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Abstract. In order to overcome the problem of “singular points”, a method has been developed 
for the kinematically accurate separation of a large rotation into an axial Euler vector and a 
transverse Euler vector. The proposal is based on the fact that in the problems of the rotor 
dynamics of machines consisting of shafts, gears, bearings, etc., the transverse rotation never 
reaches a value of 2𝜋 (a critical value for the Euler vector). The axial rotation is not limited in any 
way. A numerical dynamics example illustrating the method is presented. The result of the 
dynamics problem is checked by observing the law of conservation of total energy. 
Keywords: large rotations, Euler vector, rotation tensor, Zhilin tensor, rotor dynamics. 

1. Introduction 

In the problems of rotor dynamics of machines, which consist of shafts, gears, bearings and 
other rotating elements, in most cases the rotation along one of the directions (axial) is much 
greater than the rotations of the other two directions (transverse). 

To describe the large rotations in geometry, physics and mechanics, a dozen methods are used 
[1-3]. The disadvantage of all methods of describing large rotations using 3 kinematic parameters 
(Euler angles, Cardan angles, rotation vectors) is the presence of singular points. The problem is 
that matrices or tensors connecting angular velocities with derivatives of kinematic parameters 
become degenerate when a certain critical value is reached by rotation. 

The purpose of this article is to develop a different method for describing large rotations, taking 
into account the specific problems of the rotor dynamics of machines consisting of shafts, gears, 
bearings and other rotating elements. The main idea is to divide the general rotation of some 
assembly (shaft section, bearing ring, gear, etc.) into a rotation around the rotor axis and a 
transverse rotation. In most cases, for the listed rotating parts, the transverse rotation is limited by 
some not very large values. For example, even for spherical bearings, the relative transverse 
rotation of the rings cannot reach the value of 𝜋/2. 

2. Description of large rotations using the Euler vector 

The most effective and simple way to describe large rotations in the opinion of the authors is 
to describe it with the help of the Euler vector [4-8]. The vector description of the rotations is 
based on Euler’s theorem that an arbitrary combination of spatial rotations is equivalent to one 
plane rotation. The Euler vector just sets this plane rotation. Its direction indicates the axis of 
rotation, and the length is equal to the angle of rotation (Fig. 1). 

 
Fig. 1. Euler vector 
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The following tensor functions of the vector argument are connected with the Euler vector: 

𝐋 𝛝 = 𝐄cos𝜃 + 1 − cos𝜃𝜃 𝛝𝛝 + sin𝜃𝜃 𝛝 × 𝐄,𝐁 𝛝 = 𝐄 sin𝜃𝜃 + 𝜃 − sin𝜃𝜃 𝛝𝛝 + 1 − cos𝜃𝜃 𝛝 × 𝐄,  

where 𝛝 – Euler vector; 𝜃  – the length of the Euler vector (Fig. 1); 𝐋 𝛝  – the function that 
calculates the rotation tensor with respect to a given Euler vector; 𝐁 𝛝  – the function that 
computes the tensor Zhilin by a given Euler vector; 𝐄 – the unit tensor; 𝛝𝛝 – the dyad product of 
the vectors 𝛝; 𝛝×𝐄 – a skew-symmetric tensor with a concomitant vector 𝛝. 

3. Description of large rotations with a combination of axial and transverse Euler vectors 

As shown in the introduction, the specific features of the rotor dynamics of machines 
consisting of shafts, gears, bearings and other rotating elements are the limitation of the transverse 
rotation. In this connection, it is not necessary to use the Euler vector for a total rotation, since the 
norm of this vector is limited to 2𝜋, and thousands of rotations must be described. The vector of 
Euler is enough to describe the transverse rotation. Then, for the rotation around a fixed 
longitudinal axis, the usual rules of kinematics of plane motion from theoretical mechanics will 
operate. Therefore, it is convenient to represent the total rotation with the Euler vector 𝛝 as a 
combination of two successive rotations – the first rotation around the axis of the rotor 𝐞 by an 
angle 𝜑, the second rotation around an axis perpendicular to the axis of the rotor with the Euler 
vector 𝛄 (Fig. 2). 

 
Fig. 2. A combination of axial and transverse Euler vectors 

In the case of small rotations, the separation of the total rotation into parts is achieved by 
projecting onto the rotor axis and onto the plane perpendicular to the axis. In the case of large 
rotations, it is necessary to involve the rotation tensors: 𝐋 = 𝐋 ⋅ 𝐋 ,   𝐋 = 𝐋 𝛝 ,   𝐋 = 𝐋 𝛄 ,   𝐋 = 𝐋 𝜑𝐞 . (1) 

The rotation tensors differentiate according to the following formulas: 𝑑𝐋𝑑𝑡 = 𝛚 × 𝐋 ,   𝑑𝐋𝑑𝑡 = 𝛚 × 𝐋 ,   𝑑𝐋𝑑𝑡 = 𝛚 × 𝐋 , (2) 

where 𝑡 – time; 𝛚 – the total angular velocity; 𝛚  – the angular velocity from rotation around 
the axis of the rotor; 𝛚  – the angular velocity associated with the change of the Euler vector 𝛄. 

From Eqs. (1) and (2), as shown in [4], when two successive rotations are imposed, the rule of 
combining angular velocities follows: 𝛚 = 𝛚 + 𝐋 ⋅ 𝛚 . (3) 

Thus, the total rotation in fact can be determined accurately by using the separated Euler 
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vectors 𝜑𝐞 and 𝛄: the first rotation around the fixed unit vector 𝐞 by the angle 𝜑, the second 
around the transverse axis passing through the vector 𝛄 by the angle |𝛾|. 

Since the first rotation is a plane rotation, the elementary formula of the kinematics of plane 
motion is valid for it: 

𝛚 = 𝜔 𝐞,   𝜔 = 𝑑𝜑𝑑𝑡 . (4) 

For the second rotation, according to (1), the angular velocity is found using the Zhilin tensor: 

𝛚 = 𝐁 ⋅ 𝑑γ𝑑𝑡 ,   𝐁 = 𝐁 γ . (5) 

Substituting (3) into (5) with regard to (4) allows us to express the derivative of the Euler 
vector 𝛄 using angular velocities: 𝑑𝛄𝑑𝑡 = 𝐁 ⋅ 𝛚 − 𝜔 𝐋 ⋅ 𝐞 . (6) 

Projecting the relation (6) to the axis of the rotor, taking into the orthogonality condition for 
the vectors 𝐞 and 𝛾, leads to the identity: 𝐞 ⋅ 𝐁 ⋅ 𝛚 − 𝜔 𝐋 ⋅ 𝐞 ≡ 0. (7) 

From (7) the expression 𝛚  in terms of the total angular velocity shows: 

𝜔 = 𝐞 ⋅ 𝐁 ⋅ 𝛚𝐞 ⋅ 𝐁 ⋅ 𝐋 ⋅ 𝐞. (8) 

Expressions (4) and (6), with supplementary Eq. (8), are the required differential equations of 
kinematics of rotational motion represented by the composition of two rotations 𝜑𝐞 and 𝛄. 

4. The numerical example 

As an example, let us consider the dynamics problem for a rotor fixed in a block of springs. 
The schematic diagram is shown in Fig. 3. 

 
Fig. 3. The position of the rotor at the initial time 

The spring assembly consists of 3 tension-compression springs with stiffness 𝐶  and 2 
torsional springs with stiffness 𝐶 . The rotor is a thin disk with mass 𝑚 and a weightless absolutely 
rigid rod with length 𝑙. At the initial time, when the rotor was positioned horizontally, it is given 
the initial angular velocity 𝛚  around the axis of the rotor. 
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The numerical calculation was carried out for the following initial data: 
• Disc diameter 𝐷 = 0.5 m; 
• Rotor mass 𝑚 = 5 kg; 
• The distance from the mass-center to the center of the block of springs 𝑙 = 0.75 m; 
• Acceleration of gravity 𝑔 = 9.81 m/s2; 
• Coefficients of spring stiffness 𝐶 = 2000 N/m and 𝐶 = 500 Nm/rad; 
• Initial angular velocity 𝜔 = 50 rad/s. 
Fig. 4 shows the forces and moments acting on the rotor in the process of motion. The block 

of springs creates a force 𝐅 at point 𝑎, directed opposite to the radius vector of point 𝑎, and a 
moment 𝐌 directed opposite to vector 𝛄. In addition to the reactions of the springs, the gravity 
force 𝑚𝐠, applied at the center of gravity of the disk (point 𝑐), acts on the rotor. 

 
Fig. 4. The forces and moments acting on the rotor during the motion 

The dynamics of the rotor is described by the following system of differential equations: 

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧𝑑𝐫𝑑𝑡 = 𝐯 ,𝑑𝜑𝑑𝑡 = 𝜔 ,𝑑𝛄𝑑𝑡 = 𝐁 ⋅ 𝛚 − 𝜔 𝐋 ⋅ 𝐞 ,𝑑𝐯𝑑𝑡 = 𝐅𝑚 + 𝐠,𝑑𝐊𝑑𝑡 = 𝐫 − 𝐫 × 𝐅 + 𝐌,

 (9) 

where 𝐫  – the radius vector of the mass-center; 𝐯  – the velocity vector of the mass-center;  𝐊  – the vector of the angular momentum; 𝐫  – the radius vector of the left end of the rotor. 
When the system (9) was compiled, the kinematic relations (4), (6), (8) were used. The 

remaining equations are obtained from the usual equations of kinematics and rigid body dynamics. 
For numerical integration, the traditional fourth-order Runge-Kutta method with automatic 

step selection was used. The results of the calculation in form of trajectory of mass center are 
shown in Fig. 5. 

Except for the motion of the mass-center of the rotor, we are also interested in the change of 
the axial angular velocity 𝜔 , which in the problems of rotor dynamics is usually assumed to be 
constant. The deviation of 𝜔  from the initial angular velocity 𝜔  is shown in Fig. 6. 

From Fig. 6 it shows that the axial angular velocity varies with time, but the deviation is very 
small (the greatest relative deviation 𝜔 − 𝜔 𝜔⁄  does not exceed 0.1 %). 

The result of the dynamics problem is checked by observing the law of conservation of total 
energy. The dependence of the combinations of energies on time is shown in Fig. 7. 
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a) 

 
b) 

Fig. 5. The trajectory of mass-center 

  
Fig. 6. Deviation of the axial angular velocity from the initial angular velocity 

 
Fig. 7. The dependence of the combinations of energies on time: 

1 – Changes in kinetic energy; 2 – Changes in total energy; 3 – Changes in potential energy  

The total energy is stored with high accuracy. This accuracy confirms not only the absence of 
errors in the presented equations, but also the absence of numerical problems when using the 
proposed method of dividing the rotation into axial and transverse. 

5. Conclusions 

A kinematically accurate way of dividing a large rotation into an axial rotation and a transverse 
rotation is demonstrated, which has no singular points and allows considering infinitely large 
rotations, provided that the transverse rotation does not exceed 2𝜋. The numerical example of a 
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rotor fixed in a block of springs shows the absence of numerical problems when using the proposed 
method. 
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