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Abstract. It is of significance to monitor the operating status of rolling bearings. In order to obtain 
degradation of bearing performance timely and predict its trend, this paper proposed a bearing 
health state assessment method based on Mahalanobis distance metric and a prediction method 
based on echo state network. By designing degradation experiment and applying the proposed 
method to analyze the data, the performance degradation curve of the bearing and its prediction 
curve were obtained, and the experimental results verified the effectiveness of the method. 
Keywords: rolling bearing, degradation assessment, trend prediction, Mahalanobis distance, echo 
state network. 

1. Introduction 

Rolling bearings are very common mechanical component part and key element of the 
mechanical equipment. The principal objective of a rolling bearing application is to support the 
load from rotating shaft and reduce friction between the rotor-stator. It plays an important role in 
a number of industrial applications [1]. When the rolling bearing has an initial failure, it is usually 
not necessary to stop the equipment for maintenance, but it is important to monitor its subsequent 
operating status. If the bearing is detected to be in a severe fault condition, the equipment needs 
to be shut down and the bearing replaced in time to prevent serious damage due to bearing failure. 
Therefore, exploring effective bearing performance degradation assessment methods can help 
reduce equipment downtime, and can avoid economic losses and catastrophic accidents caused by 
bearing failure [2]. 

Many researches have been done by scholars to study the problem of the rolling bearing’s 
degradation. In previous studies the authors have shown that SOM (Self-organizing Maps), GMM 
(Gaussian Mixture Model), etc., can identify the different working conditions of rolling bearings 
[3, 4]. Meanwhile, traditional ANN (Artificial Neutral Network), BP (Back Propagation) and 
Elman models have been widely used in the field of intelligent prediction of rotating machinery 
[5-7]. But some of the methods mentioned above are complex and time consuming, such as GMM, 
meanwhile, some are too simple to get approving results, like BP, etc. 

Applying the signal characteristics of rolling bearing degradation, in this paper, an approach 
for rolling bearing health assessment and life prediction, MD (Mahalanobis Distance)-ESN (Echo 
State Network), was proposed. The MD is a statistical distance that provides an indication of 
similarity or nearness between two sets of samples. What’s more, the MD is independent of the 
scale, considering the relationship between the data, and the corresponding weights can be 
automatically generated by the covariance, and the inverse is used to offset the weights [8]. We 
employ ESN on time series vibration signals of rolling bearing, which overcomes the problem that 
traditional ANN is easy to fall into local extreme value. Elman neural network and BP neural 
network both have the strong abilities of knowledge acquisition and fault tolerance, however, there 
are phenomena called over-fitting often occurred on these two methods. In addition, the physical 
meaning of traditional ANN prediction model is difficult to explain, and its training process and 
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time are long. The reasons above induct its poor generalization ability. Given the above, compared 
with these traditional artificial neural networks, ESN is improved in nonlinear system 
identification to an large extent [9].  

This paper is organized as follows. In Section 2, the combinatorial method of MD and ESN 
are presented. In Section 3, the bearing test data are taken from the Bearing Prognostics Simulator 
(BPS) and the proposed method meets the demand of prediction accuracy, robustness and 
effectiveness. General conclusions are illustrated in Section 4. 

2. Methodology 

For vibration signals, the flow path of proposed method was shown in Fig. 1, and it can be 
divided into two parts. 

Firstly, the vibration signal of the normal operation of the bearing and the vibration signal 
under the degraded state are obtained through the bearing degradation test. In order to construct a 
characteristic signal, the appropriate characteristics of the two vibration signals are extracted. 
Then Mahalanobis distance algorithm is employed to measure the distance of the two feature 
sequences. Finally, the obtained Mahalanobis distance is normalized to the confidence value, 
which means setting the CV value of the normal state to 1, and setting the state of unacceptable 
or repairable to 0. The normalized rule can be adjusted according to the actual situation. 

After that, using the performance degradation curve obtained by health assessment to train the 
ESN, then get the prediction curve, which characterizes the health trend of the bearing in the 
period ahead.  

Degenerative state 
vibration signal

Normal state 
vibration signal

Health assessment

Mahalanobis Distance
Confident

Value

Trend prediction

Echo State Network
Trend forecast 

curve
  Performance 

degradation curve

START

END

NormalizationFeature 
Extraction

 
Fig. 1. The procedure of the proposed methodology 

2.1. Health assessment by using MD 

The Mahalanobis distance is calculated as follows: 
(1) Calculate the average of each feature vector: 

𝑥̅௜ = ∑ 𝑥௜௝௡௝ୀଵ𝑛 . (1) 

(2) Calculate the standard deviation of each feature vector: 

𝑠௜ = ඨ∑ (𝑥௜௝ − 𝑥̅௜)ଶ௡௝ୀଵ𝑛 − 1 . (2) 

(3) The feature vector is orthogonal to get 𝑍௜௝, then transpose 𝑍௜௝: 
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𝑍௜௝ = ൫𝑥௜௝ − 𝑥̅௜൯𝑠௜ . (3) 

(4) Calculate the correlation matrix 𝐴: 

𝑎௜௝ = ∑ ൫𝑍௜௠𝑍௝௠൯௡௠ୀଵ𝑛 − 1 . (4) 

(5) The Mahalanobis distance is: 𝑀𝐷௝ = 𝑍௜௝୘ 𝐴ିଵ𝑍௜௝. (5) 

After getting the vibration signal by the sensor and extracting the feature, the characteristic 
points of the bearing under normal conditions are obtained. They are assumed to be 𝑁ଵ(𝛼ଵ, 𝛽ଵ, 𝛾ଵ), 𝑁ଶ(𝛼ଶ, 𝛽ଶ, 𝛾ଶ), …, 𝑁ଵଶ଴(𝛼ଵଶ଴, 𝛽ଵଶ଴, 𝛾ଵଶ଴). {𝑁ଵ, 𝑁ଶ, … , 𝑁ଵଶ଴} are applied to construct the Markov 
space on normal conditions as the basic standard of bearing health. 

Assuming that the bearing is in operation, we acquire a residual sequence randomly and extract 
the features. The feature points are 𝑋ଵ(𝛼ଵ, 𝛽ଵ, 𝛾ଵ), 𝑋ଶ(𝛼ଶ, 𝛽ଶ, 𝛾ଶ), …, 𝑋ଵଶ଴(𝛼ଵଶ଴, 𝛽ଵଶ଴, 𝛾ଵଶ଴), …, 𝑋ଵଶ଴(𝛼ଵଶ଴, 𝛽ଵଶ଴, 𝛾ଵଶ଴). The distances 𝑑ଵ, 𝑑ଶ,…, 𝑑ଵଶ଴ between the respective state points and the 
standard Markov space are sequentially calculated. 

The greater the Markov distance is, the farther the current feature point is from the normal 
Markov space, which proves that the bearing performance degradation is more serious. The 
smaller the Markov distance is, the closer the current feature point is to the normal Markov space, 
which denotes that the bearing is healthier. In order to indicate the current health of the bearing 
more intuitively, the Mahalanobis distance is normalized to Confidence Value (CV), namely, the 
bearing health assessment result is represented by CV. The larger the CV value is, the better the 
bearing performance is. When the CV value is close to 1, the bearing is generally considered to 
be operating under a completely normal state. The smaller the CV value is, the more serious the 
bearing performance degradation is. If the CV value is close to 0, it is generally considered that 
the bearing has a relatively high degree of failure and cannot continue to work. 

The normalized algorithm in this paper is as follows: 

𝐶𝑉௜ = 1 − arctan(𝑑௜ + 𝑎) − arctan(𝑎)𝜋2 − arctan(𝑎) , (6) 

where 𝑎  is the normalized parameter, and 𝑎  is set to a different parameter value, then the 
sensitivity of the corresponding CV value to the fault trend of different fault stages will change, 
so that the evaluation model is adjusted according to the actual situation and needs. 

After constructing the Markov space according to the data in the normal state of the bearing, 
the feature points in the state to be evaluated of the device are obtained. For each evaluation, only 
one calculation is needed to realize real-time evaluation, and finally the single evaluation result 
forms a CV value curve to describe the trend of deterioration of the bearing's health performance 
over a period of time. 

2.2. Performance degradation trend prediction by using ESN 

The ESN consists of three parts, which are respectively the input layer, the reserve pool, and 
the output layer. The input signal 𝑢(𝑘) is connected to the reserve pool via the input connection 
weight matrix 𝑊௜௡. There are many randomly distributed neurons in the reserve pool. The neuron 
nodes are interconnected via the internal connection weight matrix 𝑊௥௘௦, and the network output 𝑦(𝑘 − 1) feedback to the reserve pool via the feedback connection weight matrix 𝑊௕௔௖௞ , the 
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internal state vector 𝑥(𝑘) is composed of the output of the neuron, and 𝑥(𝑘) is connected to the 
output layer via the output connection weight matrix 𝑊௢௨௧ . In the ESN, only one output 
connection right of 𝑊௢௨௧ needs to be trained, and the training process is very simple, only a linear 
regression problem needs to be solved. 

In this paper, we assume that the ESN has 𝐿 input units, 𝑀 output units, and 𝑁 internal signal 
processing units. Then the input data unit 𝑢(𝑘), the output data unit 𝑦(𝑘), and the internal state 
variable 𝑥(𝑘) at the time 𝑘 are: 𝑢(𝑘) = ሾ𝑢ଵ(𝑘), 𝑢ଶ(𝑘), … , 𝑢௅(𝑘)ሿ், (7) 𝑦(𝑘) = ሾ𝑦ଵ(𝑘), 𝑦ଶ(𝑘), … , 𝑦ெ(𝑘)ሿ், (8) 𝑥(𝑘) = ሾ𝑥ଵ(𝑘), 𝑥ଶ(𝑘), … , 𝑥ே(𝑘)ሿ். (9) 

The internal state update equation of the reserve pool is as follows: 𝑥(𝑘 + 1) = 𝑓(𝑊௥௘௦𝑥(𝑘) + 𝑊௜௡𝑢(𝑘) + 𝑊௕௔௖௞𝑦(𝑘)). (10) 

3. Case study 

We employed the Bearing Prognostics Simulator of Beihang PHM Lab to conduct the test of 
bearing degradation, and the working condition was set to a constant speed of 2000 rpm. In 
addition, the test was set a constant load in order to shorten the time of bearing performance 
degradation. The vibration sensors were respectively attached to the vertical and horizontal 
directions of the bearing, and the sampling frequency was set to 10 KHz. As a consequence, the 
vibration data, which contained 520 K points each group (20 groups in total), were collected as 
data sources. 

 
a) 

 
b) 

Fig. 2. Bearing prognostics simulator and vibration signal diagram 

In order to facilitate the data analysis, taking comprehensive account of the rotational speed 
and the sampling frequency, we made the data 500 points per group and extracted the eigenvalue 
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time domain features to construct the eigenvectors of all the data. Using the non-degraded data as 
a normal reference, the calculated Mahalanobis distance was normalized to a CV value between 
0-1. The health assessment results based on Mahalanobis distance were shown in Fig. 3.  

 
Fig. 3. Bearing performance degradation curve 

As shown in Fig. 3, the bearing maintains a value of about 0.97 in the stably running stage, 
and as the bearing performance deteriorated, the bearing structure damage accumulates, the health 
was reduced to about 0.7 in a short period of time. The results of the health assessment showed 
that the proposed method can accurately characterize the bearing performance degradation. 

 
Fig. 4. Bearing prognostics simulator and vibration signal diagram 

The decay section in the CV curve obtained by the health assessment was regarded as a training 
sample of the ESN network. In order to verify the accuracy of the prediction, the first 70 % of the 
performance degradation curve was employed as a training sample, then the predicted curve was 
compared with the actual curve, as shown in Fig. 4. The MAPE (Mean Absolute Percentage Error) 
between the actual value and the predicted value was calculated, and the obtained MAPE value 
was about 14 %, which showed that the method had favorable accuracy. 

4. Conclusions 

In this paper, the health status assessment and performance degradation trend research were 
carried out for the problem of bearing performance degradation. The health assessment method 
based on Mahalanobis distance and the performance degradation trend prediction method based 
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on ESN were proposed, meanwhile, the experimental data were used to verify the effectiveness of 
the method. The results of case study indicated that the proposed method can accurately evaluate 
the health status of the bearing and predict the performance degradation state of the bearing. 
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