES value for SES(0.85) 
is 0.1328, for MA(2) is 0.1405 and for ARIMA(1,1,0) is 0.1503. As we can see from previous 
section forecasting results are better with any smoothing model than results without smoothing. 
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a) 

 
b) 

 
c) 

Fig. 4. Algebraic time series forecasting errors with internal smoothing model is: a) MA(2), b) SES(0.85), 
c) ARIMA(1,1,0) 

4. Conclusions 

Algebraic time series forecasting model is analyzed in this study. The influence of the 
smoothing and error parameters in considered. Computational experiments with electrical supply 
time series show that smoothing component in the object function has the strongest influence on 
the time series forecasting results. Different smoothing models in the object function produced 
different accuracy of the predictions. Algebraic forecasting results with any internal smoothing 
model outperformed results of the forecasting without smoothing. Error parameter in the object 
function does not have such significant influence on forecasting results, but still helps to reduce 
forecasting errors.  
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