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Abstract. The correlation-extremum systems theory is extended to stochastic systems with 
random structure or with switching parameters and the new suboptimal (due to the nonlinear 
system state and measurement equations) filtering and parameter identification algorithms and 
their linearized form are derived, which provide adaptive features and reliable operation for the 
proposed combined correlation-extremum dynamic systems with random structure under 
environment influences, and represent new solutions of the linearization problem for the case of 
great estimation errors. The obtained linearized solution allows the simplification of the filter a 
priori performance investigation at the signal processing system design stage. 
Keywords: signal processing, estimation, identification, Markov processes, 
correlation-extremum methods, stochastic dynamic systems with random structure. 

1. Introduction 

The known nonlinear filtering algorithms (e.g., the extended Kalman filter (EKF) and the most 
extended versions) developed for nonlinear systems (in particular, this relates to the case of radar 
or optics tracking of an airborne target when the vehicle dynamics is described by nonlinear 
differential equations) are based on the assumption of linearization of the nonlinear functions in 
the state dynamics and measurements equations relative to estimation errors or about the current 
state estimate.  

These algorithms providing optimal or suboptimal (for nonlinear systems) estimates (e.g., least 
squares, the likelihood maximum or the a posteriori probability density maximum) remain true 
when the estimation errors are small enough to satisfy a linearization. At the same time, the normal 
conditional probability density exists in the case of grate estimation errors and is expanding with 
increasing variances. In this case, an application of the traditional linearization theory becomes 
incorrect. 

Among the previous work devoted to the linearization problem in the case of great estimation 
errors or great biases, one of the first approaches was taken in [1], where the two-feedback filtering 
system (with deterministic structure) with sequentially changing operating conditions depending 
on the estimation error value of the observable object coordinates was suggested, with introduction 
of a supplementary initial value bias as soon as the parameter estimate error exceeded the 
determined threshold value to describe the system motion with respect to a newly inserted position 
by a linear differential equation rather adequately.  

Linearization of equations is known as one of the causes of filter unstable behavior. The typical 
causes of the EKF diverge analyzed and generalized in [2] include: inaccuracy of process 
description for the state and measurements models, linearization of equations (polynomial 
simplifications (commonly second-order) to the equations of dynamics and measurement signal), 
the lack of full information on a real physical problem, simplifying assumptions providing 
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mathematical descriptions of a problem, errors connected with modelling of probabilistic 
characteristics of noises and unknown input signals. Furthermore, the filters instability may occur 
as a result of round-off errors which usually come into existence in digital modelling of filtering 
algorithms and which may result in the loss of the positive definiteness and symmetry of the 
estimates errors covariance matrix. 

The lack of stability and the possibility of the presence of a wide range of uncertain parameters 
values in the system and measurement models generate a necessity to use adaptive filtering 
algorithms and corresponding adaptive systems. 

Many scientific investigations have been already performed in the class of adaptive filtering 
scheme of the state vector estimation together with parameter identification using algorithms for 
both adaptive estimation and control, which represent a bank of elemental estimators with each 
matched to a possible parameter value (for example, [3-5]). In [4] a robust adaptive state-feedback 
control algorithm for a class of signal-input/signal-output uncertain nonlinear systems, affected 
both by uncertain time-varying parameters (with known bounds) and unknown time-varying 
bounded disturbances is proposed. Finite-dimensional filters for linear Gaussian state-space 
models derived in [5] can be used with the expectation maximization algorithm to yield maximum 
likelihood estimates of the model parameters with a possibility of parallel implementation on a 
multiprocessor system. 

Many authors (e.g., [6], [7]) applying EKFs to tracking problems (and one of the first Moura 
et al. [6]) have come to the conclusion that some problems of numerical ill-conditioning may arise 
in this approach if the ratio between the maximum and minimum eigenvalues of the covariance 
matrix is not enough small. To overcome this problem the use of an EKF with the square root 
algorithm combined with the a posteriori probability maximum techniques was proposed in [7]. 

Noise identification problem is an important part of adaptive estimation (especially, in 
maneuvering target tracking in measurement noise with rapidly varying statistics). In [8-10] the 
typically rapid changes of the background noises in comparison with rather slow changers of the 
actual target image (particularly, if a background is swept behind a moving target), are stated as a 
common problem in discriminating between target and background (e.g., infrared (IR)) intensity 
patterns. 

One of the earlier approaches to overcome a further restriction of the Kalman filtering 
algorithms (linear or suboptimal extended one) application connected with the fact of their 
capacity to process only time-varying signal functions, and  to process the spatial-time-varying 
(STV) signals such as two-dimensional IR (FLIR) target images through a combination of an  
enhanced correlator with a linear Kalman filter was considered in [8], and in the more resent work 
[9] a missile target tracker using a filter/correlator (with adaptive target shape identification) based 
on forward-looking FLIR sensor measurements to track the center-of-intensity of a 
hardbody/plume combination, and another filter using Doppler information  to receive smaller 
bias and error variance was designed.  

The design of a moving-bank of multiple model adaptive controller incorporating a parallel 
bank of Kalman filters (for linear system model, quadratic cost, and Gaussian noise models) 
controllers that provides a method to estimate a wide range of parameter variations and quells 
oscillations in structure is presented in [10]. For comparison, both a previously developed IR 
tracking algorithm based on an EKF and the method based on the reduced sufficient statistics are 
used to track a target through a sequence of IR images and are considered in [11]. 

There is a significant class of the filtering and identification problems of interest (certain of 
which are mentioned above), especially in tracking systems, such as the cases of great estimation 
errors, tracking interruption, abrupt increasing of the measurements noises, and jumping changes 
of the estimated process parameters (e.g., if a target exhibits considerably changing trajectory 
characteristics (to reflect them in dynamics model)), and etc., when the performance of EKF 
becomes unstable. 

The solution of the above-mentioned problems applied to the STV signals processing was 
originally proposed in [12] where the correlation-extremum systems theory was first extended to 
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systems with random structure  and the new suboptimal filtering algorithms were derived for the 
general case when the change of the structure is supposed to be governed by Markov process with 
a finite-dimensional set of states and for the case when the parameter changes form Markov 
process with two states. The last case is considered in this paper and the linearized solution of the 
proposed estimation algorithm is presented. 

In [12-15] the correlation-extremum methods were originally applied to signal processing for 
the systems with random structure, and the nonlinear estimation algorithms for measurement 
models described by STV signals in spatial-time-varying Gaussian white noise (STVGWN), and 
in spatial-time-varying Gaussian-Markov colored noise (STVGMCN) were deduced. 

To overcome the mentioned contradiction between the normal conditional probability density 
existence in the case of grate estimation errors and the incorrectness of the traditional linearization 
theory application, the theory of stochastic systems with random structure or with switching 
parameters and Markov processes has been originally extended to the correlation-extremum 
systems and the new algorithms have been derived which are under consideration in this work. 

The purpose of the present scientific investigation is the solutions of the problem of 
correlation-extremum signal processing algorithms synthesis and analysis for stochastic dynamic 
systems with random structure or with switching parameters with noise statistics identification, 
and their linearization which can provide the filter adaptive capability and assure the system 
operation under varying natural or/and artificial environment influences in a number of their 
possible civil and military areas of application. 

1.1. The estimation problem statement 

The problem under consideration is adaptive estimation for the dynamic state process model 
described by a stochastic nonlinear differential equation (Eq. (1)) [12-15]: 𝚲ሶ (𝑡) = 𝐅(௟)(𝚲, 𝐮, 𝑡) + 𝐖(௟)(𝑡) , 𝚲(𝑡଴) = 𝚲₀, (𝑙 = 1, p), (1) 

where 𝚲(𝑡) is the state vector (of dimension 𝑛, in general case), 𝚲 ∈ 𝑅௡ , which includes the 
random, unknown, and time-varying parameters vector 𝒂୘ = (𝑎ଵ, … , 𝑎௤), with initial Gaussian 
value 𝚲(𝑡଴) , 𝐅(௟)(𝚲, 𝐮, 𝑡)  is the nonlinear deterministic Lipschitz continuous vector function  𝐅(௟)(𝚲, 𝐮, 𝑡) = ฮ𝑓௜(௟)(𝚲, 𝐮, 𝑡)ฮ, (𝑖 = 1, 𝑛), 𝐮(𝑡) is the known control vector, which may be a 
function of the state vector estimates components, 𝑙(𝑡) is a stationary Markov process taking 
values in the set ሼ1,2, … , 𝑝ሽ (system mode index or number of the state). Here 𝐖(௟)(𝑡) is a vector 
process, 𝑾 ∈ 𝑅ௗ , of the state Gaussian white noise with a zero-mean 𝐸ൣ𝐖(௟)(𝑡)൧ = 0  and 
correlation matrix 𝐾௪(𝑡, 𝜏) = 𝐸 ቂ𝐖(௟)(𝑡)𝐖(௟)்(𝜏)ቃ = 𝐐(௟)(𝑡) 𝛿(𝑡 − 𝜏) , where 𝐐(௟)(𝑡)  is the 

diagonal intensity matrix 𝐐(௟)(𝑡) = ฮq௝(௟)(𝑡)ฮ,  (𝑗 = 1, 𝑑, 𝑑 ≤ 𝑛), 𝛿  is the delta function. The 

following notations are used: 𝐸[∙] denotes the expectation operator for stochastic processes; 𝐖(௟)் 
is a transposed vector for 𝐖(௟).  

The following measurement equation (Eq. (2)): 𝐫(𝑥, 𝑦, 𝑡) = 𝐒(௟)(𝑥, 𝑦, 𝚲, 𝑡) + 𝐍(௟)(𝑥, 𝑦, 𝑡), ൫ 𝑙 = 1, 𝑝൯, (2) 

describes the observable signal 𝐫(𝑥, 𝑦, 𝑡) as the spatial-time-varying process (of dimension 𝑚), 𝒓 ∈ 𝑅௠ , (𝑚 ≤ 𝑛) ,where  𝑥 , 𝑦 are the space variables – space coordinates at any point –  𝑥 ∈ 𝑋 = [𝑥଴, 𝑥௑], 𝑦 ∈ Y = [𝑦଴, 𝑦௒] , 𝑡 is the time variable 𝑡 ∈ 𝑇 = [𝑡଴, 𝑡்], 𝐒(௟)(𝑥, 𝑦, 𝚲, 𝑡) is the 
vector of STV signals of different physical nature, 𝐍(௟)(𝑥, 𝑦, 𝑡) is the measurements STVGWN 
with diagonal intensity matrix 𝐂଴(௟) and correlation function ℎ(௟)(Δ𝑥, Δ𝑦, Δ𝑡) = 𝐂଴(௟)𝛿(Δ𝑥, Δ𝑦, Δ𝑡). 
The state system noise and the measurements noise are assumed independent and temporally 
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uncorrelated. 
The Markov process describes the random changes of the structure with p -finite states and the 

transition intensities ν௝௟(𝑡) and ν௝(𝑡), where 𝑗, 𝑙 = 1, 𝑝. The system behavior and the features of 
the system may be explicated as follows. The system begins in a particular mode of operation, say 𝑙(𝑡) = 1, then at a random time the system jumps to one of the other (𝑝 − 1) possible modes of 
operation and may or may not remain in this state, and the dynamics differential equations 
corresponding to the different switch positions form the description of the system dynamics for 
each state. The transitions may occur from one state (or location) to another under varying and 
uncertain external conditions (e.g., when the process dynamics at a certain state would take the 
associated continuous state outside a distinct region of the state space), with Markov process 
models describing the continuous stochastic process of system (e.g., target) dynamics and digital 
process of the mode or structure changes.  

The nonlinear filtering or estimation problem described above by the system and measurement 
equations (Eq. (1-2)) is to determine the finite-dimensional dynamical system whose output is the 
best minimum variance estimate of the joint Markov process (𝚲(𝑡), 𝑙(𝑡))், for 𝑡 ≥ 0 given the 
STV observed data 𝒓(𝑥, 𝑦, 𝑡). 

1.2. The algorithms synthesis and linearization problem solution 

The STV signal processing algorithms synthesis and analysis problem solution [12-15] was 
built upon an integration of two theories – the correlation-extremum systems theory and the theory 
of stochastic systems with random structure, and was based on the generalized 
Fokker-Plank-Kolmogorov-Stratonovich differential equation for the evolution of joint 
conditional probability density function of the state dynamics 𝚲(𝑡) and the system structure 𝑙(𝑡) 
given the STV measurement data 𝒓(𝑥, 𝑦, 𝑡) , 𝜔(𝚲, 𝑙, 𝑡|𝒓(𝑥, 𝑦, 𝜏), 𝑡଴ ≤ 𝜏 ≤ 𝑡 ) = 𝜔ෝ(𝚲, 𝑙, 𝑡) =𝜔ෝ(௟)(𝚲, 𝑡) (with the initial value 𝜔(𝚲଴, 𝑡଴) of probability density of the state dynamics 𝚲 (𝑡଴)) (the 
sign ^ means the a posteriori function value). 

The a posteriori probability density ωෝ(𝚲, 𝑡) for the whole dynamics process is determined by 
the following expression (Eq. (3)): 

𝜔ෝ(𝚲, 𝑡) =  ෍ 𝑃෠௟ (𝑡)௣
௟ୀଵ 𝜔ෝ(௟)(𝚲, 𝑡), (3) 

where 𝑃෠௟ (𝑡) is the a posteriori probability of the 𝑙th state, whose evolution is defined by the state 
probability estimate differential equations (Eq. (4)) (or discrete (for a discrete problem statement)), 
the presence of which in the filtering and identification algorithms and the relation between them 
form the main distinguishing properties of signal processing in systems with the random structure 
[12, 13, 15]: 𝑑𝑃෠௟(𝑡)𝑑𝑡 = −𝜈௟(𝑡)𝑃෠௟(𝑡) + ෍ 𝜈௝௟(𝑡)௣

௝ୀଵ(௝ஷ௟) 𝑃෠௝(𝑡) 
     + 12 𝑃෠௟(𝑡) ൝ න ℱ(௟)(𝒛, 𝑟, 𝑡)𝜔ෝ(௟)(𝒛, 𝑡)𝑑𝒛ஶ

ିஶ − ෍ 𝑃෠௞(𝑡)௣
௞ୀଵ න ℱ(௞)(𝒛, 𝑟, 𝑡)𝜔ෝ(௞)(𝒛, 𝑡)𝑑𝒛ஶ

ିஶ  ൡ, (4) 

where  𝑙 = 1, 𝑝 , ℱ(௟)(𝚲, 𝐫, 𝑡) is the derivative of the likelihood function logarithm in the 𝑙th state 
(𝑧 is the variable, 𝑧 ∈ 𝚲). The a priori state probabilities 𝑃௟(𝑡) can be found using the known 
Kolmogorov equations. 

All processes are defined on the probability space (Ω, ℱ, 𝑃෨), where ሼ𝑃෨ఒ., 𝜆 ∈ 𝚲ሽ is a family of 
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probability measures on (Ω, ℱ) which are absolutely continuous with respect to a fixed probability 
measure 𝑃෨଴, with the corresponding 𝜎-algebra ℱ. The likelihood function 𝐿௙(𝚲) for obtaining the 
estimate 𝚲 ෡  of the state process 𝚲 (including parameters) is based on the information contained in 
STV measurements 𝒓(𝑥, 𝑦, 𝜏), 𝑡଴ ≤ 𝜏 ≤ 𝑡, and both are defined by the expressions: 

𝐿௙(𝚲) = 𝐸 ቈ𝑑𝑃෨ఒ.𝑑𝑃෨଴ |𝒓(𝑥, 𝑦, 𝜏), 𝑡଴ ≤ 𝜏 ≤ 𝑡቉,  

(the relationship between the likelihood function and the Radon-Nikodym derivative), and  𝚲෡ ∈ argmax஛ ∈𝚲 𝐿௙(𝚲). To determine the function ℱ(௟)(𝚲, 𝐫, 𝑡) it is necessary to know the likelihood 

functional for the measurements additive STVGWN 𝐍(௟)(𝑥, 𝑦, 𝑡). The conditional probability 
density 𝜔(𝒓(𝑥, 𝑦, 𝜏)|𝚲, 𝑙, 𝜏, 𝑡଴ ≤ 𝜏 ≤ 𝑡)  called likelihood function 𝐿௙(𝚲, 𝑙) = 𝐿௙(௟)(𝚲)  (as a 
function of 𝚲 and 𝑙 (for systems with random structure)) is indubitably normal for a linear system. 
In the case under consideration the measurement 𝒓(𝑥, 𝑦, 𝜏) is the sum of the normal random 
process 𝐍(௟)(𝑥, 𝑦, 𝜏)  and the deterministic signal function 𝐒(௟)(𝑥, 𝑦, 𝚲, 𝜏)  (or may be random 
signal function depending on Gaussian value 𝚲(𝜏)) (for example, when the target intensity pattern 
is modeled by a Gaussian function). 

Denote the limit of the conditional probability density 𝜔(𝒓(𝑥, 𝑦, 𝜏)|𝚲, 𝑙, 𝜏, 𝑡଴ ≤ 𝜏 ≤ 𝑡)  by 𝐿(௟)(𝚲): 𝐿(௟)(𝚲) = lim∆௧→଴∆௫→଴∆௬→଴ 𝜔(𝒓(𝑥, 𝑦, 𝜏) |𝚲, 𝑙, 𝜏,   𝑡଴ ≤ 𝜏 ≤ 𝑡). 
 

The principle of the likelihood functional 𝐿(௟)(𝚲) maximum for the STVGWN 𝐍(௟)(𝑥, 𝑦, 𝑡) 
with the spectral density matrix 𝐂଴(௟) is first extended in this research to the systems with random 
structure in the form (Eq. (5)): 

𝐿(௟)(𝚲) = 𝑐(௟)exp ቐ− 12 ම ൣ𝐫(𝑥, 𝑦, 𝑡) − 𝐒(௟)(𝑥, 𝑦, 𝚲, 𝑡)൧୘𝐂଴(௟)ିଵൣ𝐫(𝑥, 𝑦, 𝑡) − 𝐒(௟)(𝑥, 𝑦, 𝚲, 𝑡)൧௑ ௒ ்
ି௑ ି௒ ଴ 𝑑𝑥𝑑𝑦𝑑𝑡ቑ,  ൫𝑙 = 1, 𝑝൯, (5)

where 𝑐(௟) is a value depending on 𝐂଴(௟); 𝑋, 𝑌 and 𝑇 are the spatial and time limits of integration 
(or spatial and time domains of observation). 

The suboptimal estimate 𝚲෡(𝑡) of the state dynamics Markov process 𝚲(𝑡) on the assumption 
of mean square loss function is the conditional mathematical expectation. The optimal estimate of 
discrete process 𝑙(𝑡) by the a posteriori probability criterion will be such a value of 𝑙 that makes 
the value of the a posteriori probability 𝑃෠௟(𝑡) maximum. 

The suboptimal (due to nonlinearities) estimate of the state is 𝚲෡(𝑡) = ∑ 𝑃෠௟(𝑡)௣௟ୀଵ 𝚲෡(௟)(𝑡). 
The signal position on the image plane 𝑋𝑂𝑌 (for example, the FLIR image plane) can be 

determined by parameters vector: λ௫(𝑡) = 𝜑௫(𝚲, 𝑡), 𝜆௬(𝑡) = 𝜑௬(𝚲, 𝑡) (whose dynamics defines 
the target intensity pattern on image plane). Then the signal 𝐒(௟)(𝑥, 𝑦, 𝚲, 𝑡) may be represented as 
a function 𝐒(௟)(𝑥, 𝑦, 𝚲, 𝑡) = 𝐒(௟)൫𝑥 − 𝜆௫, 𝑦 − 𝜆௬, 𝑡൯ . In this case the suboptimal estimator is 
defined as a tracker system. Assuming that the signal or image position along one of the axes (e.g., 
in 𝑦 direction) is known, to simplify the derivation, and denoting the STV signal 𝐒(௟)(𝑥, 𝚲, 𝑡) =𝐒(௟)(𝑥 − 𝜆௫, 𝑡) , and the state parameter 𝜆௫  without index 𝜆௫ = 𝜆. , the measurement equation 
(Eq. (2)) becomes: 𝐫(𝑥, 𝑡) = 𝐒(௟)(𝑥 − 𝜆. , 𝑡) + 𝐍(௟)(𝑥, 𝑡). 

For the case when the changes of the structure and corresponding parameters form Markov 
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process with two states (𝑙 = 1,2) and the transition intensity ν(𝑡) the nonlinear filtering problem 
solution for correlation-extremum systems with random structure derived in [12, 13] is presented 
by the following correlation-extremum algorithms (Eq. (6-9)). 

The differential Eq. (6) for the a posteriori probabilities of state P෡௟(𝑡) is presented below: 𝑑𝑃෠ଵ(𝑡)𝑑𝑡 = − ൝𝜈 − 1 − 𝑃෠ଵ(𝑡)𝐶௑(ଵ) ቈ𝑘ଵ + 𝐵(ଵ)൫Δ𝜆(ଵ)൯ + 12 𝜎(ଵ)ଶ (𝑡) 𝜕ଶ𝐵(ଵ)൫Δ𝜆(ଵ)൯𝜕Δ𝜆(ଵ)ଶ ቉ൡ 𝑃෠ଵ(𝑡) + 

      + ൝𝜈 − 𝑃෠ଵ(𝑡)𝐶௑(ଶ) ቈ𝑘ଶ + 𝐵(ଶ)൫Δ𝜆(ଶ)൯ + 12 𝜎(ଶ)ଶ (𝑡) 𝜕ଶ𝐵(ଶ)൫Δ𝜆(ଶ)൯𝜕Δ𝜆(ଶ)ଶ ቉ൡ ൣ1 − 𝑃෠ଵ(𝑡)൧, (6) 

𝑃෠ଶ(𝑡) = 1 − 𝑃෠ଵ(𝑡), where 𝑃෠ଶ(𝑡) is the a posteriori probability of the second state, Δλ(௟)(𝑡) is the 
state estimate error 𝛥𝜆(௟)(𝑡) = 𝜆(𝑡) − 𝜆መ(௟)(𝑡), 𝑙 = 1,2; 𝜎(௟)ଶ (𝑡) is the variance of the a posteriori 
probability density function 𝜎(௟)ଶ (𝑡) = 〈[(𝜆(𝑡) − 𝜆መ(௟)(𝑡)]ଶ〉, 𝑙 = 1,2; 𝐵(௟)൫𝛥𝜆(௟), 𝑡൯ is the spatial 
correlation function in the 𝑙th state 𝐵(௟)൫𝛥𝜆(௟), 𝑡൯ = 〈𝐒(௟)்൫𝑥 − 𝜆መ(௟), 𝑡൯𝐒(௟)(𝑥 − 𝜆, 𝑡)〉, (or for the 
scalar measurement: 𝐵(௟)൫𝛥𝜆(௟), 𝑡൯ = 〈𝑆(௟)൫𝑥 − 𝜆መ(௟), 𝑡൯𝑆(௟)(𝑥 − 𝜆, 𝑡)〉); C௑(௟) is the specific spectral 
intensity of the STVGWN 𝐍(௟)(𝑥, 𝑡) in the 𝑙th state: 𝐶௑(௟) = 𝐶଴(௟) 𝑋⁄ . 

The derivation of the equations Eq. (6) assumes that the parameters are considered as 
“unpowered” (the term well known in the signal processing theory, first applied in radar signal 
processing), which is to say that the integrals ׬ [𝑆(௟)൫𝑥 − 𝜆መ(௟), 𝑡൯]ଶ𝑑𝑥௑–௑  (representing the signal 
power) and ׬ 𝑟ଶ(𝑥, 𝑡)𝑑𝑥௑ି௑  (which are explicitly independent of the estimated parameter), may be 
taken into account in the coefficients 𝑘ଵ and 𝑘ଶ. A further assumption in the algorithms synthesis 
is that the integral limits X and Y are vastly larger than the signal correlation intervals  (𝑋 ≫ ∆௑௖௢௥, 𝑌 ≫ ∆௒௖௢௥). 

The state estimate equation (Eq. (7)) has been derived in the form: 𝑑𝜆መ(௟)(𝑡)𝑑𝑡 = 𝑓(௟)൫𝜆መ(௟), 𝑢, 𝑡൯ − 𝜎(௟)ଶ (𝑡)𝐶௑(௟) 𝜕𝐵(௟)൫𝛥𝜆(௟), 𝑡൯𝜕𝛥𝜆(௟) + 𝜎(௟)ଶ (𝑡)𝐶଴(௟) 𝑁௑(௟) + 𝜈 𝑃෠௝(𝑡)𝑃෠௟(𝑡) ൣ𝜆መ(௟)(𝑡) − 𝜆መ(௝)(𝑡)൧, 𝜆መ(௟)(𝑡଴) = 𝜆መ଴(௟), (𝑙, 𝑗 = 1,2; 𝑗 ≠ 𝑙), (7) 

where 𝑁௑(௟) = ׬ డ𝐒(೗)೅൫௫–ఒ෡(೗),௧൯డఒ෡(೗)௑ି௑ 𝐍(௟)(𝑥, 𝑡)𝑑𝑥  (As it is known from the signal theory, the 
measurements signals and noises in many cases are (or are assumed to be) uncorrelated). The 
suboptimal state estimate of the whole process (for two states) can be obtained by using a weighted 
sum: 𝜆መ(𝑡) = 𝑃෠ଵ(𝑡)𝜆መ(ଵ)(𝑡) + 𝑃෠ଶ(𝑡)𝜆መ(ଶ)(𝑡). 

The variance differential equation is presented below: 𝑑𝜎(௟)ଶ (𝑡)𝑑𝑡 = 2𝜎(௟)ଶ (𝑡) 𝜕𝑓(௟)൫𝜆መ(௟), 𝑢, 𝑡൯𝜕𝜆መ(௟) + 𝜎(௟)ସ (𝑡)𝐶௑(௟) 𝜕ଶ𝐵(௟)൫𝛥𝜆(௟)൯𝜕𝛥𝜆(௟)ଶ + 𝑞(௟)(𝑡) 
      +𝜈 𝑃෠௝(𝑡)𝑃෠௟(𝑡) ൤𝜎(௃)ଶ (𝑡) − 𝜎(௟)ଶ (𝑡) + ቀ𝜆መ(௝)(𝑡) − 𝜆መ(௟)(𝑡)ቁଶ൨ , 𝜎(௟)ଶ (𝑡଴), ൫𝑙, 𝑗 = 1,2; 𝑗 ≠ 𝑙൯, (8) 

and the estimate error variance for the whole process is: 𝜎ଶ(𝑡) = 𝑃෠ଵ(𝑡)𝜎(ଵ)ଶ (𝑡) + 𝑃෠ଶ(𝑡)𝜎(ଶ)ଶ (𝑡). 
The suboptimal (due to nonlinearities) estimate 𝜆መ(𝑡)  and covariance 𝜎ଶ(𝑡)  for the whole 

process represent weighted sums, where the 𝑙 th weighting factor 𝑃෠௟(𝑡) is the a posteriori 𝑙 th 
hypothesis conditioned probability. 

In this paper the spatial-time-varying filtering in systems with random structure with changing 
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noise statistics (intensities) (as well as other characteristics) for each state is proposed. For this 
noise intensity identification problem the suboptimal estimate (in the minimum mean square error 
sense) of the measurement noise intensity 𝐶଴ (considering as a time-varying parameter) at a given 
time 𝑡௜ can be obtained from the following conditional mean value Eq. (9) (originally presented 
in this paper for spatial-time varying signal processing):  

𝐶መ଴(𝑡௜) = 𝐸[𝐶଴(𝑡௜)|𝐫(𝑥, 𝑦, 𝑡௜) = 𝐫௜] = ෍ 𝐸[𝐶଴(𝑡௜)|𝐫௜, 𝑙][𝑃௟(𝑡௜)௣
௟ୀଵ |𝐫௜] = ෍ 𝐶መ଴(௟)௣

௟ୀଵ 𝑃෠௟(𝑡௜), (9) 

where 𝑃௟(𝑡௜)|𝒓௜ is the conditional probability of the state or mode 𝑙, conditioned on the observed 
measurements to time 𝑡௜, (e.g., for two states (or structures) two STVGWN models can be used 
with different intensity levels corresponding to the lower and upper statistics bounds). The spectral 
densities may be treated for the case of stationary measurements noise 𝐂଴(௟), and for the case of 
nonstationary noise 𝐂଴(௟)(𝑡) depending on some of the state vector components or parameters (e.g., 
[13]).  

Spatial-time-varying filtering in STVGMCN, proposed in [15] may also be useful to 
discriminate between target (or another object) and background intensity patterns. 

The filtering algorithm (Eq. (6-8)) is composed of two separate estimators processing the STV 
signals or images in parallel and exchanging information according to the state estimate equation 
(Eq. (7)). The signals of different nature fields are used to compute the a posteriori probabilities 𝑃෠௟(𝑡) via Eq. (6). The suboptimal parameter estimate λ෠(𝑡) corresponds to the maximum value of 
the cross-correlation function of the reference and received STV signals, when Δλ(௟)(𝑡) = 0. 

The proposed algorithms (Eq. (6-9)) can be applied to the solution of the linearization problem 
in the case of great estimation errors. The fundamental difference between the approaches taken 
in [1] and in the present work lies in the first application of the systems with random structure 
theory here to STV signal processing. 

In this paper the following new linearized correlation-extremum algorithms for systems with 
random structure have been derived (Eqs. (10-12)) using the Taylor series expansion 1) of the 
cross-correlation function 𝐵(௟)൫Δλ(௟)൯, and 2) of the cross-correlation function second derivative   డమ஻(೗)൫୼ఒ(೗)൯డ୼ఒ(೗)మ , taking into account the features of the singular processes ( 𝐵ᇱ(௟)(0) = 0 , and 𝐵ᇱᇱ(௟)(0) < 0), to simplify the study of the a posteriori probabilities functions 𝑃෠௟(𝑡) behavior. 

The equations for the a posteriori probabilities of state may be defined as: 𝑑𝑃෠ଵ(𝑡)𝑑𝑡  = − ൝𝜈 − 1 − 𝑃෠ଵ(𝑡) 𝐶௑(ଵ) ൥𝑘ଵ + 𝐵(ଵ)(0) − 12 𝜕ଶ𝐵(ଵ)൫Δ𝜆(ଵ)൯𝜕Δ𝜆(ଵ)ଶ |୼ఒ(భ)ୀ଴ ቀΔ𝜆(ଵ)ଶ − 𝜎(ଵ)ଶ (𝑡)ቁ൩ൡ 𝑃෠ଵ(𝑡) 
      + ൝𝜈 − 𝑃෠ଵ(𝑡)𝐶௑(ଶ) ൥𝑘ଶ + 𝐵(ଶ)(0) − 12 𝜕ଶ𝐵(ଶ)൫Δ𝜆(ଶ)൯𝜕Δ𝜆(ଶ)ଶ   |୼ఒ(మ)ୀ଴ ቀΔ𝜆(ଶ)ଶ − 𝜎(ଶ)ଶ (𝑡)ቁ൩ൡ ൣ1 − 𝑃෠ଵ(𝑡)൧, 𝑃෠ଶ(𝑡) = 1 − 𝑃෠ଵ(𝑡). 

(10) 

The linearization of the state estimate equation (Eq. (7)) has been obtained by 1) applying the 
series approximation to 𝑓൫𝜆መ(௟), 𝑢, 𝑡൯, and 2) the series approximation  of the spatial correlation 

function derivatives 
డ஻(೗)൫୼ఒ(೗),௧൯డ୼ఒ(೗) , in the form:  
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𝑑𝜆መ(௟)(𝑡)𝑑𝑡 = 𝑓(௟)൫𝜆መ(௟), 𝑢, 𝑡൯ + 12 𝜕ଶ𝑓(௟)൫𝜆መ(௟), 𝑢, 𝑡൯ൣ𝜕𝜆መ(௟)൧ଶ 𝜎(௟)ଶ (𝑡) 

      − 𝜎(௟)ଶ (𝑡)𝐶௑(௟) ൥𝜕𝐵(௟)൫Δ𝜆(௟), 𝑡൯𝜕Δ𝜆(௟)|୼ఒ(೗)ୀ଴ + 𝜕ଶ𝐵(௟)൫Δ𝜆(௟)൯𝜕Δ𝜆(௟)ଶ |୼ఒ(೗)ୀ଴ Δ𝜆(௟)൩ 
      + 𝜎(௟)ଶ (𝑡)𝐶଴(௟) 𝑁௑(௟) + 𝜈 𝑃෠௝(𝑡)𝑃෠௟(𝑡) ൣ𝜆መ(௟)(𝑡) − 𝜆መ(௝)(𝑡)൧, 𝜆መ(௟)(𝑡଴) = 𝜆መ଴(௟), ൫𝑙, 𝑗 = 1,2; 𝑗 ≠ 𝑙൯. 

(11) 

For the whole process the suboptimal state estimate is: 𝜆መ(𝑡) = 𝑃෠ଵ(𝑡)𝜆መ(ଵ)(𝑡) + 𝑃෠ଶ(𝑡)𝜆መ(ଶ)(𝑡). 
The variance equation (the Riccati-type one) with linearized functions is: 𝑑𝜎(௟)ଶ (𝑡)𝑑𝑡 = 2𝜎(௟)ଶ (𝑡) 𝜕𝑓(௟)൫𝜆መ(௟), 𝑢, 𝑡൯𝜕𝜆መ(௟) + 𝜎(௟)ସ (𝑡)𝐶௑(௟) ൥𝜕ଶ𝐵(௟)൫Δ𝜆(௟)൯𝜕𝛥𝜆(௟)ଶ |୼ఒ(೗)ୀ଴ + 𝜕ଷ𝐵(௟)൫Δ𝜆(௟)൯𝜕Δ𝜆(௟)ଷ |୼ఒ(೗)ୀ଴ Δ𝜆(௟)൩ 

      +𝑞(௟)(𝑡) + 𝜈 𝑃෠௝(𝑡)𝑃෠௟(𝑡) ൤𝜎(௃)ଶ (𝑡) − 𝜎(௟)ଶ (𝑡) + ቀ𝜆መ(௝)(𝑡) − 𝜆መ(௟)(𝑡)ቁଶ൨ , 𝜎(௟)ଶ (𝑡଴), ൫𝑙, 𝑗 = 1,2൯, (12) 

and for the whole process the estimate error variance: 𝜎ଶ(𝑡) = 𝑃෠ଵ(𝑡)𝜎(ଵ)ଶ (𝑡) + 𝑃෠ଶ(𝑡)𝜎(ଶ)ଶ (𝑡). As a 
remark: for quasi-singular processes the first derivative of the cross-correlation function of zero 
is not equal to zero (𝐵ᇱ(௟)(0) ≠ 0), therefore the linearized algorithms equations will contain the 
terms with the first derivative of the cross-correlation function. In a nonlinear estimator for every Δ𝜆(௟)  it is necessary to know the correlation function derivatives, but using the series 
approximation, the value of డమ஻(క)డకమ|഍సబ can be interpreted as a constant coefficient. The linearized 

estimate equations (Eq. (11)) define the filtering scheme as the two-states (or two-channels) 
tracking system, which changes its threshold according to linearized Eq. (10). 

For the class of tracking systems an adaptation mechanism of the proposed estimation 
algorithms represents an effective means of adaptive switching (expansion and contraction) of the 
effective field of view of a radar tracker or an optics (IR image) tracker, and ensures the system 
operation, particularly, for a wide dynamic range of target maneuvers. 

The variance equations (nonlinear and the linearized one) represent the new Riccati-type 
differential equations first obtained for STV signal processing in STVGWN for systems with 
random structure (with cross correlation functions (and their derivatives) in the nonlinear term). 

The adaptive filtering algorithms (nonlinear and the linearized ones) for correlation-extremum 
systems with random structure 1) for estimation of signal position along the axis 𝑦, and 2) for both 
components of the state vector 𝜆௫(𝑡) and 𝜆௬(𝑡) have been derived. 

The application of the proposed correlation-extremum filtering algorithms to the systems with 
interrupted signal information (the filtering problem with observation process feedback adaptive 
control) has been investigated and the new appropriate filters have been derived for the cases of 
estimation problem with unobservable moments of changing structure, and for a special case of 
estimation with the known moments of changing structure. 

2. Conclusions 

The proposed correlation-extremum filtering and identification algorithms (nonlinear and the 
linearized one) including the differential equations for the a posteriori probabilities of states, the 
state estimates, and the variances are derived for stochastic dynamic systems with random 
structure for the adaptive estimation problem, when the system state and  parameter models are 
described by Markov processes, and the measurements are the nonlinear STV signals of different 
physical nature fields against a background of the additive STVGWN, whose intensity 
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identification a) is first obtained 1) for STV signal processing 2) in systems with random structure, 
and b) reflects more adequately the true noise statistics existing in real external conditions. 

The adaptation mechanism of the systems with random structure coupled with the correlation-
extremum signal processing techniques yields the advantages of the combined system based on 
both performance attributes (robust properties) and computational loading taking into account the 
recent increases in processor speeds. 

The derived algorithms (nonlinear and the linearized one) 1) represent new solutions of the 
linearization problem in the class of recursive filters for stochastic dynamic  systems, and 2) 
provide the estimator adaptive capability (e.g., for the cases of great estimation errors, tracking 
interruption, abrupt increasing of the measurements noises, and jumping changes of the estimated 
process parameters with a capacity to change a) filter gains (first as an analytical functions (not as 
an experimentally modified values)) without necessity in artificial or experimental tuning the gain 
matrix, and b) field of view (for tracking systems) rapidly and effectively due to the  preference 
of the combined correlation-extremum system with random structure versus nonlinear filters in 
systems with a deterministic structure. 

The proposed STV signal processing algorithms in comparison with the traditional estimation 
algorithms first show a relationship between the a posteriori probability density maximum 
criterion, the likelihood maximum criterion, the covariance matrix minimum criterion, and the 
cross-correlation function maximum criterion. 

The possible civil and military areas of application of the derived STV signal processing 
algorithms involve, in particular complex stochastic dynamic systems, such as tracking, 
navigation systems, robotics equipped with image sensors (e.g., radar, digital, optics, and etc.) 
using the STV signals of different nature fields. 
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