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Abstract. The present model describes the vibrational analysis of skew (parallelogram) plate 
made up of non-homogeneous material with variable thickness and temperature on clamped edges. 
One dimensional thickness and two-dimensional temperature variation is taken into consideration. 
The non-homogeneity of the plate varies circular in one dimension. The governing differential 
equation of motion for vibration analysis is solved by using Rayleigh Ritz technique and time 
period is calculated for the combination of different variation of plate parameters. The obtained 
results are presented in tabular form. 
Keywords: vibration, linear variation, circular variation, thickness. 

1. Introduction 

Non-homogeneous plate with variable thickness is widely used in structural applications 
because of their high strength, light weight, and having higher stiffness. Therefore, in order to 
make good structural applications, it is required to study vibration characteristics of such plates. 
Many researchers have been worked in this direction and applied various method to solve vibration 
problem. 

Ritz variational method [1] is applied to solve vibration problems of skew plates on different 
edge conditions and natural frequencies, modes shape is obtained for side ratio and skew angle. 
Natural vibration of skew plates [2] is presented on eight edge conditions by using the new version 
of differential quadrature method (DQM). Vibrational analysis of several laminated composite 
doubly-curved shells, singly-curved shells and plates with variable thickness is analyzed using 
generalized differential quadrature (GDQ) method [3]. Differential quadrature method (DQM) is 
used to study the effects of thickness-to-length ratio, volume fraction index, temperature, 
geometrical shape, and the boundary conditions on the frequency parameters of the functionally 
graded (FG) quadrilateral plates [4]. The vibrational characteristics of the functionally graded 
(FG) quadrilateral microplates [5] are investigated by using modified strain gradient theory 
(MSGT) on different boundary conditions. Free vibration analysis of functionally graded (FG) 
rectangular plates [6] on simply supported and clamped edge conditions under temperature field 
is studied and natural frequencies are obtained by Ritz method. Vibrational analysis of two types 
of functionally graded material (FGM) sandwich plates [7] with nonlinear temperature variation 
along with thickness is presented by using finite element (layer wise) formulation. Vibration of 
skew plates [8] with large skew angle is studied by using moving least square Ritz (MLS-Ritz) 
method and the results are obtained for rhombic plates on various edge conditions. Free vibration 
analysis of thin laminated skew plates [9] on clamped edges is investigated by using finite strip 
transition matrix method. Free vibration of rectangular and skew multilayered plate [10] are 
presented by using variable-kinematic Ritz method on different boundary conditions and 
evaluated convergence and accuracy of method. The transverse vibrations of skew plates [11] with 
variable thickness on different combinations of boundary conditions is presented by using 
Rayleigh Ritz method. The finite strip method [12] is employed to study the free vibration of skew 
orthotropic plates, with two opposite edges simply supported and the other two edges are free. 
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Vibrational of non-homogeneous skew plate [13] with varying thicknesses and temperature is 
analyzed by using Rayleigh Ritz technique. Natural frequency of skew plate [14] with variation 
in thickness and Poisson’s ratio is studied by using Rayleigh Ritz method. A model is analyzed to 
study the vibration of tapered skew plate [15] on clamped edges using Rayleigh Ritz method. Free 
vibrational analysis of non-homogeneous parallelogram plate [16] with two dimensional circular 
variations in thickness along with temperature is studied using classical plate theory (CPT). 
Vibrational analysis of tapered square plate [17] with linear variation in density and bi linear 
variation in temperature is described using Rayleigh Ritz technique. Effect of plate parameters on 
time period of rectangular plate is studied in [18] using Rayleigh Ritz technique.  

In this study, we computed time period of skew plate on clamped edges under different 
variation of parameters and results are presented in tabular form.  

2. Analysis 

Consider a thin parallelogram plate made up of non-homogeneous material with skew angle 𝜃 
as shown in Fig. 1 referred to skew coordinates 𝜁′ = 𝜁 − 𝜓tan𝜃, 𝜓′ = 𝜓sec𝜃. 

 
Fig. 1. Skew plate with angle 𝜃 

The expression for maximum kinetic energy 𝑇௦ and strain energy 𝑉௦ in skew coordinates is: 

𝑇௦ = 12 𝜔ଶ𝑐𝑜𝑠𝜃 න න 𝜌𝑙Φଶ𝑑𝜓′𝑑𝜁′, (1) 

𝑉௦ = 12cosଷ𝜃 න න 𝐷ଵ

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ᇱଶቇଶ − 4sin𝜃 ቆ∂ଶΦ∂𝜁ᇱଶቇ ቆ ∂ଶΦ∂𝜁ᇱ ∂𝜓ᇱቇ   +2(sinଶ𝜃 + 𝜈cosଶ𝜃) ቆ∂ଶΦ∂𝜁ᇱଶቇ ቆ∂ଶΦ∂𝜓ᇱଶቇ
  +2(1 + sinଶ𝜃 − 𝜈cosଶ𝜃) ቆ ∂ଶΦ∂𝜁ᇱ ∂𝜓ᇱቇଶ
  −4sin𝜃 ቆ ∂ଶΦ∂𝜁ᇱ ∂𝜓ᇱቇ ቆ∂ଶΦ∂𝜓ᇱଶቇ + ቆ∂ଶΦ∂𝜓ᇱଶቇଶ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

𝑑𝜓′𝑑𝜁′, (2) 

where, 𝐷ଵ = 𝐸𝑙ଷ 12(1 − 𝜈)⁄  is flexural rigidity, here 𝐸, 𝑙 and 𝜈 are Young’s modulus, thickness 
and Poisson’s ratio of the plate. 

3. Construction of problem 

Consider a parallelogram plate of length 𝑎 and breadth 𝑏 with linear variation in thickness and 
circular variation in density and Poisson’s ratio as: 
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𝑙 = 𝑙଴ ቆ1 + 𝛽 𝜁ᇱ𝑎 ቇ ,   𝜌 = 𝜌଴ ቎1 − 𝑚ଵ ቌ1 − ඨ1 − 𝜁ᇱଶ𝑎ଶ ቍ቏,   
𝜈 = 𝜈଴ ቎1 − 𝑚ଶ ቌ1 − ඨ1 − 𝜁ᇱଶ𝑎ଶ ቍ቏, (3) 

where 𝛽 , (0 ≤ 𝛽  ≤ 1) is tapering parameter of the plate and 𝑚ଵ , 𝑚ଶ (0 ≤ 𝑚ଵ , 𝑚ଶ  < 1) is 
non-homogeneity parameters. 

The two-dimensional steady temperature variation is considered as: 

𝜏 = 𝜏଴ ቆ1 − 𝜁′𝑎ቇ ቆ1 − 𝜓′𝑏 ቇ, (4) 

where 𝜏 and 𝜏଴ are the temperature on the plate at any point and at the origin respectively. The 
temperature dependent modulus of elasticity is: 𝐸 = 𝐸଴(1 − 𝛾𝜏), (5) 

where 𝐸଴ is the Young’s modulus at 𝜏 = 0 and 𝛾 is slope of variation. 
Substituting Eq. (4) in Eq. (5) we get: 

𝐸 = 𝐸଴ ቈ1 − 𝛼 ቆ1 − 𝜁′𝑎ቇ ቆ1 − 𝜓′𝑏 ቇ቉, (6) 

where 𝛼, (0 ≤ 𝛼 < 1) is called thermal gradient. On using Eqs. (3) and (6), Eqs. (1) and (2), 
becomes: 

𝑇௦ = 12 𝜔ଶ𝜌଴𝑙଴ න௔
଴ න௕

଴ ቈ(1 − 𝑚ଵΛ) ቆ1 + 𝛽 𝜁ᇱ𝑎 ቇ቉ Φଶ𝑑𝜓ᇱ𝑑𝜁ᇱ, (7) 

𝑉௦ = 𝐸଴𝑙଴ଷ24 cosସ𝜃 න௔
଴ න௕

଴ ⎣⎢⎢
⎡൜1 − 𝛼 ൬1 − 𝜁ᇱଶ𝑎ଶ ൰ ൬1 − 𝜓ᇱଶ𝑏ଶ ൰ൠ ൬1 + 𝛽 𝜁′𝑎൰ଷ

[1 − 𝜈଴ଶ(1 − 𝑚ଶΛ)ଶ] ⎦⎥⎥
⎤

     ·
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ᇱଶቇଶ − 4Υsin𝜃 ቆ∂ଶΦ∂𝜁ᇱଶቇ ቆ ∂ଶΦ∂𝜁′ ∂𝜓′ቇ  +2Υଶ[sinଶ𝜃 + 𝜈଴(1 − 𝑚ଶΛ)cosଶ𝜃] ቆ∂ଶΦ∂𝜁ᇱଶቇ ቆ∂ଶΦ∂𝜓ᇱଶቇ
  +2Υଶ[1 + sinଶ𝜃 − 𝜈଴(1 − 𝑚ଶΛ)cosଶ𝜃] ቆ ∂ଶΦ∂𝜁′ ∂𝜓′ቇଶ
  −4Υଷsin𝜃 ቆ ∂ଶΦ∂𝜁ᇱ ∂𝜓ᇱቇ ቆ∂ଶΦ∂𝜓ᇱଶቇ + Υସ ቆ∂ଶΦ∂𝜓ᇱଶቇଶ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

𝑑𝜓′𝑑𝜁′, (8) 

where Λ = ቆ1 − ට1 − ఍ᇲమ௔మ ቇ and Υ = ௔௕. 

It is also considered that parallelogram plate is clamped along all the four edges. Therefore, 
boundary conditions are: 
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Φ = ∂Φ∂𝜁′ = 0,   𝜁ᇱ = 0, 𝑎,   Φ = ∂Φ∂𝜓ᇱ = 0,   𝜓′ = 0, 𝑏. (9)

The deflection function which satisfy Eq. (9) is represented by: 

Φ(𝜁′, 𝜓′) = ⎣⎢⎢
⎢⎡ ൥ቆ𝜁ᇱ𝑎 ቇଶ ቆ𝜓ᇱ𝑏 ቇଶ ቆ1 − 𝜁ᇱ𝑎 ቇଶ ቆ1 − 𝜓ᇱ𝑏 ቇଶ൩
ቈΩଵ + Ωଶ ቆ𝜁′𝑎ቇ ቆ𝜓′𝑏 ቇ ቆ1 − 𝜁′𝑎ቇ ቆ1 − 𝜓′𝑏 ቇ቉⎦⎥⎥

⎥⎤, (10) 

where Ωଵ and Ωଶ are arbitrary constants. 

4. Solution of model for time period 

Rayleigh Ritz technique (i.e., maximum strain energy 𝑉௦  must equal to maximum kinetic 
energy 𝑇௦) is applied to obtain solution of the model. Therefore, we must have: 𝛿(𝑉௦ − 𝑇௦) = 0. (11) 

Using Eqs. (7) and (8), Eq. (11) becomes: 𝛿(𝑉௦∗ − 𝜆ଶ𝑇௦∗) = 0, (12) 

where: 

𝑉௦∗ = 1cosସ𝜃 න௔
଴ න௕

଴ ⎣⎢⎢
⎡൜1 − 𝛼 ൬1 − 𝜁ᇱଶ𝑎ଶ ൰ ൬1 − 𝜓ᇱଶ𝑏ଶ ൰ൠ ൬1 + 𝛽 𝜁ᇱ𝑎 ൰ଷ

[1 − 𝜈଴ଶ(1 − 𝑚ଶΛ)ଶ] ⎦⎥⎥
⎤

     ·
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ᇱଶቇଶ − 4Υsin𝜃 ቆ∂ଶΦ∂𝜁ᇱଶቇ ቆ ∂ଶΦ∂𝜁ᇱ ∂𝜓ᇱቇ     +2Υଶ[sinଶ𝜃 + 𝜈଴(1 − 𝑚ଶΛ)cosଶ𝜃] ቆ∂ଶΦ∂𝜁ᇱଶቇ ቆ∂ଶΦ∂𝜓ᇱଶቇ
     +2Υଶ[1 + sinଶ𝜃 − 𝜈଴(1 − 𝑚ଶΛ)cosଶ𝜃] ቆ ∂ଶΦ∂𝜁ᇱ ∂𝜓ᇱቇଶ
     −4Υଷsin𝜃 ቆ ∂ଶΦ∂𝜁ᇱ ∂𝜓ᇱቇ ቆ∂ଶΦ∂𝜓ᇱଶቇ + Υସ ቆ∂ଶΦ∂𝜓ᇱଶቇଶ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

𝑑𝜓ᇱ𝑑𝜁ᇱ,  

𝑇௦∗ = න௔
଴ න௕

଴ ቈ(1 − 𝑚ଵΛ) ቆ1 + 𝛽 𝜁′𝑎ቇ቉ Φଶ𝑑𝜓′𝑑𝜁′.  

here 𝜆ଶ = 12𝜌଴𝜔ଶ𝑎ସ 𝐸଴𝑙଴ଶ⁄  is frequency parameter. Eq. (12) consists of two unknown constants Ωଵ and Ωଶ. These two unknowns could be calculated as: ∂∂Ω௡ (𝑉௦∗ − 𝜆ଶ𝑇௦∗) = 0,   𝑛 = 1,2. (13) 

After simplifying Eq. (13) we get: 𝑟௡ଵΩଵ + 𝑟௡ଶΩଶ = 0,   𝑛 = 1,2. (14) 
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To obtain frequency equation, the determinant of coefficient matrix of Eq. (14) must zero: ቚ𝑟ଵଵ 𝑟ଵଶ𝑟ଶଵ 𝑟ଶଶቚ = 0, (15) 

where coefficients 𝑟ଵଵ, 𝑟ଵଶ = 𝑟ଶଵ, 𝑟ଶଶ comprises plate parameters and frequency parameter (𝜆). 
Time period of vibration is calculated as: 𝐾 = 2 𝜋𝜆 ,  

where 𝜆 is frequency obtained from Eq. (15). 

5. Results and discussion 

Time period (in seconds) for vibrational frequency of non-homogeneous and non-uniform 
parallelogram plate is calculated on different variation of plate parameters (taper constant 𝛽 , 
thermal gradient 𝛼, non-homogeneity constants 𝑚ଵ, 𝑚ଶ and skew angle 𝜃) and presented with the 
help of tables. 

Time period for three different values of thermal gradient 𝛼 and non homogeneity constants 𝑚ଵ, 𝑚ଶ i.e., 𝛼 = 𝑚ଵ = 𝑚ଶ = 0.2,0.4,0.6 is presented in Table 1, corresponding to taper constant 𝛽. Table 1 conclude that increasing in taper constant 𝛽 results the decreasing in time period for all 
the three cases mentioned in Table 1. On the other aspect, increasing in combined value of thermal 
gradient 𝛼 and non-homogeneity constants 𝑚ଵ, 𝑚ଶ results the increasing in time period. 

Time period for three different value of taper constant 𝛽 and non homogeneity constants 𝑚ଵ, 𝑚ଶ i.e., 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.2,0.4,0.6 tabulated in Table 2 with respect to thermal gradient 𝛼. Here, 
increasing in thermal gradient 𝛼 implies the increasing in time period and increasing in combined 
value of taper constant 𝛽 and non homogeneity constants 𝑚ଵ, 𝑚ଶ results the decreasing in time 
period. 

Table 1. Time period 𝐾[𝑠] vs taper constant 𝛽 for 𝜃 =45°, 𝑎/𝑏 = 1.5 𝛽 𝛼 = 𝑚ଵ = 𝑚ଶ = 0.2 𝛼 = 𝑚ଵ = 𝑚ଶ = 0.4 𝛼 = 𝑚ଵ = 𝑚ଶ = 0.6𝐾ଵ 𝐾ଶ 𝐾ଵ 𝐾ଶ 𝐾ଵ 𝐾ଶ 
0.0 0.013660  0.053844  0.014189  0.055826  0.014746  0.057922 
0.2 0.012400  0.048836  0.012875  0.050595  0.013374  0.052443 
0.4 0.011330  0.044576  0.011761  0.046147  0.012212  0.047796 
0.6 0.010415  0.040932  0.010809  0.042352  0.011220  0.043835 
0.8 0.009628  0.037793  0.009989  0.039085  0.010367  0.040432 
1.0 0.008945  0.035073  0.009279  0.036257  0.009627  0.037489 

Table 2. Time period 𝐾[𝑠] vs thermal gradient 𝛼 for 𝜃 = 45°, 𝑎/𝑏 = 1.5 𝛼 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.2 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.4 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.6𝐾ଵ 𝐾ଶ 𝐾ଵ 𝐾ଶ 𝐾ଵ 𝐾ଶ 
0.0 0.012103  0.047671  0.011202  0.043976  0.010424  0.040772 
0.2 0.012400  0.048836  0.011471  0.045022  0.010670  0.041720 
0.4 0.012719  0.050093  0.011761  0.046147  0.010935  0.042738 
0.6 0.013065  0.051450  0.012073  0.047363  0.011220  0.043835 
0.8 0.013440  0.052993  0.012412  0.048679  0.011529  0.045019 

Time period for three different value of thermal gradient 𝛼  and tapering constant 𝛽  i.e.,  𝛼 = 𝛽 =  0.2,0.4,0.6 is tabulated in Table 3 corresponding to simultaneous variation in 
non-homogeneity constants 𝑚ଵ, 𝑚ଶ. Here also increasing in non-homogeneity constants 𝑚ଵ, 𝑚ଶ 
results the increase in time period for all the three value of thermal gradient 𝛼  and tapering 
constant 𝛽 but wih less rate of increment. Also increasing in combined value of thermal gradient 



MODELLING ON VIBRATION OF SKEW PLATE WITH THICKNESS AND TEMPERATURE VARIATION.  
REETA BHARDWAJ, NAVEEN MANI 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 11 

𝛼 and tapering constant 𝛽 results the decrease in the time period. 
Time period for three different values of thermal gradient 𝛼 , taper constant 𝛽  and 

non-homogeneity constants 𝑚ଵ , 𝑚ଶ  i.e., 𝛼 = 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.2,0.4,0.6 is accommodated in 
Table 4 corresponding to skew angle 𝜃. Increasing in skew angle as well as in the combined value 
of thermal gradient 𝛼 , taper constant 𝛽  and non-homogeneity constants 𝑚ଵ , 𝑚ଶ , results the 
decrease in time period. The rate of decrement with increasing value of skew angle 𝜃 is very high 
in comparison to rate of decrement with the combined increasing value of other plate parameters. 

Table 3. Time period 𝐾[𝑠] vs non-homogeneity 𝑚ଵ, 𝑚ଶ for 𝜃 = 45°,𝑎/𝑏 = 1.5 𝑚ଵ, 𝑚ଶ 𝛼 = 𝛽 = 0.2 𝛼 = 𝛽 = 0.4 𝛼 = 𝛽 = 0.6𝐾ଵ 𝐾ଶ 𝐾ଵ 𝐾ଶ 𝐾ଵ 𝐾ଶ 
0.0 0.012238 0.048318 0.011463 0.045208 0.010808 0.042559 
0.2 0.012400 0.048839 0.011616 0.045691 0.010954 0.043015 
0.4 0.012552 0.049329 0.011761 0.046150 0.011091 0.043439 
0.6 0.012696  0.049791  0.011897  0.046577  0.011220  0.043835 
0.8 0.012832  0.050222  0.012024  0.046970  0.011340  0.044199 

Table 4. Time period 𝐾[𝑠] vs skew angle 𝜃 for 𝑎/𝑏 = 1.5 𝜃 𝛼 = 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.4 𝛼 = 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.4 𝛼 = 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.6𝐾ଵ 𝐾ଶ 𝐾ଵ 𝐾ଶ 𝐾ଵ 𝐾ଶ 
0 0.025592 0.102547 0.024292 0.097031 0.023189 0.092310 
15 0.023771 0.095011 0.022559 0.089878 0.021533 0.085483 
30 0.018887 0.074999 0.017919 0.070912 0.017101 0.067406 
45 0.012400 0.048836 0.011761 0.046147 0.011220 0.043835 
60 0.006108 0.023881 0.005791 0.022555 0.005524 0.021409 

6. Conclusions 

Present model provides time period of parallelogram plate on different variation of plate 
parameters. From the results discussion, we conclude that increasing in taper constant 𝛽 and skew 
angle 𝜃, results the decrease in time period as shown in Tables 1 and Table 4. But increasing in 
thermal gradient 𝛼 and non-homogeneity constants (simultaneous variation) 𝑚ଵ, 𝑚ଶ, results the 
increase in time period as shown in Tables 2 and Table 3. The present model provides a good 
appropriate data for time period of frequency which will be helpful for structural design. 
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