Performance evaluation of LoRa LPWAN technology for IoT-based blast-induced ground vibration system

Prashanth Ragam1 , D. S. Nimaje2

1, 2National Institute of Technology, Rourkela, India

2Corresponding author

Journal of Measurements in Engineering, Vol. 7, Issue 3, 2019, p. 119-133.
Received 13 February 2019; received in revised form 31 May 2019; accepted 14 June 2019; published 30 September 2019

Copyright © 2019 Prashanth Ragam, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License
ERRATUM. Mr. Devendra Kumar Yadav and Mr. Guntha Karthik did contribute to the research, which resulted in the publication of this Article, but their names were not included in the list of co-authors. For more information read Editor's Note.

The recent proliferation of wireless sensor networks (WSNs) evolution into the Internet of Things (IoT) vision enables a variety of low-cost monitoring applications which allows a seamless transfer of information via embedded computing and network devices. Ambiguous ground vibration can be induced by blasting demolition is a severe concern which grievously damages the nearby dwellings and plants. It is an indispensable prerequisite for measuring the blast-induced ground vibration (BIGV), accomplishing a topical and most active research area. Thus, proposed and developed an architecture which emphasizes the IoT realm and implements a low-power wide-area networks (LPWANs) based system. Especially, using the available Long-Range (LoRa) Correct as Radio Frequency (RF) module, construct a WSN configuration for acquisition and streaming of required data from and to an IoT gateway. The system can wirelessly deliver the information to mine management and surrounding rural peoples to aware of the intensity of BIGV level. In this article, an endeavor has been made to introduce a LoRa WAN connectivity and proved the potentiality of the integrated WSN paradigm by testing of data transmission-reception in a non-line of sight (NLOS) condition. The path loss metrics and other required parameters have been measured using the LoRa WAN technology at 2.4 GHz frequency.

Keywords: LoRa, RSSI, BIGV, path loss index, LoRa WAN, IoT.


The authors would like to thank Guntha Karthik and Devendra Kumar Yadav, Ph.D. Scholars, National Institute of Technology, Rourkela for their invaluable support during the performance evaluation test of LoRa and ZigBee RF modules.


  1. Khandelwal M., Singh T. N. Prediction of blast-induced ground vibration using artificial neural. International Journal of Rock Mechanics and Mining Science, Vol. 46, Issue 7, 2009, p. 1214-1222. [Publisher]
  2. Ragam P., Sahebraoji N. D. Application of MEMS-based accelerometer wireless sensor systems for monitoring of blast-induced ground vibration and structural health: a review. IET Wireless Sensor Systems, Vol. 9, Issue 3, 2019, p. 103-109. [Publisher]
  3. Roadmap for the Future. Internet of Things in 2020, [Search CrossRef]
  4. Wang F., Hu L., Hu J., Zhou J., Zhao K. Recent advances in the internet of things: multiple perspectives. IETE Technical Review, Vol. 34, Issue 2, 2017, p. 122-132. [Publisher]
  5. Gupta R., Gupta R. ABC of internet of things: advancements, benefits, challenges, enablers, and facilities of IoT. Proceedings of Symposium on Colossal Data Analysis and Networking (CDAN) Indore, India, 2016. [Publisher]
  6. Scilimati V., Petitti A., Boccadoro P., Colella R., Di Paola D., Milella A., Grieco L. A. Industrial Internet of things at work: a case study analysis in robotic-aided environmental monitoring. IET Wireless Sensor Systems, Vol. 7, Issue 5, 2017, p. 155-162. [Publisher]
  7. IEEE P2413 standard for an architectural framework for the internet of things (IoT). IEEE Standard Association, https://standards. [Search CrossRef]
  8. Mehmood N. Q., Culmone R., Mostarda L. A. flexible and scalable architecture for real-time ANT+ sensor data acquisition and NoSQL storage. International Journal of Distributed Sensor Networks, Vol. 12, Issue 5, 2016, p. 3651591. [Publisher]
  9. Dagdeviren O., Korkmaz I., Tekbacak F., Erciyes K. A survey of agent technologies for wireless sensor networks. IETE Technical Review, Vol. 28, Issue 2, 2011, p. 168-184. [Publisher]
  10. Bandyopadhyay L. K., Chaulya S. K., Mishra P. K., Choure A., Baveja B. M. Wireless information and safety system for mines. Journal of Scientific and Industrial Research, Vol. 68, Issue 5, 2009, p. 107-117. [Search CrossRef]
  11. Li M., Liu Y. Underground coal mine monitoring with wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), Vol. 5, Issue 2, 2009, p. 10. [Publisher]
  12. Zhang Y., Yang W., Han D., Kim Y. I. An integrated environment monitoring system for underground coal mines – wireless sensor network subsystem with multi-parameter monitoring. Sensors, Vol. 14, Issue 7, 2014, p. 13149-13170. [Publisher]
  13. Kwon S. W., Kim J. Y., Yoo H. S., Cho M. Y. Wireless vibration sensor for tunnel construction. Proceeding of the 23rd International Symposium on Automation and Robotics in Construction, Tokyo, 2006, p. 614-620. [Search CrossRef]
  14. Kim J. R., Yoo H. S., Kwon S. W., Cho M. Y. Integrated tunnel monitoring system using wireless automated data collection technology. Proceeding of 25th International Symposium on Automation and Robotics in Construction, Vilnius, Lithuania, 2008, p. 373-342. [Search CrossRef]
  15. Kim J., Kwon S., Park S., Kim Y. A MEMS-based commutation module with vibration sensor for wireless sensor network-based tunnel-blasting monitoring. KSCE Journal of Civil Engineering, Vol. 17, Issue 7, 2013, p. 1644-1653. [Publisher]
  16. Lai J., Fan H., Chen J., Qiu J., Wang K. Blasting vibration monitoring of undercrossing railway tunnel using wireless sensor network. International Journal of Distributed Sensor Networks, Vol. 11, Issue 6, 2015, p. 703980. [Publisher]
  17. Ooi G. L., Wang Y. H. Applying MEMS accelerometers to measure ground vibration and characterize landslide initiation features in laboratory flume test. Proceedings of Geo congress, Geo-Characterization and Modelling for Sustainability, Atlanta, Georgia, 2014, p. 2019-2028. [Search CrossRef]
  18. Alvarado M., Gonzalez F., Fletcher A., Doshi A. Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors, Vol. 15, Issue 8, 2015, p. 19667-19687. [Publisher]
  19. Zhong M. S., Xie Q. M., Liu Y., Wu J. Y., Liu H. Q. Research status and prospect of remote intelligent monitoring system for engineering blasting vibration. Proceeding of 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer, China, 2016, p. 1444-1447. [Search CrossRef]
  20. Ragam P., Nimaje, D. S. Monitoring of blast-induced ground vibration using WSN and prediction with an ANN approach of ACC dungri limestone mine, India. Journal of Vibroengineering, Vol. 20, Issue 2, 2018, p. 1051-1062. [Publisher]
  21. Tan L., Wang N. Future internet: the internet of things. Proceeding of 3rd International Conference on Advanced Computer Theory Engineering (ICACTE), Chengdu, China, 2010, p. 376-380. [Search CrossRef]
  22. Lin H. H., Tsai H., Chan T. C., Chu, Y. S., Chen Y. C., Liao T. S., Fang Y. M., Lee B. J., Lee H. C. An open-source wireless mesh networking module for environmental monitoring. Proceeding of IEEE Instrumentation and Measurement Technology Conference (IMTC), 2015, p. 1002-1007. [Search CrossRef]
  23. A Technical Overview of LoRa and LoRaWAN, LoRa Alliance. San Ramon, CA, USA, 2015, [Search CrossRef]
  24. Kim J., Song J. A. Secure device-to-device link establishment scheme for LoRaWAN. IEEE Sensor Journal, Vol. 18, Issue 5, 2018, p. 2153-2160. [Publisher]
  25. Mahmoud M. S., Mohamad A. A. A study of efficient power consumption wireless communication techniques/modules for internet of things (IoT) applications. Advances in Internet Things, Vol. 6, 2016, p. 19-29. [Publisher]
  26. Mekki K., Bajic E., Chaxel F., Meyer F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, Vol. 5, Issue 1, 2019, p. 1-7. [Publisher]
  27. Reda H. T., Daely P. T., Kharel J., Shin S. Y. On the application of IoT: meteorological information display system based on LoRa wireless communication. IETE Technical Review, Vol. 35, Issue 3, 2017, p. 256-265. [Publisher]
  28. Semtech Corporation SX1272/3/6/7/8. LoRa Modem Designer’6s Guide. Semtech Corporation, [Search CrossRef]
  29. Kacz P., Hyneica O., Fiedler P., Bradaeora Z., Kucera P. Range test with ZigBee in indoor environments. Proceeding of IFAC Programmable Devices and Embedded Systems, Czech Republic, 2006, p. 447-451. [Publisher]
  30. Xu L., He W., Li S. Internet of things in industries: a survey. IEEE Transactions on Industrial Informatics, Vol. 10, Issue 4, 2010, p. 2233-2243. [Publisher]
  31. Atzori L., Iera A., Morabito G. The internet of things: a survey. Computer Network, Vol. 54, Issue 15, 2010, p. 2787-2805. [Publisher]
  32. Berni A., Gregg W. O. On the utility of chirp modulation for digital signaling. IEEE Transactions on Communication, Vol. 21, Issue 6, 1973, p. 748-751. [Publisher]
  33. Centenaro M., Vangelista L., Zanella A., Zorzi M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communication, Vol. 23, Issue 5, 2016, p. 60-67. [Publisher]
  34. Rappaport T. S. Wireless Communications: Principles and Practice. Upper Saddle River, Prentice Hall PTR, 1996. [Search CrossRef]
  35. Goldhirsh J., Vogel W. J. Handbook of Propagation Effects for Vehicular and Personal Mobile Satellite Systems. Chapter 11.3, Report A2A-98-U-0-021, Applied Physics Laboratory, Johns Hopkins University,, 1998. [Search CrossRef]
  36. Seybold J. Introduction to RF Propagation. Hoboken, Wiley Interscience, 2005. [Publisher]
  37. Chrysikos T., Georgopoulos G., Kotsopoulos S. Wireless channel characterization for a home indoor propagation topology at 2.4 GHz. Proceeding of Wireless Telecommunications Symposium (WTS), New York, 2011. [Search CrossRef]
  38. Patri A., Nimaje D. S. Radio frequency propagation model and fading of wireless signal at 2.4 GHz in an underground coal mine. Journal of Southern African Institute of Mining and Metallurgy, Vol. 115, Issue 7, 2015, p. 629-636. [Publisher]
  39. Wang D., Song L., Kong X., Zhang Z. Near-ground path loss measurements and modeling for wireless sensor networks at 2.4 GHz. International Journal of Distributed +Sensor Network, Vol. 8, 8, p. 2012-969712. [Search CrossRef]
  40. Sarma A. D., Pandit S. N. N., Prasad M. V. S. N. Modelling of path loss using adaptive propagation technique for land mobile CM and MM wave communication systems. IETE Technical Review, Vol. 17, Issues 1-2, 2000, p. 37-41. [Publisher]
  41. Different Path loss models, /Estimating-the-ZigBee-transmission-range-ISM-band. [Search CrossRef]

Cited By

International Journal of Communication Systems
Seyed Mehdi Mousavi, Ahmad Khademzadeh, Amir Masoud Rahmani
Natural Resources Research
Bo Ke, Hoang Nguyen, Xuan-Nam Bui, Romulus Costache
Advances in Wireless Technologies and Telecommunication
Alberto Alvarellos González, Juan Rabuñal Dopico
Bulletin of Geography. Socio-economic Series
Dominika Karpińska, Mieczysław Kunz
Vibroengineering PROCEDIA
Quanhu Lei, Penggang Jin, Jian Yang, Songtao Ren, Hongtao Xu, Hongbin Li, Xibo Jiang
JVE Journals is rebranding to Extrica

Inspired by innovations from the previous century and the rapid growth during the last years, we are improving for excellence in your publishing experience

Read to know more
JVE Journals