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Abstract. Horizontally vibrating characteristics of a tubular pile in saturated soil layer are studied 
in this paper. Governing equations of the pile is deduced based on the popular Timoshenko theory. 
Analytical solutions of the pile response are derived based on the continuous boundary conditions 
in the pile-soil interface. Accordingly, analytical expressions of the pile impedances are obtained. 
Based on it, a comparison with the Euler-Bernoulli Model is performed to verify this solution. 
Parametric analyses are carried out to study horizontal responses of the tubular pile. 
Keywords: pipe pile, Timoshenko model, analytical approach, horizontal dynamic responses, 
two-phase medium. 

1. Introduction 

Since mono-piled ocean towers are widely used to supported superstructures like wind turbine, 
offshore platforms, dynamic behavior of these laterally loaded piles is an area of extensive 
research. These piles designed for resisting lateral loadings are typically analyzed following 
different pile-soil interaction models [1-3], in which the Euler-Bernoulli theory is adopted to 
model the horizontally vibrating piles and the soil is simulated through the Winkler Foundation 
Model, infinitesimally thin layer or 3D continuum media, respectively.  

The widely used Euler-Bernoulli Model, adopted in the conventional modelling of piles, is 
applicable for beams with 𝐿/𝐷 > 10 i.e. slenderness ratio > 10 [4]. However, offshore structures 
like wind turbine generators always adopt very large diameter tubular piles with very low aspect 
ratio as foundations [5]. For these monopiles, the application of Euler-Bernoulli theory may not 
be appropriate since the shear deformation is significant compared with the bending deflection 
during horizontal vibration. Meanwhile, the Euler-Bernoulli Model fails to consider the shear 
deformation, which can be reflected by the Timoshenko theory [6]. Although piles are mostly 
simulated by Euler-Bernoulli theory, a few studies are reported to apply the Timoshenko Model 
in monopiles [7, 8]. 

This paper shows applications of the Timoshenko theory in analyses of tubular piles with large 
diameter, to extend the existing analytical approach for horizontally loaded pipe piles 
[4, 9, 10]. It offers a generalized analytical approach for large diameter pipe piles considering 
shear deformations and inertial effects in the process of pile horizonal vibrating, which has been 
rarely investigated as the authors know. Analytical expressions for the pile lateral displacement, 
rotation angel, bending moment and shearing force are derived based on the continuity condition 
of the pile-to-soil system. A few numerical examples are performed to compare the difference 
between Euler-Bernoulli theory and Timoshenko theory in modelling the large diameter pipe pile, 
and reveal horizontal dynamic characteristics of the pile. 

2. Problem definition 

A single large diameter tubular pile with pile length 𝐿 , radius 𝑟ଵ  and 𝑟ଶ  modelled by 
Timoshenko model and surrounded by two-phase saturated soil is detailed in Fig. 1(a). A 
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horizontal force 𝐻଴𝑒௜ఠ௧  and a moment 𝑀଴𝑒௜ఠ௧  are applied on the tubular pile head (𝜔  is the 
circular frequency). 𝑓ଵ and 𝑓ଶ are the lateral resisting forces coming from the outer soil and inner 
soil, respectively. A cylindrical coordinate system shown in Fig. 1(a) is chosen for the analytical 
analyses of the pile-to-soil system.  

The soil medium is supposed to behave as a viscoelastic, isotropic and homogeneous saturated 
soil based on the Biot’s theory [11]. The pipe pile assumed as a Timoshenko beam with flexibility 𝐸௣𝐼௣. There is no slippage or separation between the tubular pile and the two-phase soil (including 
inner and outer soil). The normal and shear stress atop the soil layer and displacements at the 
bottom of the two-phase medium are assumed to be zero. 

 
a) Schema of the pile-soil system 

 
b) Computing element 

Fig. 1. Computational model 

3. Differential equations of the pipe pile 

The internal forces (shearing force 𝐻 , bending moment 𝑀 ) and deformations (horizontal 
displacement 𝑢௣ , rotation angle 𝜃௣ ) of a differential element for the tubular pile based on 
Timoshenko model are presented in Fig. 1(b). Apostrophe at the top right corner denotes 
differentiation with respect to 𝑧. Taking inertia moment and shearing deformation into account, 
using the equilibrium equations of the horizontal dynamic load and bending moment acting to 
differential element of the pipe pile and neglecting the second order terms give: 

𝐻 + ∂𝑀∂𝑧 + 𝑖𝜌௣𝐼௣𝜔ଶ𝜃௣ = 0,   ∂𝐻∂𝑧 − 𝑓ଵ − 𝑓ଶ = −𝑖𝜌௣𝐴௣𝜔ଶ𝑢௣, (1) 

where 𝜌௣ is the mass density of the tubular pile. 
According to Timoshenko theory, the internal forces can be written as: 

𝑀 = 𝐸௣𝐼௣ ∂𝜃௣∂𝑧 ,   𝐻 = 𝐴௣𝐺௣𝐾 ቆ∂𝑢௣∂𝑧 − 𝜃௣ቇ, (2) 

where 𝐴௣, 𝐺௣ and 𝐾 are, respectively, cross sectional area, shear modulus and shearing factor.  
Substitutions of Eqs. (8), (9) into Eqs. (6), (7) gives: 

𝐴௣𝐺௣𝐾 ቆ∂𝑢௣∂𝑧 − 𝜃௣ቇ + 𝐸௣𝐼௣ ∂ଶ𝜃௣∂𝑧ଶ + 𝑖𝜌௣𝐼௣𝜔ଶ ∂𝑢௣∂𝑧 = 0, (3) 𝐴௣𝐺௣𝐾 ቆ∂ଶ𝑢௣∂𝑧ଶ − ∂𝜃௣∂𝑧 ቇ + 𝑖𝜌௣𝐴௣𝜔ଶ𝑢௣ − 𝑓ଵ − 𝑓ଶ = 0. (4) 

Consequently, differential equations of the pipe pile based on Timoshenko model can be 
obtained from Eqs. (10) and (11) as: 
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𝐸௣𝐼௣ ∂ସ𝑢௣∂𝑧ସ + 𝑓ଵ + 𝑓ଶ − 𝑖𝜌௣𝐴௣𝜔ଶ𝑢௣ + 𝑖𝜌௣𝐼௣𝜔ଶ ∂ଶ𝑢௣∂𝑧ଶ       = ቆ 𝐸௣𝐼௣𝐴௣𝐺௣𝐾 ∂ଶ∂𝑧ଶ + 𝑖𝜌௣𝐼௣𝜔ଶ𝐴௣𝐺௣𝐾 ቇ ൫𝑓ଵ + 𝑓ଶ − 𝑖𝜌௣𝐴௣𝑢௣𝜔ଶ൯. (5) 

4. Determination of the tubular pile responses 

4.1. Review of soil analysis 

The dynamic horizontal resistance of the saturated soil to lateral pile motion can be obtained 
through the following expression [9, 12]: 𝑓(𝑧, 𝜔) = ෍ 𝜉௡ஶ௡ୀଵ (𝜔)𝐴௡Φ௡(𝜔), (6) 

where 𝜉௡ is the soil reaction factor, 𝐴௡ is an undetermined coefficient, Φ௡ is the soil mode and 
subscript 𝑚 denotes the 𝑛th mode (𝑛 = 1, 2, 3, …). 

The 𝑚th soil mode is expressed through a simple frequency independent function: Φ௡(𝜔) = cos(𝑔௡𝑧), (7) 

where 𝑔௡ = 𝜋(2𝑛 − 1)/2/𝐿. 
Detailed, the outer and inner soil reaction factor 𝜉ଵ௡, 𝜉ଶ௡ are expressed through the modified 

Bessel functions, respectively: 𝜉ଵ௡(𝜔) = −𝜋𝑟ଵሼ𝑚ଵଵ௡𝐾ଵ(𝛾ଵଵ௡𝑟ଵ) + 𝑚ଵଶ௡𝐾ଵ(𝛾ଵଶ௡𝑟ଵ) + 𝑚ଵଷ௡𝐾ଵ(𝛾ଵଷ௡𝑟ଵ)ሽ, (8) 𝜉ଶ௡(𝜔) = 𝜋𝑟ଶሼ𝑚ଶଵ௡𝐼ଵ(𝛾ଶଵ௡𝑟ଶ) + 𝑚ଶଶ௡𝐼ଵ(𝛾ଶଶ௡𝑟ଶ) − 𝑚ଶଷ௡𝐼ଵ(𝛾ଶଷ௡𝑟ଶ)ሽ, (9) 

where 𝑚ଵଵ௡ − 𝑚ଵଷ௡, 𝛾ଵଵ௡ − 𝛾ଵଷ௡, 𝑚ଶଵ௡ − 𝑚ଶଷ௡ and 𝛾ଶଵ௡ − 𝛾ଶଷ௡ are determined coefficients. 
Accordingly: 𝑓ଵ(𝑧, 𝜔) = ෍ 𝐴௡𝜉ଵ௡(𝜔)cos(𝑔௡𝑧)ஶ௡ୀଵ ,    𝑓ଶ(𝑧, 𝜔) = ෍ 𝐵௡𝜉ଶ௡(𝜔)cos(𝑔௡𝑧)ஶ௡ୀଵ , (10) 

where 𝐵௡ is an undetermined constant. 

4.2. Analytical Solution for the tubular pile 

Eqs. (3) and (4) are coupled with each other in views of 𝑢௣ and 𝜃௣, decomposed as: ∂ସ𝑢௣∂𝑧ସ + 𝐵 ∂ଶ𝑢௣∂𝑧ଶ + 𝐶𝑢௣ = 1𝐾𝐺௣𝐴௣ ቆ∂ଶ𝑓ଵ∂𝑧ଶ + ∂ଶ𝑓ଶ∂𝑧ଶ ቇ + ቆ𝜌௣𝐼௣𝜔ଶ𝐾𝐺௣𝐴௣ − 1ቇ 𝑓ଵ + 𝑓ଶ𝐸௣𝐼௣ , (11) ∂ସ𝜃௣∂𝑧ସ + 𝐵 ∂ଶ𝜃௣∂𝑧ଶ + 𝐶𝜃௣ = − 1𝐸௣𝐼௣ ൬∂𝑓ଵ∂𝑧 + ∂𝑓ଶ∂𝑧 ൰, (12) 

where 𝐵 = ఘ೛ఠమா೛ + ఘ೛ఠమ௄ீ೛ , 𝐶 = ఘ೛మఠర௄ீ೛ா೛ − ఘ೛஺೛ఠమா೛ூ೛ . 

Substituting Eqs. (10) into Eq. (11) yields: ∂ସ𝑢௣∂𝑧ସ + 𝐵 ∂ଶ𝑢௣∂𝑧ଶ + 𝐶𝑢௣ = 1𝐸௣𝐼௣ ቆ𝜌௣𝐼௣𝜔ଶ𝐾𝐺௣𝐴௣ − 1ቇ ෍ (𝐴௡𝜉ଵ௡ + 𝐵௡𝜉ଶ௡) cos(𝑔௡𝑧)ஶ௡ୀଵ  (13)
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     − 1𝐾𝐺௣𝐴௣ ෍ (𝐴௡𝜉ଵ௡ + 𝐵௡𝜉ଶ௡)g௡ଶ cos(𝑔௡𝑧)ஶ௡ୀଵ . 
Eq. (13) is an ordinary differential equation with inhomogeneity, whose solution can be 

derived as: 𝑢௣ = 𝑁ଵsin(𝛽ଵ𝑧) + 𝑁ଶcos(𝛽ଵ𝑧) + 𝑁ଷsinh(𝛽ଶ𝑧) + 𝑁ସcosh(𝛽ଶ𝑧)+ ෍ (𝐴௡𝜁ଵ௡ + 𝐵௡𝜁ଶ௡) cos(𝑔௡𝑧)ஶ௡ୀଵ , (14) 

𝛽ଵ = ඨ𝐵 + √𝐵ଶ − 4𝐶2 ,   𝛽ଶ = ඨ−𝐵 + √𝐵ଶ − 4𝐶2 , 𝜁ଵ௡ = 𝜋𝑟ଵ𝜇ଵ𝐻ଵ௡𝜉ଵ௡𝑔௡ସ − 𝐵𝑔௡ଶ + 𝐶 ,    𝜁ଶ௡ = 𝜋𝑟ଶ𝜇ଶ𝐻ଶ௡𝜉ଶ௡𝑔௡ସ − 𝐵𝑔௡ଶ + 𝐶,  𝐻ଵ௡ = 1𝐸௣𝐼௣ ቆ𝜔ଶ𝜌௣𝐼௣𝐾𝐺௣𝐴௣ − 1ቇ − 𝑔௡ଶ𝐾𝐺௣𝐴௣ ,     𝐻ଶ௡ = 1𝐸௣𝐼௣ ቆ𝜔ଶ𝜌௣𝐼௣𝐾𝐺௣𝐴௣ − 1ቇ − 𝑔௡ଶ𝐾𝐺௣𝐴௣, 
 

and 𝑁ଵ-𝑁ସ are coefficients. 
According to the perfect contact boundary condition of the pile-to-soil system, lateral 

displacements at the pile-soil interfaces are continuous: 𝑁ଵsin(𝛽ଵ𝑧) + 𝑁ଶcos(𝛽ଵ𝑧) + 𝑁ଷsinh(𝛽ଶ𝑧) + 𝑁ସcosh(𝛽ଶ𝑧)+ ෍ (𝐴௡𝜁ଵ௡ + 𝐵௡𝜁ଶ௡)cos(𝑔௡𝑧)ஶ௡ୀଵ = ෍ 𝜂ଵ௡𝐴௡cos(𝑔௡𝑧),ஶ௡ୀଵ  (15) 𝑁ଵsin(𝛽ଵ𝑧) + 𝑁ଶcos(𝛽ଵ𝑧) + 𝑁ଷsinh(𝛽ଶ𝑧) + 𝑁ସcosh(𝛽ଶ𝑧)+ ෍ (𝐴௡𝜁ଵ௡ + 𝐵௡𝜁ଶ௡)cos(𝑔௡𝑧)ஶ௡ୀଵ = ෍ 𝜂ଶ௡𝐵௡cos(𝑔௡𝑧),ஶ௡ୀଵ  (16) 

𝜂ଵ௡ = 𝛾ଵଵ௡ 𝐾ଶ(𝑞ଵଵ௡𝑟ଵ) + 𝐾଴(𝑞ଵଵ௡𝑟ଵ)2 + 𝛾ଵଶ௡𝛿ଵଶ௡ 𝐾ଶ(𝑞ଵଶ௡𝑟ଵ) + 𝐾଴(𝑞ଵଶ௡𝑟ଵ)2       +𝛿ଵଷ௡ 𝐾ଶ(𝑞ଵଷ௡𝑟ଵ) − 𝐾଴(𝑞ଵଷ௡𝑟ଵ)2 ,  

𝜂ଶ௡ = 𝛾ଶଵ௡ 𝐼ଶ(𝑞ଶଵ௡𝑟ଶ) + 𝐼଴(𝑞ଶଵ௡𝑟ଶ)2 + 𝛾ଶଶ௡𝛿ଶଶ௡ 𝐼ଶ(𝑞ଶଶ௡𝑟ଶ) + 𝐼଴(𝑞ଶଶ௡𝑟ଶ)2       +𝛿ଶଷ௡ 𝐼ଶ(𝑞ଶଷ௡𝑟ଶ) − 𝐼଴(𝑞ଶଷ௡𝑟ଶ)2 .  

Accordingly: 𝐵௡ = 𝜂ଵ௡𝐴௡𝜂ଶ௡ . (17) 

Multiplying cos(𝑔௡𝑧) on both sides of Eq. (15) to integrate on the range, [0, 𝐿], yields: 𝐴௡ = 𝜂ଶ௡(𝑆ଵ௡𝑁ଵ + 𝑆ଶ௡𝑁ଶ + 𝑆ଷ௡𝑁ଷ + 𝑆ସ௡𝑁ସ), (18) 𝑆ଵ௡ = 2 ׬ sin(𝛽𝑧)ு଴ cos(𝑔௡𝑧) 𝑑𝑧(𝜂ଵ௡𝜂ଶ௡ − 𝜁ଵ௡𝜂ଶ௡ − 𝜁ଶ௡𝜂ଵ௡)𝐿,    𝑆ଶ௡ = 2 ׬ cos(𝛽𝑧)ு଴ cos(𝑔௡𝑧) 𝑑𝑧(𝜂ଵ௡𝜂ଶ௡ − 𝜁ଵ௡𝜂ଶ௡ − 𝜁ଶ௡𝜂ଵ௡)𝐿, 
𝑆ଷ௡ = 2 ׬ sinh(𝛽𝑧)ு଴ cos(𝑔௡𝑧)𝑑𝑧(𝜂ଵ௡𝜂ଶ௡ − 𝜁ଵ௡𝜂ଶ௡ − 𝜁ଶ௡𝜂ଵ௡)𝐿,    𝑆ସ௡ = 2 ׬ cosh(𝛽𝑧)ு଴ cos(𝑔௡𝑧)𝑑𝑧(𝜂ଵ௡𝜂ଶ௡ − 𝜁ଶ௡𝜂ଵ௡ − 𝜁ଵ௡𝜂ଶ௡)𝐿.  

Substituting Eq. (18) into Eq. (17) results in: 
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𝐵௡ = 𝜂ଵ௡(𝑆ଵ௡𝑁ଵ + 𝑆ଶ௡𝑁ଶ + 𝑆ଷ௡𝑁ଷ + 𝑆ସ௡𝑁ସ). (19) 

Now Eq. (14) can be re-written as: 𝑢௣ = 𝑁ଵ ൤sin(𝛽ଵ𝑧) + ෍ 𝜅ଵ௡cos(𝑔௡𝑧)ஶ௡ୀଵ ൨ + 𝑁ଶ ൤cos(𝛽ଵ𝑧) + ෍ 𝜅ଶ௡cos(𝑔௡𝑧)ஶ௡ୀଵ ൨     +𝑁ଷ ൤sinh(𝛽ଶ𝑧) + ෍ 𝜅ଷ௡cos(𝑔௡𝑧)ஶ௡ୀଵ ൨ + 𝑁ସ ൤cosh(𝛽ଶ𝑧) + ෍ 𝜅ସ௡cos(𝑔௡𝑧)ஶ௡ୀଵ ൨ , (20) 

𝜅ଵ௡ = 𝑆ଵ௡𝜂ଶ௡𝜁ଵ௡ + 𝑆ଵ௡𝜂ଵ௡𝜁ଶ௡,    𝜅ଶ௡ = 𝜂ଶ௡𝜁ଵ௡𝑆ଶ௡ + 𝜂ଵ௡𝜁ଶ௡𝑆ଶ௡, 𝜅ଷ௡ = 𝜂ଶ௡𝜁ଵ௡𝑆ଷ௡ + 𝜂ଵ௡𝜁ଶ௡𝑆ଷ௡,    𝜅ସ௡ = 𝜂ଶ௡𝜁ଵ௡𝑆ସ௡ + 𝜂ଵ௡𝜁ଶ௡𝑆ସ௡.  

Using the same solving procedure, the solution of (12) can be obtained as: 𝜃௣ = 𝑁ଵ ൤𝜗ଵcos(𝛽ଵ𝑧) + ෍ 𝜓ଵ௡ஶ௡ୀଵ sin(𝑔௡𝑧)൨ + 𝑁ଶ ൤−𝜗ଵsin(𝛽ଵ𝑧) + ෍ 𝜓ଶ௡ஶ௡ୀଵ sin(𝑔௡𝑧)൨     +𝑁ଷ ൤𝜗ଶcosh(𝛽ଶ𝑧) + ෍ 𝜓ଷ௡ஶ௡ୀଵ sin(𝑔௡𝑧)൨ + 𝑁ସ ൤𝜗ଶsinh(𝛽ଶ𝑧) + ෍ 𝜓ସ௡ஶ௡ୀଵ sin(𝑔௡𝑧)൨ , (21) 

𝜗ଵ = 𝛽ଵ − 𝜌௣𝜔ଶ𝐾𝐺௣𝛽ଵ ,    𝜗ଶ = 𝛽ଶ + 𝜌௣𝜔ଶ𝐾𝐺௣𝛽ଶ ,    𝜓ଵ௡ = (𝜂ଶ௡𝜁ଷ௡ + 𝜂ଵ௡𝜁ସ௡)𝜅ଵ௡,  𝜓ଶ௡ = (𝜂ଶ௡𝜁ଷ௡ + 𝜂ଵ௡𝜁ସ௡)𝜅ଶ௡,   𝜓ଷ௡ = (𝜂ଶ௡𝜁ଷ௡ + 𝜂ଵ௡𝜁ସ௡)𝜅ଷ௡, 𝜓ସ௡ = (𝜂ଶ௡𝜁ଷ௡ + 𝜂ଵ௡𝜁ସ௡)𝜅ସ௡,   𝜁ଷ௡ = 𝜋𝑟ଵ𝜇ଵ𝜉ଵ௡𝑔௡𝐸௣𝐼௣(𝑔௡ସ − 𝐵𝑔௡ଶ + 𝐶),   𝜁ସ௡ = 𝜋𝑟ଶ𝜇ଶ𝜉ଶ௡𝑔௡𝐸௣𝐼௣(𝑔௡ସ − 𝐵𝑔௡ଶ + 𝐶).  

Therefore, 𝑀௣ (bending moment) and 𝑄௣ (shearing force) of the tubular pile can be obtained 
by: 𝑀௣𝐸௣𝐼௣ = 𝑁ଵ ൤−𝜗ଵ𝛽ଵsin(𝛽ଵ𝑧) + ෍ 𝜓ଵ௡ஶ௡ୀଵ 𝑔௡cos(𝑔௡𝑧)൨     +𝑁ଶ ൤−𝜗ଵ𝛽ଵcos(𝛽ଵ𝑧) + ෍ 𝜓ଶ௡ஶ௡ୀଵ 𝑔௡cos(𝑔௡𝑧)൨     +𝑁ଷ ൤𝜗ଶ𝛽ଶ sinh(𝛽ଶ𝑧) + ෍ 𝜓ଷ௡ஶ௡ୀଵ 𝑔௡ cos(𝑔௡𝑧)൨     +𝑁ସ ൤𝜗ଶ𝛽ଶcosh(𝛽ଶ𝑧) + ෍ 𝜓ସ௡ஶ௡ୀଵ 𝑔௡cos(𝑔௡𝑧)൨ ,

 (22) 

𝑄௣𝐾𝐺௣𝐴௣ = 𝑁ଵ ൤(𝛽ଵ − 𝜗ଵ)cos(𝛽ଵ𝑧) − ෍ (𝜅ଵ௡𝑔௡ + 𝜓ଵ௡)sin(𝑔௡𝑧)ஶ௡ୀଵ ൨     +𝑁ଶ ൤(−𝛽ଵ + 𝜗ଵ)sin(𝛽ଵ𝑧) − ෍ (𝜅ଶ௡𝑔௡ + 𝜓ଶ௡)sin(𝑔௡𝑧)ஶ௡ୀଵ ൨     +𝑁ଷ ൤(𝛽ଶ − 𝜗ଶ)cosh(𝛽ଶ𝑧) − ෍ (𝜅ଷ௡𝑔௡ + 𝜓ଷ௡)sin(𝑔௡𝑧)ஶ௡ୀଵ ൨     +𝑁ସ ൤(𝛽ଶ − 𝜗ଶ)sinh(𝛽ଶ𝑧) − ෍ (𝜅ସ௡𝑔௡ + 𝜓ସ௡)sin(𝑔௡𝑧)ஶ௡ୀଵ ൨ .
 (23) 

Assuming that horizontal displacement 𝑢௣ , rotation angle 𝜃௣ , bending moment 𝑀௣  and 
shearing force 𝑄௣  at pile head are 𝑈଴ , Θ଴ , 𝑀଴  and 𝐻଴ , respectively. Therefore, undetermined 
coefficients 𝑁ଵ-𝑁ସ can be determined by the method of initial parameter. As for the limited paper 
space, the detailed determination process of 𝑁ଵ-𝑁ସ are excluded here. 

Based on the definition method for impedances proposed by Novak [13], the dimensionless 
horizontal dynamic impedance 𝑘௛ , rocking dynamic impedance 𝑘௥  and horizontal-rocking 
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dynamic impedance 𝑘௛௥ can be expressed as follows, respectively: 𝑘௛ = 𝐻଴𝑈଴𝐸௣𝑟ଵ ,   𝑘௥ = 𝑀଴Θ଴𝐸௣𝑟ଵଶ ,   𝑘௛௥ = 𝐻଴Θ଴𝐸௣𝑟ଵଷ. (24) 

5. Validation and analysis 

A few numerical examples are selected to make comparisons between the results of the Euler-
Bernoulli theory and the Timoshenko theory, and to analyze the horizontal dynamic responses of 
the tubular pile based on the Timoshenko theory. Unless otherwise specified, details of parameters 
used in this study are listed as follows: 𝐿 =  10 m; 𝑟ଵ =  0.5 m; 𝑟ଶ =  0.3 m; 𝐸௣ =  25 GPa; 𝜌௣ = 2500 kg/m3; 𝜌ଵ = 𝜌ଶ = 2200 kg/m3; 𝜌௙ = 1000 kg/m3; 𝛼ଵ = 𝛼ଶ = 0.99; 𝑀ଵ = 𝑀ଶ = 1000 MPa; 𝑛ଵ = 𝑛ଶ = 0.3, 𝑘ௗଵ = 𝑘ௗଵ = 10-5m/s. Variations of the three stiffness factors (𝑘௛, 𝑘௥, 𝑘௛௥) and 
damping factors (𝑐௛ , 𝑐௥ , 𝑐௛௥) with frequency are similar. Accordingly, 𝑘௛  and 𝑐௛  are taken as 
examples for the numerical analysis.  

Figs. 2 compares the dynamic stiffness and damping factors (𝑘௛ , 𝑐௛ ) calculated by the 
Timoshenko model with those by the Euler-Bernoulli model. It is observed that the variation 
tendency of the stiffness and damping factors calculated by the both models are uniform, which 
represents the validity of the proposed solution. While the calculation results obtained by the 
Timoshenko model are significantly less than those obtained by the Euler-Bernoulli model. This 
is due to the fact that effects of shear deformation and inertia are taken into account, in addition 
to the bending deflection of the pipe pile in the Timoshenko model. The result calculated by the 
Euler-Bernoulli model is bigger than normal. This is bound to bring about potential safety hazard, 
especially for the large diameter pipe pile. Accordingly, it is reasonable to simulate the large 
diameter pipe pile by Timoshenko model. 

 
a) Real component 

 
b) Imaginary component 

Fig. 2. Comparisons of horizontal impedance between the Euler-Bernoulli and Timoshenko theories 

Fig. 3 takes the horizontal dynamic stiffness factor 𝑘௛ and damping factor 𝑐௛ as examples to 
illustrate influences of the radius i.e. 𝑟ଵ and 𝑟ଶ on the complex impedances of the tubular pile 
modelled by the Timoshenko model. It is observed that horizontal dynamic stiffness and damping 
components tends to increase with the decrease of the inner radius 𝑟ଶ and the increase of the outer 
radius 𝑟ଵ. Notice that cross section area of the tubular pile for the case of 𝑟ଵ = 0.5 and 𝑟ଶ = 0.2 is 
equal to the case of 𝑟ଵ = 0.6 and 𝑟ଶ = 0.38, approximately. Comparison of the two cases finds that 
stiffness component of the tubular pile with 𝑟ଵ = 0.5 and 𝑟ଶ = 0.2 is larger than that with 𝑟ଵ = 0.6 
and 𝑟ଶ = 0.38, while the damping factor is reverse. This implies that, for cases of tubular piles 
with approximately equal cross section area, stiffness component of the tubular pile with 
comparatively larger wall thickness is greater, while the damping factor of a pipe pile with larger 
mean radius (𝑟ଵ/2 + 𝑟ଶ/2) is greater. 
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a) Real component 

 
b) Imaginary component 

Fig. 3. Variation of horizontal impedance with inner and outer pile radius based on the Timoshenko theory 

6. Conclusions 

Interaction between the saturated soil and a large diameter tubular pile in horizontal vibration 
is theoretically examined. The analytical solution is brought to a form which makes it possible to 
predict the dynamic stiffness and damping for the large diameter pipe pile based on the 
Timoshenko model. Comparisons between the Timoshenko model and the Euler-Bernoulli model 
are presented to illustrate the influence of shear deformation and inertial effect on the dynamic 
responses. 
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