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Abstract. This article considered method to measure low-frequency angular oscillations of rotors 
of electric machines and solved the problem of assess shear deformations of rotating shafts in 
transient conditions. Method of calculating torsional torques is considered by the example of 
electric generator shaft of diesel generator unit. This method allows taking into account the angular 
deformations of the rotating shafts, and reducing vibration overloads, and increasing in both 
resource and reliability. 
Keywords: transient process, torsional oscillations, torsional moment, sensing element, shear 
deformation, finite elements method. 

1. Introduction 

Control over rotating electrical machines dynamic state according to the engineering status is 
carried out by various engineering systems. Vibration diagnostics systems are most important among 
them [1-6]. The development of such systems is a difficult task, since should be determine the 
parameters that can estimate the machine state. In addition, it should establish their values, which 
determine the intervals of a good or fault state of the machine [5, 7, 8]. Finite elements method is 
used to solve this task [6, 9-12]. 

2. Requirements to calculate deformations of electrical machines rotating actual shafts 

Variable section shafts are often found at the calculations torsional oscillations of the electric 
machines shafts [13-16]. Often the section of the shaft changes in step from one diameter 𝐷  to 
another 𝐷  (Fig. 1). In Fig. 1 shows the shaft of an asynchronous motor 4AK250. 

 
Fig. 1. Sketch of motor shaft 

In actual shafts structures at the junctions of shaft areas of different length and diameter there 
are fillets-corner round-offs at the parts. For such junctions it is necessary to apply the method of 
determination the equivalent shaft area [9-13].  

It is difficult to choose equations for the description of shaft oscillations in the analytical 
solution of the task, since should be take into account both the general requirements for the initial 
and boundary conditions and the requirements for intermediate boundary conditions at the shafts 
junctions [14-17]. These requirements are called join of solution by intermediate end conditions. 
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Using join of solution presents a considerable difficulty at searching for analytical solutions  
[9, 10, 12]. 

The use of a difference equation to solve a problem avoids the join of solution, but in this case 
should be add an additional equation of motion for the junction element of shafts [12]. Torsional 
oscillations for shafts areas of smaller and bigger diameters can be expressed by differential 
equation: 

𝐺 𝑑 𝜑𝑑𝑥 = 𝜌 𝑑 𝜑𝑑𝑡 , (1) 

where 𝐺 – shear modulus of shaft material, 𝜌 – shaft material density, 𝜑  – actual shaft angle of 
rotation. Eq. (1) can be written in a difference form: 

𝐽 𝐺 𝜑 , − 2𝜑 , + 𝜑 ,ℎ = 𝐽 𝑑 𝜑𝑑𝑡 , (2) 

where 𝐽  – is an element inertia forces moment (element inertia moment), 𝐽  – actual shaft 
element polar moment, ℎ – mesh step along the actual shaft length. 

Dynamic equation for real shaft joint can be expressed: 

𝑀 − 𝑀 = 𝐽 𝑑 𝜑𝑑𝑡 , (3) 

where 𝑀  and 𝑀  – refer to different shaft areas of different diameters. 
The center shaft area of the intermediate element-mesh point is placed at the boundary [12] 

(Fig. 2(a)). 

 
a) 

 
b) 

Fig. 2. The center of the: a) shaft area intermediate element-mesh point is placed  
on the boundary, b) cross-section cut of a shaft in cylindrical coordinate system 

Then instead of Eq. (2) it is necessary to write: 

𝐽 𝐺 𝜑 , , − 𝜑 , ,ℎ − 𝐽 𝐺 𝜑 , , − 𝜑 , ,ℎ = 𝐽 𝜑 , , − 2𝜑 , , + 𝜑 , ,𝜏 . (4) 

Shortcut in this case is not possible and it is necessary to calculate both central inertia moments 
and inertia forces moment – 𝐽 . For example: 

𝐽 = 𝑟 𝑑𝑆 ,     𝐽 = 𝑟 𝑑𝑆 ,     𝐽 = ℎ2 𝜌 𝑟 𝑑𝑆 + ℎ2 𝜌 𝑟 𝑑𝑆  . (5) 

In the case of circular section shafts, evaluation of integrals in Eq. (5) is not difficult if 
cylindrical coordinate system is used (Fig. 2(b)), where 𝑟 – is shaft radius. 

For example, 𝑑𝑆 = 𝑟𝑑𝛼𝑑𝑟 and: 
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𝐽 = 𝑑𝛼 𝑟 𝑑𝑟 = 𝜋 𝑅𝑟2 . (6) 

The equation 𝐴 = (𝐺𝜏 )/(𝜌ℎ ) is obtained by substituting numerical values into Eq. (4) [12]. 
Choose an element of constant section with 𝐴 =  1 as the final element for determining the 
parameters of the shaft. 

3. Determining the reduced shaft length and diameter 

Reduced and transmission shafts of electromechanical complexes, travel mechanisms of 
mobile machines usually have stepped configuration which considerably complicates the task of 
determining numerical value of torsional rigidity of shaft lines shafts [13-15]. To determine the 
numerical value of the torsional stiffness of the shaft of a step configuration, it is advisable to 
substitute the stepped shaft (Fig. 3(a)) with a smooth shaft of equivalent rigidity [13] (Fig. 3(b)). 

Now total length of the shaft will be called reduced length 𝑙. The diameter shaft is constant 
through the full length. Now it will be called the reduced diameter 𝑑. The shaft length and diameter 
are the shaft primary geometrical dimensions to determine torsional rigidity numerical value  
[13, 14, 16].  

 
a) b) 

Fig. 3. a) Actual, b) reduced shafts drafts 

The reduced shaft diameter can be determined by: 

𝑑 = 𝑑 𝑙 + 𝑑 𝑙 + 𝑑 𝑙 + 𝑑 𝑙𝑙 + 𝑙 + 𝑙 + 𝑙 , (7) 

where 𝑙 – reduced shaft length, 𝑑 – reduced shaft diameter. 
The stepped shaft can be considered as discreet bodies connected in series having respective 

diameters and length. This shaft compliance is determined by summing up shaft areas compliances 𝑒 = 𝑒 + 𝑒 + 𝑒 + 𝑒 . 
Shaft torsional rigidity is its inverse compliance value 𝑒 = 1/𝐶, it can be: 1𝐶 = 1𝐶 + 1𝐶 + 1𝐶 + 1𝐶 . (8) 

The shaft torsional rigidity consists of the torsional rigidity of each shaft section: 32𝑙𝜋𝐺𝑑 = 32𝑙𝜋𝐺𝑑 + 32𝑙𝜋𝐺𝑑 + 32𝑙𝜋𝐺𝑑 + 32𝑙𝜋𝐺𝑑 . (9) 

From (9) obtain an equation for the shaft reduced length: 𝑙𝑑 = 𝑙𝑑 + 𝑙𝑑 + 𝑙𝑑 + 𝑙𝑑 ,     𝑙 = 𝑙 𝑑𝑑 + 𝑙 𝑑𝑑 + 𝑙 𝑑𝑑 + 𝑙 𝑑𝑑 . (10) 

Thus, it is possible to calculate the parameters for the dynamic model of the object under study, 
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using such notions as the shaft reduced length and the shaft reduced diameter. 

4. Calculating maximum deformations of the electric generator rotor reduced shaft of diesel 
generator unit 

The finite element method [9, 11] is used to estimate the maximum shear deformations of 
electric generator rotating shaft of unified electric power plants (UEPP) standalone object, caused 
by torsional torques. 

The diesel crankshaft of diesel generator units (DGU) UEPP connected to the rotor of a 
synchronous electric generator through a plate coupling, absorbing axial, radial and angular 
displacements with the lowest reaction forces due to its elastic and dissipative properties [10]. 

The method for estimating rotating shafts maximum shear deformations is described below.  
According to the expression 𝐴 = (𝐺𝜏 )/ℎ = 1 time step [9, 11, 12]: 

𝜏 = ℎ 𝜌𝐺. (11) 

Mechanical oscillations propagation speed in solid bodies is determined by: 

𝑉 = 𝐺𝜌 = 𝐸2𝜌(1 + 𝜇), (12) 

where 𝐸 – elastic modulus, 𝜇 – Poisson’s ratio.  
The shaft SE torsion time ratio [9, 10, 12]: 𝑇 = 𝑇 = 𝐿𝑉, (13) 

where 𝐿  – measuring reduced shaft length, 𝑉  – mechanical oscillations propagation speed,  𝑇  – reduced shaft torsion time. 
This time does not depend on the torsion velocity of the shaft SE 𝑣 , on the steps selected ℎ  

and 𝜏. 
Maximum deformations in all the shaft SE elements turn out to be the same and equal [9, 10, 12]: 

𝜀 = 𝑣 𝜏ℎ = 𝑣 2𝜌(1 + 𝜇)𝐸 = 𝑣𝑉 . (14) 

For example, the linear velocity of the shaft elements torsion is equal 𝜈 = 162.65·10-3 m/s for 
the reduced rotor shaft of DGU electric generator at torsional oscillations frequency  Ω = 6.28 rad/s and the shaft radius 𝑟 = 0.0259 m. The electric generator rotor shaft material has 
the following characteristics: shear modulus 𝐺 = 8∙1010 n/m²; 𝜌 = 7,8∙103 kg/m3, and the mesh 
step is selected as equal to ℎ = 0,0651 m, then according Eq. (11) the time step becomes equal 𝜏 = 20.327·10-6 s. The electric generator rotor shaft elements are in torsion at the velocity of 𝜈 = 325.3·10-3 m/s, then from Eq. (14) obtain maximum deformations in all rotor shaft elements 
equal [9, 10] 𝜀 = 50.7875·10-6. 

Thus, maximum deformations in all rotor shaft elements turn out to be small. Therefore, every 
unit for the rotor shaft elements equals 50,787 microns. Maximum strains in all electric generator 
shaft elements turn out to be equal [9, 10] 𝜎 = 𝐺𝜀 = 4063∙103 N/m2. 

The maximum reciprocal turn of sections of all elements on the electric generator rotor shaft 
relative to each other is found by: 
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∆𝜑 = 𝜑 , − 𝜑 , = 𝜀 ℎ𝑟 , (15) 

Use the following example data: 𝜀 = 50.7875·10-6; 𝑟 = 0.0259 m; ℎ = 0,0651 m, then the 
maximum reciprocal turn of sections of all elements on the electric generator rotor shaft relative 
to each other is a value Δ𝜑 = 1276.55·10-6 rad. 

Maximum deformation of the electric generator rotor shaft of the length 𝐿 =  0.651 m 
transform to angular units Δ𝜑 = 242.68” = 4.04’ – angular seconds and angular minutes 
respectively [9, 10].  

Maximum time of electric generator rotor shaft torsion of the length 𝐿 =  0.651 m, at Ω = 6.28 rad/s and 𝑇 = 1.0 s will represent a value 𝑇 = 203.169·10-6 s. 
The admissible torque rating on the electric generator rotor shaft is determined by: 𝑀 = ∆𝜑𝐿 𝐺 𝑅 𝑑𝑆.  (16) 

Integral in Eq. (16) is a polar moment of inertia of electric generator rotor shaft, of radius 𝑅. 
Electric generator rotor shaft of a uniform section has a polar moment of inertia which is constant 
along the shaft length and does not depend on the length of its base area 𝐿 = 0.651 m: 𝐽 = 𝑅 𝑑𝑆.  (17) 

Polar moment of inertia is determined expression 𝐽 = (𝜋𝑅 )/2 for the electric generator rotor 
shaft section of radius 𝑅 = 0.0259 m the [12]. Initial conditions of this task are as follows: 

– Shear modulus of the electric generator rotor shaft 𝐺 = 8∙1010 N/m2. 
– Electric generator rotor shaft material density 𝜌 = 7.8∙103 kg/m3. 
– Rigidity. 
Then: 

𝐺𝐽 = 𝐺𝜋𝑅2 = 0.0564 ∙ 10  Nm . 
The torque is determined from Eq. (16). Torque is 𝑀 =  110.883 Nm for the electric 

generator rotor shaft at torsional oscillations frequency Ω = 6.28 rad/s. 
The irregularity in crankshaft rotational frequency reaches 0.7 % for DGU with an 8-cylinder 

diesel engine. The engine runs calmer at lower irregularities. Torsional oscillations cyclic 
frequency is 𝑓 = 5.0 Hz, or circular frequency is Ω = 31.4 rad/s at the irregularity in crankshaft 
rotational frequency being 0.7 % [10].  

The torque equals 𝑀 = 15.968∙103 Nm at torsional oscillations frequency of DGU crankshaft 𝑓 = 5.0 Hz from torsional oscillations at end areas (elements) of the crankshaft. 
Torque from the crankshaft DGU on the shaft of the electric generator affects the strength of 

the rotor shaft. This increases the eccentricity of the rotor shaft and vibration, if the crankshaft 
DGU directly connected to the rotor shaft of the generator [3, 10]. 

The shaft of the electric generator is connected to the crankshaft of a diesel engine DGU 
through a plate coupling. In this case, the electric generator rotor shaft operates within the 
rotational frequency operational range without losing the strength. This ensures smoothness of 
shaft rotation of the generator and ensures safe operation in the UEPP. 

5. Conclusions 

The method allows calculating the maximum deformations actual rotating rotor shafts of UEPP 
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generators of standalone objects. The real shafts of actual structures of traction generators rotor 
have fillets at the junction points of the shaft sections of different diameters. These fillets increase 
the strength of the shaft and reduce internal stresses. Therefore, the real shafts need to be converted 
to an equivalent shaft of circular cross section. 
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