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Abstract. In this paper, considering the moment of inertia and shear deformation, the partial 
differential equation sets governing the vibration of viscoelastic Timoshenko beam subjected to 
random excitations were derived. The excitation form is the concentrated force, and its random 
characteristic is the ideal white noise in the time domain. Two damping mechanisms, namely, the 
external viscous damping and the internal viscoelastic damping (Kelvin-Voigt model), are both 
taken into account simultaneously. Comparing with the existing literature, there are two 
improvements: on the one hand, considering the interaction of the rotational inertia and shear 
deformation, that is, there is a fourth derivative term for time in the partial differential equation 
sets of Timoshenko beam, while the Bresse-Timoshenko truncated model ignores the fourth 
derivative term of time. On the other hand, by the method of residue integral, the infinite integral 
in the mean response is transformed into the expression of the modal damping ratio and the natural 
frequency. The exact solution of the mean square response is obtained in the form of an infinite 
series finally. Numerical example is supplied, and the numerical results acquired verify the 
validity of the theoretical analysis. 
Keywords: random vibration, cantilever beam, Kelvin-Voigt model, mean square response. 

1. Introduction 

Prior to the 1980s, only two scholars, Houdijk and Eringen [1, 2], had derived the 
closed-solution of the probabilistic characteristics of the response of finite-length beam. The 
former provided the closed-form solutions of the mean square displacement of the tip of a uniform 
cantilever Bernoulli-Euler beam under space- and time-wise ideal white noise. In this paper, only 
the transverse damping was taken into account. The latter deduced the closed expressions for the 
space-time correlation functions of the supported beam.  

After the 1980s, Elishakoff studied in detail the closed solution of the stochastic statistical 
properties of the finite length beams. In 1984, they studied the statistical characteristics of random 
vibrations of the Euler-Bernoulli simply supported beam under the different damping  
mechanisms, and founded that the displacement mean square response converges under the 
various damping mechanisms, while the stress mean square value does not converge when the 
rotational damping is considered [3]. In 1989, the former two experts used the truncated 
Bresse-Timoshenko simply supported beam as the research object, and derived the expressions of 
the mean square response of displacement and velocity [4]. In 2018, Hache and Elishakoff et al. 
studied further the critical comparisons of the exact solutions in random vibration of the supported 
beams using three versions of the Bresse-Timoshenko theory [5]. 

In this paper, the interactions of the moment of inertia and the shear deformation are  
considered, and the fourth derivative term of time in the governing equation of the Timoshenko 
beam is not ignored. Two types of damping mechanism, i.e. the external viscous damping and the 
internal viscoelastic damping, are both taken into account simultaneously. Both damping 
mechanisms are taken into account simultaneously, and this approach is more in line with 
objective reality. By using the residue integral method, the infinite integral in the mean square 
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response is transformed into the expression of the modal damping ratio and the natural frequency, 
and then the mean square response is expressed in the form of infinite series finally. The accuracy 
of the theoretical analysis is verified by providing a numerical example.  

2. Damping vibration theory 

2.1. Governing equations 

In this paper, the Kelvin-Voigt model is used to described the constitutive relation of material, 
and its expression is listed as follows: 𝜎 = 𝐸𝜀 + 𝜂𝜀, ,   𝜏 = 𝐺𝛾 + 𝜂2(1 + 𝜇) 𝛾, , (1) 

where 𝜎, 𝜏, 𝜀, 𝛾, 𝐸, 𝐺, 𝜇, 𝜂 are the normal stress, the shear stress of the material, the normal strain, 
the shear strain, the Young’s elastic modulus, the shear elastic modulus, the Poisson ratio and the 
Voigt damping coefficient respectively. 𝜀,  is the first derivative with respect to time, namely, the 
comma of the subscript indicates the partial derivative, and the letter followed by the comma 
denotes the partial derivative of the physical quantity represented by the letter. In this paper, the 
partial derivatives are all written in this form. 

A uniform cantilever beam of length 𝐿 is shown in Fig. 1. The beam is subjected to a lateral 
concentrated force 𝑃(𝑡) at a distance 𝑎. 

 
Fig. 1. A cantilever beam subjected to a concentrated force 𝑄, 𝑀 are the bending moment and the shear force at the microelement cross section severally. 

Based on the elementary deflection theory and the constitutive relation of materials Eq. (1), the 
expressions of the bending moment and the shear force can be obtained as: 𝑀 = 𝐸𝐼𝜑, + 𝜂𝐼𝜑, , (2) 𝑄 = 𝜅𝐴G 𝜑 − 𝑦, + 𝜅𝐴𝜂2(1 + 𝜇) 𝜑, − 𝑦, , (3) 

where 𝑦, 𝜑 denote the transverse displacement and the slope of the deflection curve respectively, 𝐴 – the section area, 𝜅 – the shear coefficient, 𝐼 – the moment of inertia of cross-section. 
In terms of the D’alembert principle, the differential equations of the viscoelastic Timoshenko 

beam subjected to a concentrated force can be deduced, as follows: 

⎩⎨
⎧𝜌𝐴𝑦, + 𝜅𝐴𝐺 𝜑, − 𝑦, + 𝑐 𝑦, + 𝜅𝐴𝜂2(1 + 𝜇) 𝜑, − 𝑦, − 𝑃𝛿(𝑥 − 𝑎) = 0,𝜌𝐼𝜑, + 𝜅𝐴𝐺 𝜑 − 𝑦, − 𝐸𝐼𝜑, + 𝑐 𝜑, − 𝜂𝐼𝜑, + 𝜅𝐴𝜂2(1 + 𝜇) 𝜑, − 𝑦, = 0. (4) 

2.2. Free vibration analysis  

When 𝜔 < 𝜅𝐴𝐺/𝜌𝐼 , the expressions of the displacement model function 𝑌(𝑥)  and the 
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rotation model function Φ(𝑥) can be written as [6]: 𝑌(𝑥) = 𝐶 cosh(𝜈𝑥) + 𝐶 sinh(𝜈𝑥) + 𝐶 cos(𝜆𝑥) + 𝐶 sin(𝜆𝑥), (5) Φ(𝑥) = 𝐷𝐶 sinh(𝜈𝑥) + 𝐷𝐶 cosh(𝜈𝑥) − 𝑊𝐶 sin(𝜆𝑥) + 𝑊𝐶 cos(𝜆𝑥), (6) 

where, 𝛼 = 𝜌𝐴𝜔 /𝐸𝐼, 𝑟 = 𝐼/𝐴, 𝛽 = 𝐸𝐼/𝜅𝐴𝐺, 𝜆 = 𝜈 + 𝛼 (𝑟 + 𝛽 ), 𝐷 = (𝜈 + 𝛼 𝛽 )/𝜈, 𝑊 = (𝜆 − 𝛼 𝛽 )/𝜆 , 2𝜈 = 𝛼 (𝑟 − 𝛽 ) + 4𝛼 − 𝛼 (𝑟 + 𝛽 ), 𝜔 – the natural frequency, 𝐶 (𝑗 = 1 − 4) = the integral constant and can be determined by boundary conditions. 𝑌(0) = Φ(0) = Φ, (𝐿) = Φ(𝐿) − 𝑌, (𝐿) = 0 are the boundary conditions of the cantilever 
beam, and substituting the expressions into Eqs. (5) and (6), the frequency equation of the 
cantilever beam is obtained as follows: 2 + 𝜗 cosh(𝜈𝐿)cos(𝜆𝐿) + 𝜗 sinh(𝜈𝐿)sin(𝜆𝐿) = 0, (7) 

where 𝜗 = 𝛼 (𝑟 + 𝛽 ) + 2, 𝜗 = −𝛼(𝑟 + 𝛽 )/ 1 − 𝛼 𝛽 𝑟 . 
From the literature [7], the orthogonal relations of the modal modes are gained: 

⎩⎪⎨
⎪⎧𝜌𝐴 𝑌 𝑌 𝑑𝑥 + 𝜌𝐼 Φ Φ 𝑑𝑥 = 𝑀 𝛿 ,

𝜅𝐺𝐴 Φ − 𝑌 , Φ − 𝑌 , 𝑑𝑥 + 𝐸𝐼 Φ , Φ , 𝑑𝑥 = 𝐾 𝛿 , (8) 

where, 𝑀  and 𝐾  are the 𝑖th main mass and stiffness, the symbol 𝛿 denotes the Dirac function and 
is consistent with the notation in Eq. (4). 

2.3. Forced vibration analysis  

The displacement function𝑦 and the deflection function 𝜑 are expanded to the infinite series 
according to the regular mode, 𝑦 = ∑ 𝑌 (𝑥)𝜓 (𝑡), 𝜑 = ∑ Φ (𝑥)𝜓 (𝑡). 𝜓 (𝑡) is the steady 
regular modal response. In the light of the orthogonal conditions in Eq. (8), the differential 
equations in Eq. (4) can be decoupled as follows: 𝜓′′ (𝑡) + 2𝜁 𝜔 𝜓′ (𝑡) + 𝜔 𝜓 (𝑡) = 𝐹 (𝑡), (9) 

where 𝐹 (𝑡) denotes the regular mode excitation, 𝜁  is the modal damping ratio. Their expressions 
can be deduced as: 

𝐹 (𝑡) = 𝑃(𝑡)𝛿(𝑥 − 𝑎)𝑌 (𝑥)𝑑𝑥 = 𝑃(𝑡)𝑌 (𝑎), (10) 

𝜁 = 𝑐 𝑌 (𝑥)𝑑𝑥 + 𝑐 Φ (𝑥)𝑑𝑥2𝜔 + 𝜂𝜔2𝐸 . (11) 

On the basis of the Duhamel integral [8], the transverse displacement solution in Eq. (4) can 
be derived as follows: 

𝑦 = 𝑌 (𝑥)𝜓 (𝑡) = 𝑌 (𝑥) 𝐹 (𝑡 − 𝜃)ℎ (𝜃)𝑑𝜃, (12) 

where ℎ (𝜃) denotes the 𝑖th unit impulse response function and its expression is: 
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ℎ (𝜃) = 0,   𝜃 < 0,𝑒𝜔 1 − 𝜁 sin𝜔 1 − 𝜁 𝜃,   𝜃 ≥ 0.  (13) 

Depending on Eq. (11), the value of the modal damping ratio increases with the growth of the 
modal order and the internal viscoelastic damping makes it happen. Because of the role of the 
internal damping, the higher order modal responses will attenuate faster, which lead to the infinite 
series in Eq. (12) converge faster.  

3. Random vibration theory 

In this paper, the applied load is the concentrated force, which is the ideal white noise in the 
time domain. For the sake of simplicity and universality, it is assumed that the mathematical 
expectation of the stochastic concentrated force excitation is zero, so does the random response 
for the linear system. 

3.1. Statistical characteristics of the concentrated force  

It is assumed that the autocorrelation function and the power spectral density function of the 
concentrated force excitation are 𝑅 (𝜏) and 𝑆 (𝜔), respectively. 

Make use of the stochastic process theory, combing with Eq. (10), it is easy to obtain the 
cross-correlation function 𝑅 (𝑡 , 𝑡 ) of the arbitrary regular mode excitation 𝐹 (𝑡 ) and 𝐹 (𝑡 ): 𝑅 (𝑡 , 𝑡 ) = 𝐸 𝐹 (𝑡 )𝐹 (𝑡 ) = 𝑌 (𝑎)𝑌 (𝑎)𝑅 (𝜏) = 𝑅 (𝜏),   𝑖, 𝑘 = 1,2,3. . . ,  (14) 

where the symbol 𝐸 represents the mathematical expectation. 𝜏 denotes the time interval. 
Applying the Fourier transform to Eq. (14), the cross-power spectral density function 𝑆 (𝜔) 

can be deduced as: 

𝑆 (𝜔) = 𝑅 (𝜏)𝑒 𝑑𝜏 = 𝑌 (𝑎)𝑌 (𝑎)𝑆 (𝜔). (15) 

3.2. Statistical characteristics of the transverse displacement response 

In the light of the mean square calculus, combing with Eq. (12) and Eq. (14), the 
autocorrelation function 𝑅 (𝑥, 𝜏) of the transverse displacement response can be acquired as: 

𝑅 (𝑥, 𝜏) = 𝑌 (𝑥) 𝑌 (𝑥) ℎ (𝜃 )ℎ (𝜃 )𝑅 (𝜏 + 𝜃 − 𝜃 )𝑑𝜃 𝑑𝜃
     = 𝑌 (𝑥) 𝑌 (𝑥)𝑌 (𝑎)𝑌 (𝑎) ℎ (𝜃 )ℎ (𝜃 )𝑅 (𝜏 + 𝜃 − 𝜃 )𝑑𝜃 𝑑𝜃 𝑅 (𝑥, 𝜏). (16) 

Applying the Fourier transform to Eq. (16), combing with Eq. (15), the power spectral function 𝑆 (𝑥, 𝜔) of the transverse displacement response can be derived as follows: 

𝑆 (𝑥, 𝜔) = 𝑅 (𝑥, 𝜏)𝑒 𝑑𝜏 = 𝑌 (𝑥)𝑌 (𝑎)𝑌 (𝑥)𝑌 (𝑎)𝐻 (−𝜔)𝐻 (𝜔) 𝑆 (𝜔), (17) 

where 𝐻 (𝜔) denotes the 𝑖th amplitude frequency response function and its expression is: 



MEAN SQUARE RESPONSES OF A VISCOELASTIC TIMOSHENKO CANTILEVER BEAM WITH DIFFERENT DAMPING MECHANISMS.  
QINGZHAO ZHOU, DAVID HE, ZHONGCHENG WU, YAPING ZHAO 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 21 

𝐻 (𝜔) = ℎ (𝜃) 𝑒 𝑑𝜃 = 1𝜔 − 𝜔 + 𝑗2𝜁 𝜔 𝜔. (18) 

On the basis of the stochastic process theory, if the mean square value exists, make use of 
Eq. (17), the mean square displacement, velocity and acceleration responses can be deduced as 
follows: 

⎩⎪⎪⎨
⎪⎪⎧Ψ (𝑥) = 12π 𝑌 (𝑥)𝑌 (𝑎)𝑌 (𝑥)𝑌 (𝑎) 𝐼 ,Ψ (𝑥) = 12π 𝑌 (𝑥)𝑌 (𝑎)𝑌 (𝑥)𝑌 (𝑎) 𝐼′ ,Ψ (𝑥) = 12π 𝑌 (𝑥)𝑌 (𝑎)𝑌 (𝑥)𝑌 (𝑎) 𝐼′′ , (19) 

where: 

𝐼 = 𝐻 (−𝜔)𝐻 (𝜔) 𝑆 (𝜔)𝑑𝜔,   𝐼 = 𝜔 𝐻 (−𝜔)𝐻 (𝜔) 𝑆 (𝜔)𝑑𝜔, 𝐼′′ = 𝜔 𝐻 (−𝜔)𝐻 (𝜔) 𝑆 (𝜔)𝑑𝜔.  

The bandwidth of the ideal white noise power spectral density function is spread all over the 
horizontal axis, and the infinite integral is converted into the expression of the natural frequency 
and the modal damping ratio by utilizing the residue integral theorem [9]. Their results are: 

𝐼 = 𝐻 (𝜔)𝐻 (−𝜔) 𝑆 (𝜔)𝑑𝜔 = 4𝜋(𝜔 𝜁 + 𝜔 𝜁 )𝑆𝑓(𝜔 , 𝜔 , 𝜁 , 𝜁 ) , (20) 𝐼′ = 𝜔 𝐻 (−𝜔)𝐻 (𝜔) 𝑆 (𝜔)𝑑𝜔 = 4𝜋𝜔 𝜔 (𝜔 𝜁 + 𝜔 𝜁 )𝑆𝑓(𝜔 , 𝜔 , 𝜁 , 𝜁 ) , (21) 

where 𝑓(𝜔 , 𝜔 , 𝜁 , 𝜁 ) = (𝜔 − 𝜔 ) + 4𝜔 𝜔 𝜔 𝜔 (𝜁 + 𝜁 ) + 𝜁 𝜁 (𝜔 + 𝜔 ) . 

4. Numerical example 

The material of the homogeneous cantilever beam is steel. The physical parameters are shown 
in Table 1, and the geometric parameters are shown in Table 2. 

Table 1. Physical parameters 𝐸 (GPa) 𝐺 (GPa) 𝜌 (kg/m3) 𝑐  (N·s/m) 𝐶  (N·s/rad) 𝜂 (Pa·s) 
206 80 7900 0.1 0.1 7×104 

Table 2. Geometric parameters 𝐿 (m) 𝐴 (m2) 𝐼 (m4) 
1 0.02 6.67×10-5 

where the section height = 0.2 m and the width = 0.1 m 

Table 3. Vibration parameters 
Vibration parameters First order Second order Third order Fourth order Fifth order 𝜔  (Hz) 160.02 862.63 2054.61 3412.96 4855.17 𝜁  0.002 0.013 0.032 0.053 0.076 𝐶  0.077 0.065 0.050 0.035 0.022 
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In terms of the theory of chapters 2 and 3, the natural frequency, the modal damping ratio and 
the integral constants can be obtained by calculation, and their results are shown in Table 3. 
However, it only shows the values of vibration parameters of the first five orders.  

According to Eq. (20) and (21), combing with 𝑖, 𝑘 = 5, the values of 𝐼  and 𝐼′  constitute 
severally a 5×5 real symmetric matrix, and the numerical results are as follows: 

𝐼 × = 10 × ⎣⎢⎢⎢
⎡0.2430 0.0041 0.0007 0.0002 0.00010.0041 0.0000 0.0000 0.0000 0.00000.0007 0.0000 0.0000 0.0000 0.00000.0002 0.0000 0.0000 0.0000 0.00000.0001 0.0000 0.0000 0.0000 0.0000⎦⎥⎥⎥

⎤, 
𝐼′ × = 10 × ⎣⎢⎢⎢

⎡0.2457 0.0081 0.0014 0.0005 0.00020.0081 0.0002 0.0000 0.0000 0.00000.0014 0.0000 0.0000 0.0000 0.00000.0005 0.0000 0.0000 0.0000 0.00000.0002 0.0000 0.0000 0.0000 0.0000⎦⎥⎥⎥
⎤.  

The numerical results show that, when 𝑖, 𝑘 = 1, the value in each matrix accounts for about 
95 % of the total value, indicating that the first-order mode has the greatest impact on the whole 
system. According to the values in each matrix, we can further reduce the index value of the 
infinite series in the mean square response, and take 𝑖, 𝑘 = 3 not 5. Hence, the values of 𝐼 ×  
and 𝐼′ ×  can be used as a basis for the truncation of the mode in random vibration. 

Assuming that a concentrated force is located at 𝑥 = 0.6𝐿, the power spectral density function 
of the acceleration response can be derived as 𝑆 (0.6𝐿, 𝜔) = 𝜔 𝑆 (0.6𝐿, 𝜔) in terms of Eq. (16). 
Let 𝑆 = 1 m2s, the graph of the power spectral density function of the acceleration response is 
shown in Fig. 3. There are three peaks in Fig. 3, respectively at the first three natural frequencies. 
The energy of the first mode is the largest, and far greater than the rest, which corresponding to 
the values of the matrix 𝐼 ×  and 𝐼′ × . As the modal order increases, the energy gradually 
decreases. 

The displacement square response under the concentrated force excitation of ideal white noise 
is drawn in Fig. 4. The mean square value of the displacement response varies monotonously along 
the length of the cantilever beam, and reaches the maximum at the free end. 

 
Fig. 3. Acceleration response spectrum 

 
Fig. 4. Displacement square response 

5. Conclusions 

In this paper, the random vibration characteristics of Timoshenko cantilever beam are studied. 
Considering the joint influence of the external viscous damping and the internal viscoelastic 
damping, two types of damping mechanism are introduced into the partial differential equations 
concurrently to make the damping mechanism more in line with the actual situation. 

Compared with the existing literature, in the process of calculating the mean-square response, 
the method of residue integral is used to transform the infinite integral in the mean square response 
into the expression of the modal damping ratio and the natural frequency, so as to obtain the exact 
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solution of the infinite series form of the mean square response. In addition, the numerical results 
of 𝐼 ×  and 𝐼′ ×  can be used as a basis for mode truncation. 

The numerical results show that with the growth of modal order, the modal damping ratio 
gradually increases, that is, the viscoelastic damping inhibits the response of higher order mode. 
The power spectrum of the acceleration response has obvious peak value at the natural frequency, 
and the maximum value of the displacement mean square response occurs at the free end. 
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