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Abstract. In order to reveal synchronization characteristics of a weakly damped system with two 
rotors mounted on different vibrating bodies, we propose a simplified physical model. Vibration 
of the system is discussed by the average method, which can separate fast motions (high 
frequency) from slow motions (low frequency). Theoretical research shows that vibration torque 
is the key factor to balance the energy distribution between rotors. For the system with rotational 
frequencies larger than the nature frequencies, the coupling characteristic frequency or 
characteristic frequency curve should be considered. As the coupling frequency is close to the 
characteristic frequency, or the vibration state is close to the characteristic frequency curve, 
self-synchronization of two rotors can be obtained easily. 
Keywords: rotor, exciter, self-synchronization, simulation, vibration synchronization. 

1. Introduction 

The so-called self-synchronization phenomenon corresponds to the consistency or certain 
relationship of systems’ parameters caused by their internal couplings and has been widely 
involved in non-linear vibration, hydraulic [1-3], electromechanical coupling, automatic control 
theory and other fields [4-8].  

Huygens was the first person who observed the synchronization of pendulum clocks in the 
17th Century. In [4, 5], Czolczynski et al. presented different synchronous behaves of two or 𝑛 
pendula installed on a frame. The self-synchronization theory of rotors was developed by 
Bleckman [1, 2] with averaging method in the middle of the 20th century. Wen and Zhao et al. [7] 
modified the averaging method and proposed the average method with two small parameters. 
Zhang [8] deduced the synchronization condition and the synchronization stability for the 
vibrating system with three rotors. Hou and Fang [9, 10] investigated a vibrating screen based on 
the model of a rotor-pendulum system. 

The above researches are mostly focused on the synchronization of pendula or rotors installed 
on the same vibrating frame. In this paper, we propose a vibrating system with two rotors mounted 
on two different vibrating bodies.  

2. Dynamical equations of the vibrating system 

As shown in Fig. 1, two rotors are mounted on different vibrating bodies. The vibrating body 
(𝑀௜) (𝑖 = 1, 2) can move in horizontal direction (𝑥௜) and is installed on the foundation by the 
spring. The two bodies are connected by a coupling spring. Counterclockwise direction is taken 
as positive. Inertia moment and eccentricity of the rotor on its mass center are given by 𝑗௜ and 𝑟௜. 
Other variables are show in Fig. 1. In this paper, synchronization of rotors is analyzed in a 
non-resonant vibrating system, in which rotation frequencies of rotors are larger than nature 
frequencies of vibrating bodies. The system is denoted as after-resonance system. We assume that 𝜑ሶ ଵ, 𝜑ሶ ଶ > 2𝜔ଵ, 2𝜔ଶ, where 𝜔ଵ = ඥ𝑘ଵ 𝑀ଵ⁄ , 𝜔ଶ = ඥ𝑘ଶ 𝑀ଶ⁄ . 
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Fig. 1. Simplified model of the system 

The electromagnetic torque and resistance moment of the driving motor  𝑖  are 𝑇௘௜  and 𝑇௙௜ 
(𝑇௙௜ = 𝑓௥௜ ∙ 𝜑ሶ ௜) respectively. When 𝜑ሶ ௜ (𝑖 = 1, 2) fluctuates near the frequency 𝜔௡, the influence of 
electromagnetic leakage can be neglected, and the driving force of induction motor can be 
linearized as 𝑇௘௜ = 𝑛 𝐿௠௜ଶ 𝑈଴ଶሺ𝜔௦௜ − 𝑛𝜔௡ሻ ሺ𝐿௦௜ଶ 𝜔௦௜𝑅௥௜𝜔௦௜ሻ⁄ , where 𝑛௜ , 𝐿௠௜ , 𝜔௦௜ , 𝐿௦௜  and 𝑅௥௜ 
(𝑖 =1, 2) correspond to the pole number, mutual inductance, synchronous speed, stator inductance 
and rotor resistance of the motor; 𝑈଴ is the voltage amplitude. As self-synchronization of rotors is 
achieved, speed fluctuations of rotors are small [1, 2]. Therefore, small variables can be neglected. 
Introducing 𝜔௣ = ඥ𝑘௣ 𝑀ଵ⁄ , 𝜂 = 𝑀ଶ 𝑀ଵ⁄ , 𝐽ଵ = 𝑗ଵ + 𝑚ଵ𝑟ଵଶ and 𝐽ଶ = 𝑗ଶ + 𝑚ଶ𝑟ଶଶ, we have: 𝑥ሷଵ + 𝜔ଵଶ𝑥ଵ + 𝜂𝜔௣ଶሺ𝑥ଵ − 𝑥ଶሻ = 𝑚ଵ𝑀ଵ 𝑟ଵ𝜑ሶ ଵଶ cos 𝜑ଵ, 𝑥ሷଶ + 𝜔ଶଶ𝑥ଶ + 𝜂𝜔௣ଶሺ𝑥ଶ − 𝑥ଵሻ = 𝑚ଶ𝑀ଶ 𝛿𝑟ଶ𝜑ሶ ଶଶ cos 𝜑ଶ, 𝐽ଵ𝜑ሷ ଵ = 𝑇௘ଵ − 𝑇௙ଵ + 𝑚ଵ𝑟ଵ𝑥ሷଵ sin 𝜑ଵ, 𝐽ଶ𝜑ሷ ଶ = 𝑇௘ଶ − 𝑇௙ଶ + 𝛿𝑚ଶ𝑟ଶ𝑥ሷଶ sin 𝜑ଶ. 

(1) 

The synchronous speed of two rotors is denoted by 𝜔௡. When self-synchronization of rotors is 
achieved [1, 3], phases of the two rotors can be denoted as 𝜑ଵ = 𝜔௡𝑡 + 𝛼ଵ, 𝜑ଶ = 𝜔௡𝑡 + 𝛼ଶ, where 𝛼ଵ and 𝛼ଶ are slowly-varying parameters. From Eq. (1), we obtain: 𝑥ଵ = 𝜇ଵଵ cos 𝜑ଵ + 𝜇ଵଶ cos 𝜑ଶ, 𝑥ଶ = 𝜇ଶଵ cos 𝜑ଵ + 𝜇ଶଶ cos 𝜑ଶ, (2) 

where: 

𝜇ଵଵ = 𝑚ଵ𝑟ଵ𝜔௡ଶ൫𝜔ଶଶ + 𝜔௣ଶ − 𝜔௡ଶ൯𝑁 ,    𝜇ଵଶ = 𝛿𝑚ଶ𝑟ଶ𝜔௡ଶ𝜔௣ଶ𝑁 , 𝜇ଶଵ = 𝑚ଵ𝑟ଵ𝜔௡ଶ𝜔௣ଶ𝑁 ,     𝜇ଶଶ = 𝛿𝑚ଶ𝑟ଶ𝜔௡ଶ൫𝜔ଵଶ + 𝜂𝜔௣ଶ − 𝜔௡ଶ൯ሺ𝜂𝑁ሻ , 𝑁 = 𝑀ଵൣ൫𝜔ଵଶ + 𝜂𝜔௣ଶ − 𝜔௡ଶ൯൫𝜔ଶଶ + 𝜔௣ଶ − 𝜔௡ଶ൯ − 𝜂𝜔௣ସ൧.  

𝜇ଵଵ, 𝜇ଵଶ, 𝜇ଶଵ and 𝜇ଶଶ show the coupling effects in the system. Rotors are driven by motors, 
and the resistance is approximately proportional to its speed. The average values of resultant 
torques of rotors are denoted by 𝑃ଵ, 𝑃ଶ. As the system is stable, we have: 

𝑃ଵ = න 𝑇௘ଵ − 𝑇௙ଵ + 𝑚ଵ𝑟ଵ𝑥ሷଵ sin 𝜑ଵ 𝑑𝑡௧ା்
௧ = 𝑇௘ଵሺ𝜔௡ሻ − 𝑇௙ଵሺ𝜔௡ሻ − 12 𝑇௩, 𝑃ଶ = න 𝑇௘ଶ − 𝑇௙ଶ + 𝛿𝑚ଶ𝑟ଶ𝑥ሷଶ sin 𝜑ଶ 𝑑𝑡௧ା்
௧ = 𝑇௘ଶሺ𝜔௡ሻ − 𝑇௙ଶሺ𝜔௡ሻ + 12 𝑇௩, (3) 
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where 𝑇௩ = 𝛿𝑚ଶ𝑟ଶ𝜇 𝜔௡ଶ sinሺ𝛼ଵ − 𝛼ଶሻ = 𝑚ଵ𝑟ଵ𝜇ଵଶ𝜔௡ଶ sinሺ𝛼ଵ − 𝛼ଶሻ is the vibration torque (VT). 
Introducing the variable substitutions: ∆𝛼 = 𝛼ଵ − 𝛼ଶ,     ∆𝑇௘ = 𝑇௘ଵሺ𝜔௡ሻ − 𝑇௘ଶሺ𝜔௡ሻ∆𝑇௙ሺ𝜔௡ሻ = 𝑇௙ଵሺ𝜔௡ሻ − 𝑇௙ଶሺ𝜔௡ሻ, sin ∆𝛼 = ൣ∆𝑇௘ሺ𝜔௡ሻ − ∆𝑇௙ሺ𝜔௡ሻ൧ሺ𝑚ଵ𝑟ଵ𝜇ଵଶ𝜔௡ଶሻ ,  

can be obtained. Thus, the synchronization condition can be expressed as follows [1]: ฬൣ∆𝑇௘ሺ𝜔௡ሻ − ∆𝑇௙ሺ𝜔௡ሻ൧ ∙ 1δ𝑚ଶ𝑟ଶ𝜇 𝜔௡ଶฬ ≤ 1. (4) 

The stability criterion of the synchronous state can be discussed based on Lyapunov stability 
theory, it can be deduced as: 𝛿൫𝜔ଵଶ + 𝜂𝜔௣ଶ − 𝜔௡ଶ൯൫𝜔ଶଶ + 𝜔௣ଶ − 𝜔௡ଶ൯ − 𝜂𝜔௣ସ cos ∆𝛼 > 0. (5) 

3. Discussions of theoretical results 

In this paper, two rotors rotate in the same direction, that is, 𝛿 = 1. In this paper, 𝐿௠௜ = 0.14 H, 𝐿௦௜ = 0.12 H, 𝑅௥௜ = 0.6 Ω, 𝜔௦௜ = 314 rad/s, 𝑈଴ = 220 V, 𝑛 = 2 and other parameters of the 
system are shown in Table 1. 

Table 1. Parameters of the system 
Parameters 𝑀௜ [kg] 𝑚௜ [kg] 𝑗௜ [kg·m2] 𝑟௜ [m] 𝑓௜ [N·s/m] 𝑘௜ [N/m] 𝑓௥௜ [N·m·s/rad] 

Rotor 1 300 3.5 0.3 0.15 200 7.5×105 3×10-2 
Rotor 2 200 2.5 0.3 0.1 200 7.4×105 1.47×10-1 

We take 𝑇௩୫ୟ୶൫𝜔௣ଶ൯ = 𝛿𝑚ଵ𝑟ଵ𝑚ଶ𝑟ଶ𝜔௡ସ𝜔௣ଶ 𝑁⁄  into consideration. 𝑇௩ = sin ∆𝛼 𝑇௩୫ୟ୶൫𝜔௣ଶ൯  can 
be obtained easily. Thus, 𝑇௩୫ୟ୶൫𝜔௣ଶ൯ is the maximum vibration torque of the system (MVT). For 
the after-resonance system, denominator of 𝑁 may be zero when 𝜔௣ come to be a specific value 𝜒. 𝜒ଶ is deduced as: 

𝜒 = ඨ ሺ𝜔ଵଶ − 𝜔௡ଶሻሺ𝜔ଶଶ − 𝜔௡ଶሻ𝜔௡ଶ − 𝜔ଵଶ + 𝜂ሺ𝜔௡ଶ−𝜔ଶଶሻ. (6) 

𝜒 is called the characteristic frequency (CF) of the system, as shown in Fig. 2(a) and Fig. 3. In 
the coordinates of 𝜔௡ and 𝜔௣ଶ, the characteristic curve composed of characteristic frequencies at 
different synchronous speeds is shown in Fig. 2(b). The curve of 𝑇௩୫ୟ୶൫𝜔௣ଶ൯ accompanied with 𝜔௣ଶ is shown in Fig. 3 when 𝜔௡ is a certain value (for example, 𝜔௡ = 155 rad/s). The synchronous 
speed varies with the stiffness of the coupling spring and it can be obtained by numerical 
simulation. 

When 𝜔௣ଶ  approach 𝜒ଶ  from the left side, 𝑇௩୫ୟ୶  tends to infinity; when 𝜔௣ଶ  continues to 
increase over 𝜒ଶ to infinity, 𝑇௩୫ୟ୶ gradually decreases and tends to a constant value. In Fig. 3, the 
curve 𝑇௩୫ୟ୶ is divided into four parts by the curves of ± ቀ∆𝑇௘ሺ𝜔௡ሻ − ∆𝑇௙ሺ𝜔௡ሻቁ. The four parts 
are denoted by LA (passing through point A), LB (passing through point B), LC (passing through 
point C) and LD (passing through point D) respectively. According to Eq. (4), 
self-synchronization of two rotors cannot be obtained when system state occurs on LA and LD; 
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On the contrary, rotations of two rotors can be self-synchronizing when system state occurs on 
LB and LC. 

As coupling frequency 𝜔௣ is close to the characteristic frequency 𝜒, or the system state is near 
the characteristic frequency curve, the system coupling performance is strong, and the self 
synchronization of two rotors can be obtained easily. And it is convenient to control the 
synchronization performance by adjusting the coupling spring stiffness 𝑘௣. 

 
a) The three-dimensional diagram 

 
b) The two-dimensional diagram 

Fig. 2. Surface of the maximum vibration moment varying with  
the coupling frequency and synchronous speed in the after-resonance system 

 
Fig. 3. Relationship between the maximum vibration moment and coupling frequency 

4. Simulations for synchronization of two rotors 

Simulations are carried out with 𝜔௣ଶ set to be 6800 (rad/s)2, 11600 (rad/s)2, 16000 (rad/s)2, 
35600 (rad/s)2 and infinity respectively, corresponding to points A, B, C and D.  

Fig. 4 shows the simulation results with 𝜔௣ଶ = 6800 (rad/s)2. From Figs. 2 and 3, we can 
suggest that rotations of two rotors would not be self-synchronizing in this case. As shown in 
Fig. 4, speeds of the two rotors are not consistent. Fig. 5 shows the simulation results with 𝜔௣ଶ =  11600 (rad/s)2. In this case, |𝑇௩୫ୟ୶| > ห∆𝑇௘ሺ𝜔௡ሻ − ∆𝑇௙ሺ𝜔௡ሻห . ∆𝛼  is calculated to be 
3.28 rad. As shown in Fig. 5, speeds of the two rotors reach the same value around 1.5 s, and ∆𝛼 
is stable at 15.83 rad (15.83 – 4 × 𝜋 = 3.26 (rad)). Fig. 6 shows the simulation results with 𝜔௣ଶ = 16000 (rad/s)2. Parameters of system satisfy the self-synchronization conditions in this case 
too. ∆𝛼 is calculated to be 3.65 rad. As shown in Fig. 6, speeds of the two rotors reach the same 
value around 1.5 s, and ∆𝛼 is stable at 16.21 rad (16.21 – 4 × 𝜋 = 3.64 (rad)). The numerical results 
in Figs. 5 and 6 are consistent with the theoretical analysis. 
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a) Rotational speeds of two rotors 

 
b) The phase difference between two rotors 

Fig. 4. Simulation results of the after-resonance system when the coupling stiffness is 1.36×106 N/m 

 
a) Rotational speeds of two rotors 

 
b) The phase difference between two rotors 

Fig. 5. Simulation results of the after-resonance system when the coupling stiffness is 2.32×106 N/m 

 
a) Rotational speeds of two rotors 

 
b) The phase difference between two rotors 

Fig. 6. Simulation results of the after-resonance system when the coupling stiffness is 3.20×106 N/m 

 
a) Rotational speeds of two rotors 

 
b) The phase difference between two rotors 

Fig. 7. Simulation results of the after-resonance system when the coupling stiffness is 7.12×106 N/m 

 
a) Rotational speeds of two rotors 

 
b) The phase difference between two rotors 

Fig. 8. Simulation results of the after-resonance system when the coupling stiffness is tending to infinity 
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Figs. 7 and 8 show the simulation results when 𝜔௣ଶ is set to be 35600 (rad/s)2 and tend to 
infinity respectively. According to Figs. 2 and 3, rotations of two rotors would not be 
self-synchronizing in these cases. As shown in Figs. 7(a) and 8(a), speeds of the two rotors are not 
consistent when the system reaches stable conditions; Figs. 7(b) and 8(b) demonstrate the 
asynchrony of the two rotors. Simulation results confirm the theoretical analysis. 

5. Conclusions 

Self-synchronization of two rotors can be observed in a weakly damped non-resonant vibrating 
system with two rotors mounted on different bodies. The synchronization condition is that the 
vibration torque is large enough to overcome the input torque difference between two rotors. For 
the after-resonance system, there is a characteristic frequency or characteristic frequency curve. 
As the coupling frequency is close to the characteristic frequency, the coupling effects of the 
system can be strong, and self-synchronization of two rotors occurs easily. While there is a big 
difference between the coupling frequency and the characteristic frequency, self-synchronization 
will not be achieved. 
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