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Abstract. This paper analyzes the dynamic response of assumedly rigid road pavement under a 
constant velocity of traffic loads moving on its surface. The model of the rigid road pavement is 
a damped rectangular orthotropic plate which is supported by an elastic Kerr foundation. 
Semi-analytical solutions of the dynamic deflection of an orthotropic plate, with semi rigid 
boundary conditions are presented by using governing differential equations. The natural 
frequencies and mode shapes of the system are then, solved by using the modified Bolotin method 
considering two transcendental equations as the results of solving the solution of two auxiliaries 
Levy’s plate type problems. The moving traffic loads modeled by varying the amplitudes of 
dynamic transverse concentrated loads harmonically. Numerical studies on the soil types, 
foundation stiffness models, varying constant velocities and loading frequencies are conducted to 
show the effects of the dynamic response behaviors of the plates. The results show that the 
dynamic responses of the rigid road pavement influenced significantly by the type foundation 
stiffness models and velocity of the moving load. 
Keywords: rigid road pavement, dynamic traffic loads, Kerr foundation, transcendental equation, 
modified Bolotin method. 

1. Introduction 

The vibration response of rectangular orthotropic plates is an interesting subject because of its 
widespread applications in structural engineering and transportation engineering. In bridge 
analysis, different models have been studied and investigated by researchers for rigid highway and 
airport pavements. In most of the previous works the type of plates considered are isotropic 
rectangular plates which are uniform in all directions. In reality, not all plates are isotropic. 
Another important type of plate is the orthotropic rectangular plate, which has been used to model 
the dynamic response of rigid concrete pavements. According to Alisjahbana and Wangsadinata, 
the dynamic moving traffic load can be represented by a single concentrated harmonic loading, 
moving with a constant speed along the mid-side of the plate [1]. It was found that a dynamic load 
approach will lead to a better economical solution in comparison to solutions obtained using the 
conventional static load approach.  

Conventional methods of rigid pavement design are using the elastic Winkler foundation 
model which is obtained from the static analytical solutions of infinite plates rest on elastic soil 
assumption. These were investigated by Westergaard in 1926 [2]. In this elastic Winkler 
foundation model, the interconnections among the soil layers are neglected, leading to limitations 
in the physical model of the sub-soil system [3]. These limitations can be eliminated by modeling 
the sub-grade soil medium by using two-parameter model, providing a shear interaction between 
independent spring elements.  

Several researchers have verified the applicability of soil medium representation by using two 
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parameter models in static [4, 5], post buckling [6, 7] as well as dynamic models [1, 8-10]. Gan 
and Nguyen presented the two parameter model of soil medium in the large deflection analysis of 
functionally graded beam [11]. 

Paliwal and Ghosh studied the stability of rectangular orthotropic plates on a Kerr soil 
foundation model subjected to the in-plane static stresses in the orthogonal directions [12]. The 
dynamic lateral loads are not discussed in their work. The Kerr model is one of the most 
advantageous models. However, due to the existence of an upper spring layer, no concentrated 
reactions occur. Kneifati has shown that more accurate base response of the flexible plates and 
beams subjected to a uniform load and boundary forces was obtained by using the Kerr model 
compared to the Pasternak and Winkler models [13]. In addition, the Kerr model moreover shows 
comparable results with the continuum elastic theory. Therefore, in this paper, the authors will 
analyze the dynamic behavior of the rigid road pavement rests on a Kerr model and subjected to 
a moving load. 

In most researches done previously, rigid road pavements are modeled as an orthotropic plate. 
Furthermore, it is commonly resting on an elastic foundation model such as the Pasternak or 
Winkler models. However, according to Paliwal and Ghosh in 1994, the Winkler model is unable 
to represent the behavior of soil medium materials with a larger void ratio or stiffer clay. 
Additionally, the Pasternak model is only better in predicting the behavior of hard soils. On the 
other hand, Kerr foundation model has more advantageous models due to no concentrated 
reactions occur due to an addition of an upper spring layer [12]. 

In this study, the dynamic response of a rigid road pavement modeled as a thin orthotropic 
plate rests on the Kerr model is investigated. To take into account the existence of the tie bars and 
dowels along its edges, the boundary conditions along its edges are semi rigid condition allowing 
the rotation at the supports and the translational movement at the edges. These type of boundary 
conditions are solved by using the Modified Bolotin Method [1]. There has been no previous 
research using this specific method to study the dynamic response of the rigid road pavement 
subjected to a moving load. In this paper, semi analytical solution is used to calculate the dynamic 
deflection and internal forces distribution of the plate subjected to loading with constant velocity. 
The applicability of the present method is highlighted by solving the maximum dynamic deflection 
of the system for different types of soil conditions and elastics foundation model in order to design 
better rigid road pavements. 

2. Governing equation 

In this paper, a rigid pavement resting on Kerr foundation is considered. The orthotropic plate 
is semi rigid along its edges. It is considered to be of uniform thickness ℎ. The dynamic transverse 
load acting on the orthotropic plate is 𝑞(𝑥, 𝑦). Based on the work of Paliwal and Ghosh [12], the 
governing differential equation of the rigid pavement subjected to the lateral load is given by: 

𝐷௫ 𝜕ସ𝑤𝜕𝑥ସ + 2𝑏 𝜕ସ𝑤𝜕𝑥ଶ𝜕𝑦ସ + 𝐷௬ 𝜕ସ𝑤𝜕𝑦ସ = 𝑞 − 𝑝ଵ, (1) 

where 𝐷௫ , 𝐷௬  are the flexural rigidities of the plate in the 𝑥  direction and the 𝑦  direction 
respectively, 𝐵 is the torsional rigidity of a plate and 𝑝ଵ is foundation response. Because the Kerr 
model [14] consists of two axial springs (𝑘ଵ and 𝑘ଶ) and shear spring layer (𝐺௦), the deflection of 
the plate can be given as [13]: 𝑤(𝑥, 𝑦) = 𝑤ଵ(𝑥, 𝑦) + 𝑤ଶ(𝑥, 𝑦). (2) 

The contact pressures under the orthotropic plate and the shearing layer are given by 𝑝ଵ and 𝑝ଶ, respectively, where: 
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𝑝ଵ(𝑥, 𝑦) = 𝑘ଵ𝑤ଵ = 𝑘ଵ(𝑤 − 𝑤ଶ), (3) 𝑝ଶ(𝑥, 𝑦)= 𝑘ଶ𝑤. (4) 

The shearing layer was governed by the following differential equation: 𝑘ଶ𝑤ଶ − 𝐺௦∇ଶ𝑤ଶ = 𝑝ଵ. (5) 

Eliminating 𝑤ଶ from Eq. (3) and (5), we obtain: 

൬1 + 𝑘ଶ𝑘ଵ൰ 𝑝ଵ − 𝐺௦𝑘ଵ ∇ଶ𝑝ଵ = 𝑘ଶ𝑤 − 𝐺௦∇ଶ𝑤. (6) 

By substituting 𝑝ଵ of Eq. (3) into Eq. (6) and by taking into account the moving load, the 
structural damping and the inertia of the orthotropic plate, the differential equation of lateral 
motion of an orthotropic plate on a Kerr model can be obtained as: 

− ൬1 + 𝑘ଶ𝑘ଵ൰ ൭𝐷௫ 𝜕ସ𝑤𝜕𝑤ସ + 2𝐵 𝜕ସ𝑤𝜕𝑥ଶ𝜕𝑦ଶ + 𝐷௬ 𝜕ସ𝑤𝜕𝑦ସ + 𝜌ℎ 𝜕ଶ𝑤𝜕𝑡ଶ + 𝛾ℎ 𝜕𝑤𝜕𝑡 − 𝑞(𝑥, 𝑦, 𝑡)൱ 

      + 𝐺௦𝑘ଵ ൭𝐷௫ ቆ𝜕଺𝑤𝜕𝑥଺ + 𝜕଺𝑤𝜕𝑥ସ𝜕𝑦ଶቇ + 2𝐵 ቆ 𝜕଺𝑤𝜕𝑥ସ𝜕𝑦ଶ + 𝜕଺𝜕𝑥ଶ𝜕𝑦ସቇ 𝐷௬ ቆ𝜕଺𝑤𝜕𝑦଺ + 𝜕଺𝑤𝜕𝑥ଶ𝜕𝑦ଶቇ൱ 

      + 𝐺௦𝑘ଵ ቆ 𝜕ଶ𝜕𝑥ଶ + 𝜕ଶ𝜕𝑦ଶቇ ቆ𝜌ℎ 𝜕ଶ𝑤𝜕𝑡ଶ + 𝛾ℎ 𝜕𝑤𝜕𝑡 − 𝑝(𝑥, 𝑦, 𝑡)ቇ = 𝑘ଶ𝑤 − 𝐺௦ ቆ𝜕ଶ𝑤𝜕𝑥ଶ + 𝜕ଶ𝑤𝜕𝑦ଶ ቇ, 
(7) 

where 𝑘ଵ is the spring stiffness of the first layer of the Kerr model, 𝑘ଶ is the spring stiffness of the 
second layer of the Kerr model, 𝐺௦ is the shear modulus of the Kerr model, 𝜌 is the mass density 
of the plate, 𝛾 is the structural damping ratio, and ℎ is the thickness of the plate. 

In reality, loads that are caused by vehicles are often of varying amplitude. This is a because 
of the coarseness of rigid roadway pavement as well as the vehicle’s mechanical systems. 
Therefore, in practical analysis, a harmonic load model is generally used. In this study, 
harmonically moving a single concentrated load which is traveling with a constant velocity 𝑣଴ 
along the middle line is considered. Considering practical use, the dynamic load transmitted to the 
pavement 𝑞(𝑥, 𝑦, 𝑡) according to Eq. (7) can be expressed by using the Dirac function 𝛿ሾ ሿ as: 

𝑞(𝑥, 𝑦, 𝑡) = 𝑃଴(1 + 𝛼cos𝜔𝑡)𝛿ሾ𝑥 − 𝑣଴𝑡ሿ𝛿 ൤𝑦 − 𝑏2൨, (8) 

where 𝛼 is the coefficient of the type of vehicle, 𝜔 is the vibration frequency of the moving load, 𝑏 is the length of the orthotropic plate in the 𝑦 direction; 𝑃଴ is the maximum amplitude of the 
moving load [1]. 

According to Fig. 1, the effective shear force and bending moment at the orthotropic plate 
boundaries are given as: 

𝑉௜ = 𝐷௜ ൭ቆ∂ଷ𝑤(𝑥, 𝑦, 𝑡)∂𝑥ଷ ቇ + ൬𝐵 + 2𝐷௧௥𝐷௜ ൰ ቆ∂ଷ𝑤(𝑥, 𝑦, 𝑡)∂𝑥 ∂𝑦ଶ ቇ൱ = 𝑘𝑠௜𝑤(𝑥, 𝑦, 𝑡),    𝑖 = 1, . . . ,4, (9) 

𝑀௜ = −𝐷௜ ቆ∂ଶ𝑤(𝑥, 𝑦, 𝑡)∂𝑥ଶ + 𝜈ୄ௜ ∂ଶ𝑤(𝑥, 𝑦, 𝑡)∂𝑦ଶ ቇ = 𝑘𝑟௜ ∂𝑤(𝑥, 𝑦, 𝑡)∂𝑥 ,    𝑖 = 1, . . . ,4. (10) 

The constraint of the elastic vertical support and rotation are characterized by 𝑘𝑠௜  and 𝑘𝑟௜ , 
respectively. The index 𝑖 = 1, 2, 3, 4 stems for 𝑥 = 0, 𝑎 and 𝑦 = 0, 𝑏, where the index notation ⊥ 𝑖 of the Poisson’s ratio 𝜈 shows the perpendicular direction of 𝑖.  
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Fig. 1. Model of the rigid road pavement on a Kerr foundation model under a dynamic moving load 

3. Determination of the Eigen frequencies 

The solution of the homogeneous orthotropic plate equation given by Eq. (7) can be determined 
by the method of variable separation using the Fourier series techniques. According to this method, 
the homogeneous solution of the problem is a product of function of space and time: 

𝑤(𝑥, 𝑦, 𝑡) = ෍ ෍ 𝑊௠௡(𝑥, 𝑦)ஶ
௡ୀଵ

ஶ
௠ୀଵ sin(𝜔௠௡𝑡), (11) 

where 𝜔௠௡  is the undamped vibration frequency of the orthotropic plate and 𝑊௠௡(𝑥, 𝑦) is a 
spatial function determined for the modal numbers 𝑚 and 𝑛 in the 𝑥- and 𝑦-directions. The spatial 
function satisfying the initial conditions of the undamped free vibration equation. The substitution 
of Eq. (11) into Eq. (7) yields: 

−(𝑘ଵ + 𝑘ଶ) ቆ𝐷௫ ∂ସ𝑊௠௡∂𝑥ସ + 2𝐵 ∂ସ𝑊௠௡∂𝑥ଶ ∂𝑦ଶ + 𝐷௬ ∂ସ𝑊௠௡∂𝑦ସ ቇ
     +𝐺௦ ൭𝐷௫ ቆ∂଺𝑊௠௡∂𝑥଺ + ∂଺𝑊௠௡∂𝑥ସ ∂𝑦ଶቇ + 2𝐵 ቆ ∂଺𝑊௠௡∂𝑥ସ ∂𝑦ଶ + ∂଺𝑊௠௡∂𝑥ଶ ∂𝑦ସቇ + 𝐷௬ ቆ∂଺𝑊௠௡∂𝑦଺ + ∂଺𝑊௠௡∂𝑥ଶ ∂𝑦ସቇ൱
     −𝑘ଵ𝑘ଶ𝑊௠௡ + 𝑘ଵ𝐺௦ ቆ∂ଶ𝑊௠௡∂𝑥ଶ + ∂ଶ𝑊௠௡∂𝑦ଶ ቇ
     = 𝜌ℎ𝜔௠௡ଶ · ቆ𝐺௦ ቆ∂ଶ𝑊௠௡∂𝑥ଶ + ∂ଶ𝑊௠௡∂𝑦ଶ ቇ − (𝑘ଵ + 𝑘ଶ)𝑊௠௡ቇ .

(12) 

Since 𝑊௠௡(𝑥, 𝑦) in Eq. (12) depends only on the spatial variables and the orthotropic plate 
vibrates with the same temporal behavior, each side of Eq. (12) must be equal to the arbitrary 
separation constant. A relationship between the undamped vibration frequencies of the orthotropic 
plate and the arbitrary separation constant 𝜅௠௡ can be expressed as [1]: 

𝜔௠௡ଶ = ൬𝜅௠௡𝜌ℎ ൰ −𝑘ଵ൤𝐺௦ ൬ቀ𝑝𝜋𝑎 ቁଶ + ቀ𝑞𝜋𝑏 ቁଶ൰ + (𝑘ଵ + 𝑘ଶ)𝑊(𝑥, 𝑦)൨ = ൬𝜅௠௡𝜌ℎ ൰ Ψ, (13) 

where: 
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𝜅௠௡ = − ൬𝑘ଵ + 𝑘ଶ𝑘ଵ ൰ ቆ𝐷௫ 𝑝ସ𝜋ସ𝑎ସ + 2𝐵 𝜋ସ𝑝ଶ𝑞ଶ𝑎ଶ𝑏ଶ + 𝐷௬ 𝑞ସ𝜋ସ𝑏ସ ቇ − 𝑘ଶ − 𝐺௦𝑘ଵ ቆ𝑝ଶ𝜋ଶ𝑎ଶ + 𝑞ଶ𝜋ଶ𝑏ଶ ቇ
     − 𝐺௦𝑘ଵ ቈ𝐷௫ ቆ𝑝଺𝜋଺𝑎଺ + 𝜋଺𝑝ସ𝑞ଶ𝑎ସ𝑏ଶ ቇ + 2𝐵 ቆ𝑝ସ𝑞ଶ𝜋଺𝑎ସ𝑏ଶ + 𝜋଺𝑝ଶ𝑞ସ𝑎ଶ𝑏ସ ቇ + 𝐷௬ ቆ𝑞଺𝜋଺𝑏଺ + 𝜋଺𝑝ଶ𝑞ସ𝑎ଶ𝑏ସ ቇ቉ .  (14) 

Based on the modified Bolotin method, the two unknowns real numbers 𝑝 and 𝑞 in Eqs. (13), 
(14) can be solved from the two auxiliary Levy’s type problems [15]. 

4. Determination of the Eigen modes of the orthotropic plate 

4.1. First auxiliary Levy problem 

The solution of Eq. (12) for the first auxiliary problem that satisfies the boundary conditions 
defined in Eqs. (9), (10) can be assumed as: 𝑊௠௡(𝑥, 𝑦) = 𝑋௠௡(𝑥)sin ቀ𝑞𝜋𝑏 𝑦ቁ, (15) 

where 𝑋௠௡(𝑥) is the Eigen mode of the orthotropic plate in the 𝑥-direction [15]. Substituting 
Eq. (15) into Eq. (12) which results in an ordinary differential equation for 𝑋௠௡(𝑥) in which the 
solution of the characteristic equation can be found by assuming 𝑋௠௡(𝑥) = 𝑒ఉ௫. By substituting 𝑋௠௡(𝑥) = 𝑒ఉ௫ into the characteristic equation we found the sixth order characteristic equation of 𝛽 which has two imaginary roots and two real double roots. The solution of the first auxiliary 
problem can be expressed as: 

𝑋௠௡(𝑥) = 𝐴ଵcos ቀ𝑝𝜋𝑎 𝑥ቁ + 𝐴ଶsin ቀ𝑝𝜋𝑎 𝑥ቁ + 𝐴ଷ ൬𝛽𝜋𝑎 𝑥 + 1൰  cosh ൬𝛽𝜋𝑎 𝑥൰     +𝐴ସ ൬𝛽𝜋𝑎 𝑥 + 1൰  sinh ൬𝛽𝜋𝑎 𝑥൰ .  (16) 

Boundary conditions along the 𝑥-axis permit determining the 𝐴௜ coefficients from [16, 17]: 𝑎௜௝𝐴௜ = 0,   𝑖 = 𝑗 = 1, . . ,4, (17) 

where 𝑎௜௝ are the coefficients. 
When the conditions of the boundary along 𝑥 = 0 and 𝑥 = 𝑎 in Eqs. (9), (10) are substituted 

into Eq. (16), the characteristic determinant of Detሾ𝐀ሿ = ห𝐚௜௝ห =  0 leads to the existence of 
nontrivial solutions. After expanding resulted in the first transcendental equation in terms of 𝑝  
and 𝑞. 

The second auxiliary Levy problem in the 𝑦-axis can be determined analogously to the above 
formulations. 

4.2. Mode numbers 

The determinants of the first and second auxiliaries Levy problems, being transcendental in 
nature, have an infinite number of roots. The Mathematica software [18] was used to solve the 
values of 𝑝 and 𝑞 symbolically. By substituting the values of 𝑝 and 𝑞 into Eq. (13), the Eigen 
frequencies of the system can be obtained. The integer parts of 𝑝 and 𝑞 represent the number of 
mode in the system. The mode shapes of the system are therefore given by: 
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𝑊(𝑥, 𝑦) = ෍ ෍ 𝑋௠௡(𝑥)𝑌௠௡(𝑦).ஶ
௡ୀଵ

ஶ
௠ୀଵ  (18) 

5. Determination of the non-homogeneous solution of the system 

Since a fundamental set of solutions of the homogenous partial differential equation is known 
and given by Eq. (18), a non-homogeneous solution of the system can be found by replacing the 
unknown constant coefficients in Eq. (16) in the 𝑥 direction as well as in the 𝑦 direction with 
unknown coefficient functions. The appropriate solution for the forced response can be expressed 
in the form: 

𝑤(𝑥, 𝑦, 𝑡) = ෍ ෍ 𝑋௠௡(𝑥)𝑌௠௡(𝑦)𝑇௠௡(𝑡),ஶ
௡ୀଵ

ஶ
௠ୀଵ  (19) 

where 𝑋௠௡(𝑥)  and 𝑌௠௡(𝑦)  are the mode shapes of the system, 𝑇௠௡(𝑡)  depends only on the 
temporal variable and can be determined from the non-homogeneous partial differential equation 
of time. From the natural frequency 𝜔௠௡ computed by Eq. (13), depending on the first and second 
spring stiffness and the shear moduli of the Kerr foundation, the temporal equation of 𝑇௠௡(𝑡) can 
be stated in [19] as follow: 𝑇ሷ௠௡(𝑡) + 2𝜁𝜔௠௡𝑇௠௡(𝑡) + 𝜔௠௡ଶ 𝑇௠௡(𝑡)     = Ψ𝜌ℎ𝑄௠௡ න 𝑋௠௡(𝑥)𝑑𝑥௔

଴ න 𝑌௠௡(𝑦)𝑑𝑦௕
଴ · ቆ𝐺௦𝑘ଵ ቆ ∂ଶ∂𝑥ଶ + ∂ଶ∂𝑦ଶቇ − 𝑘ଵ + 𝑘ଶ𝑘ଵ ቇ 𝑝(𝑥, 𝑦, 𝑡), (20) 

where 𝜁 is the damping ratio of the system and 𝑄௠௡ is a normalization factor expressed by: 

𝑄௠௡ = න൫𝑋௠௡(𝑥)൯ଶ𝑑𝑥௔
଴ න൫𝑌௠௡(𝑦)൯ଶ𝑑𝑦.௕

଴  (21) 

The corresponding homogeneous solution of Eq. (20) can be written: 𝑇଴௠௡(𝑡) = 𝑒ି఍ఠ೘೙௧൫𝑎௠௡cos(𝜔𝑑௠௡𝑡) + 𝑏௠௡sin(𝜔𝑑௠௡𝑡)൯. (22) 

From the stationary state initial conditions (𝑡 =  0 s), 𝑇଴௠௡(𝑡) = 𝑎௠௡ = 𝑏௠௡ =  0 can be 
obtained. A particular and a general solution of Eq. (20) may be integrated to determine the 
temporal response of the problem for an arbitrary applied surface load [1]: 

𝑇௠௡(𝑡) = න ൥ Ψ𝜌ℎ𝑄௠௡ඥ1 − 𝜁ଶ𝜔௠௡ න 𝑋௠௡(𝑥)𝑑𝑥௔
଴

௧
଴ න 𝑌௠௡(𝑦)𝑑𝑦௕

଴     · 𝑒ି఍ఠ೘೙(௧ିఛ) ቆ𝐺௦𝑘ଵ ቆ ∂ଶ∂𝑥ଶ + ∂ଶ∂𝑦ଶቇ − 𝑘ଵ + 𝑘ଶ𝑘ଵ ቇ 𝑞(𝑥, 𝑦, 𝜏)sin𝜔𝑑௠௡(𝑡 − 𝜏)቉ 𝑑𝜏. (23) 

Finally, the deflection solution of the governing Eq. (7) subjected to an arbitrary applied 
dynamic surface load 𝑞(𝑥, 𝑦, 𝑡) for 0 ≤ 𝑡 ≤ 𝑡଴ and 𝑡 > 𝑡଴ can be expressed as 

For 0 ≤ 𝑡 ≤ 𝑡଴:  
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𝑤(𝑥, 𝑦, 𝑡) = ෍ ෍ 𝑋௠௡(𝑥)𝑌௠௡(𝑦) න ቈ 𝜓𝑝ℎ𝑄௠௡ඥ1 − 𝜁ଶ𝜔௠௡
௧

଴
ஶ

௡ୀଵ
ஶ

௠ୀଵ න 𝑋௠௡(𝑥)𝑑𝑥௔
଴  

     · න 𝑌௠௡(௬)ௗ௬𝑒ି఍ఠ೘೙(೟షഓ)௕
଴ ቆ𝐺௦𝑘ଵ ቆ 𝜕ଶ𝜕𝑥ଶ + 𝜕ଶ𝜕𝑦ଶቇ 𝑘ଵ + 𝑘ଶ𝑘ଵ ቇ 𝑞(𝑥, 𝑦, 𝜏)sin𝜔𝑑௠௡(𝑡 − 𝜏)቉ 𝑑𝜏. (24) 

For 𝑡 > 𝑡଴: 𝑤(𝑥, 𝑦, 𝑡)=  ෍ ෍ 𝑒ି఍ఠ೘೙(௧ି௧బ)ஶ
௡ୀଵ

ஶ
௠ୀଵ ൤𝑤଴௠௡cosሼ𝜔𝑑௠௡(𝑡 − 𝑡଴)ሽ + 𝑣଴௠௡ + 𝜁𝑤଴௠௡𝜔𝑑௠௡ sin𝜔𝑑௠௡(𝑡 − 𝑡଴)൨. (25) 

In which 𝑤଴௠௡ and 𝑣଴௠௡ are the deflection and velocity at the time 𝑡 = 𝑡଴, respectively and 𝜔𝑑௠௡ = ඥ1 − 𝜍ଶ𝜔௠௡.is the damped vibration frequency of the orthotropic plate. 

6. Numerical examples 

Using the procedure described above, a rigid rectangular orthotropic plate doweled of road 
pavement subjected to dynamic traffic loads as shown in Fig. 1 is analyzed. The values of 
parameters which are used in the following examples are given as: 𝑎 =  5 m, 𝑏 =  3.5 m,  ℎ = 0.25 m, 𝐸௫ = 27×109 Pa, 𝐸௬ = 22.5×109 Pa, 𝜌 = 2.5×103 kg/m3, 𝜈௫ = 0.180, 𝜈௬ = 0.150, 𝑘𝑠௫ଵ = 𝑘𝑠௫ଶ = 𝑘𝑠௬ଵ = 𝑘𝑠௬ଶ =  150 MN/m/m, 𝑘𝑟௫ଵ = 𝑘𝑟௫ଶ = 𝑘𝑟௬ଵ = 𝑘𝑟௬ଶ =  1 N·m/rad/m. 
Three types of soil condition are considered in this work: soft soil 𝑘ଵ = 𝑘ଶ = 27.25 MN/m3,  𝐺௦ =  9.52 MN/m3; medium soil 𝑘ଵ = 𝑘ଶ =  54.4 MN/m3, 𝐺௦ =  19.04 MN/m3 and hard soil  𝑘ଵ = 𝑘ଶ = 108 MN/m3, 𝐺௦ = 38.08 MN/m3. These parameters are typical of the material and 
structural properties of a highway [19]. The traffic load magnitude is 𝑃଴ = 80×103 N and 𝛼 = 1/2. 
To calculate the influence of loading velocity to the dynamic behavior of the system, 𝑣 varies from 
50 km/hr to 300 km/hr. It is also assumed that damping ratio of the system equals 𝜁 = 5 %. To 
compare the dynamic deflections of the orthotropic plate between the Pasternak and the Kerr 
foundation models, the following soil parameters are used: 𝐺௦ = 9.52 MN/m3; 𝑘 = 27.25 MN/m3. 
All the dynamic response of the system is computed at 𝑡 = 1.5 s. This is the condition at which 
the dynamic moving load is within the plate region. 

6.1. Influence of the foundation types 

Time history of the dynamic deflection at the center of the plate 𝑤(𝑎 2⁄ , 𝑏 2⁄ ), is calculated 
and plotted for 𝑚 = 1, 2, 3, …, 5 and 𝑛 = 1, 2, 3, …, 4. It is found that the dynamic deflection of 
the system is initially high, with rapid oscillations and high amplitudes for all three types of soil 
conditions studied in this paper. This observation is in agreement with Gibigaye et al. in the design 
of pavement plates rest on a soil whose inertia is considered [17].  

Fig. 2(a) shows time histories of the system under dynamic moving load for soft soil and hard 
soil conditions of the Kerr foundation. The moving dynamic load is set to be 𝑣 = 60 km/hr and 
load frequency is 𝜔 = 100 rad/s. It is observed that the rapid oscillations occur at the moment of 
first loading and after the oscillations become stationary for two types of soil condition. In 
Fig. 2(a), it is also shown that the transient domain ends at around 𝑡 = 0.06 s and does not depend 
on the soil conditions. This trend was also observed in [17]. 

Fig. 2(b) shows the time history of the system supported by the Kerr foundation model and 
Pasternak foundation model. To generalize the Pasternak model, the Kerr model is introduced by 
adding a layer of spring on the shearing layer to eliminate the concentrated reactions that occurs 
along the free edges of a plate structure [13]. 
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a) Two soil conditions on Kerr foundation 

 
b) Kerr and Pasternak foundations 

Fig. 2. Time history of the system under dynamic moving load 

From Fig. 2(b), it is found that the maximum dynamic deflection of the system supported by 
the Kerr foundation is lower than the maximum dynamic deflection of the system on the Pasternak 
foundation model at the mid-span if calculated with the same parameters [20]. This result agrees 
with previous research done by Kneifati [13], where it was shown that the Kerr model is more 
accurate than the Pasternak models for the representation of the base response.  

6.2. Influence of moving load on the maximum dynamic deflection 

Fig. 3(a) depicts the maximum dynamic deflections of the plates which are subjected to a 
moving load with the harmonic load frequency is 𝜔 = 100 rad/s and soil condition is set to the 
parameter values for soft and medium soil conditions of the Kerr foundation. It can be observed 
that the speed of the dynamic load has an effect on the maximum lateral dynamic deflection. The 
maximum dynamic deflection at the lower value of foundation stiffness increases until about 𝑣 = 240 km/hr before decreasing. It shows that resonance conditions depend both on the speed of 
travel and the stiffness constants of the foundation. 

Fig. 3(b) illustrates the effects of load frequency on the maximum lateral deflection under 
moving load for soft soil and hard soil conditions. It can be seen that load frequency has effects 
on both the resonance frequency and the maximum lateral deflection. The resonance load 
frequency for soft soil condition is smaller than the value of resonance load frequency for the hard 
soil condition. 

 
a) Speeds at harmonic frequency (𝜔 = 100 rad/s) 

 
b) Load frequencies at moving load (𝑣 = 60 km/hr) 

Fig. 3. Maximum dynamic deflection of the rigid road pavement subjected to moving load 

7. Conclusions 

The responses behaviors of rigid road pavements that are subjected to dynamic moving loads 
with constant velocity have been investigated. The effects of moving velocity, load frequency and 
elastic foundation stiffness of the Kerr model are studied. The soil model used in this work is the 
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Kerr model; a proposed generality of the Pasternak model by the inclusion of a layer of springs 
on the shearing layer. Based on the orthogonality properties of the Eigen functions, the 
semi-analytical solution form of the dynamic displacement was obtained. In the formulation of 
this paper, it was assumed that the supports at the boundaries of the plate are due to the tie bars 
and steel dowels, providing the plate with vertical and rotational restraints. This assumption 
represents a realistic plate, especially for joints between the rigid pavement plates, in which 
rotation and vertical shear deformation are found along the joints. 

From these results, it is concluded the dynamic response and resonance velocity is significantly 
affected by the elastic foundation stiffness. When the rigid road pavement rests on a soft soil 
foundation, most of the pavement is affected by the loading while the resonance load frequency is 
small. From the obtained results, it is also concluded that the maximum dynamic deflection of the 
rigid road pavement on the Kerr model decreases significantly compared to that of Pasternak 
model. This result shows the possible economic gain of the Kerr model when it is used for 
representing the base response of the rigid road pavement. 
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