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Abstract. There is a lot of literature concerning the topology optimization of structures under 
static loads with the bi-directional evolutionary structural optimization (BESO), but only few 
approaches has focus on the dynamics problems with the BESO. This paper presents the von Mises 
stress as a sensitivity number and a new filter scheme for the BESO method focusing on dynamics 
problems. Based on the proposed technique and the BESO method, we discuss two measures to 
reduce vibrations of structures subjected to single external harmonic loads at a user-defined point. 
The natural frequency-based measure (NFBM) shifts the natural frequency of the most significant 
mode away from the driving frequency, while the steady state dynamics-based measure (SSDBM) 
considers several modes and natural frequencies at the same time using modal superposition. 
Keywords: structural dynamics, topology optimization, BESO, von Mises stress, steady state 
dynamics. 

1. Introduction 

Structural optimization seeks to achieve the best performance for a structure while satisfying 
various constraints such as a given amount of material [1]. In recent decades, structural 
optimization methods have gained great progress with the increasing performance of computers 
and computing algorithms [2]. Structural optimization methods can be classified into three 
categories: sizing optimization, shape optimization and topology optimization [3]. Compared with 
other types of structural optimization, topology optimization of continuum structures is by far the 
most challenging technically [1]. Different types of topology optimization methods exist. As an 
important subtype, the evolutionary structural optimization (ESO) method was initially proposed 
by Xie and Steven based on a simple concept that a structure evolves towards an optimum by 
gradually removing less stressed material [4]. Yang expanded the ESO method to bi-directional 
evolutionary structural optimization (BESO) method allowing the recovery of the deleted 
elements which are neighboring to highly stressed elements [5]. In 2007, Huang and Xie improved 
the BESO method with a sensitivity filter scheme and a stabilization scheme using the history 
information [6], which is the latest major update for the BESO method. The latest version of BESO 
method includes the following procedure [6]: 1) Discretize the design domain using a finite 
element mesh; 2) Perform finite element analysis and then calculate the smoothed elemental 
sensitivity number; 3) Average the sensitivity number with its history information; 4) Determine 
the target volume for the next iteration; 5) Add and delete elements according to the sensitivity 
number; 6) Repeat steps 2-5 until the constraint volume is achieved. 

The BESO method has been used in several static optimization problems, but it is not widely 
used in dynamics problems. Possible reasons for this are the computation complexity and the 
possible deletion of load regions. 

In this paper, we propose the von Mises stress as a sensitivity number and a new filter scheme 
for the BESO method focusing on dynamics problems, and use it with a commercial Finite 
Element Analysis (FEA) software to implement the dynamics topology optimization. We will use 
the presented methods for the large-scale 3D topology optimization for machine tools in the future. 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2019.20673&domain=pdf&date_stamp=2019-04-25
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The organization of the paper is as follows: in Section 2, we define the use case and propose 
two vibration reduction measures. In Section 3, we clarify the selection of the sensitivity number 
for the BESO method and the new filter scheme. Based on Section 2 and Section 3, we implement 
the two measures and present one numerical example in Section 4 and 5. In Section 6, we give a 
brief comparison between proposed BESO methods in this paper and existing evolutionary 
methods (ESO and BESO). We present the conclusions from this study in Section 7. 

2. Dynamics optimization problem under a single external harmonic loading 

In many industrial use cases, especially in the machine tool industry engineers want to reduce 
the vibration amplitude at a user-defined point. This paper discuss two measures to achieve this 
goal for structures under a single external harmonic loading. The NFBM shifts the natural 
frequency of the most significant mode away from the driving frequency, while the SSDBM 
consider several modes and natural frequencies at the same time using modal superposition. 

3. Sensitivity number and filter scheme 

The basic idea of the BESO method is to remove the unnecessary material from the structure. 
A reliable indicator of the inefficient use of material is a low value of stress in some parts of the 
structure. Nowadays, the distortion energy theory for ductile material uses the von Mises stress as 
an equivalent or effective stress to indicate the stress level of a continuum element within a 
structure under the three-dimensional loading [7]: 𝜎 =  1√2 (𝜎 − 𝜎 ) + (𝜎 − 𝜎 ) + (𝜎 − 𝜎 ) / . (1) 

The von Mises stress has been applied with the BESO method for static problems [8]. In this 
paper, the von Mises stress is used with the BESO method to indicate the inefficient use of material 
under dynamic loading.  

Most of all BESO is a hard kill method, which means one element can only be solid or void 
and not have intermediate densities. This property is one of the most important advantages of the 
BESO method, which saves much computation time. But it can also cause a serious problem: 
sometimes it removes the elements, which transmit external loads into the structure. In order to 
avoid this problem, we propose a new filter scheme for the sensitivity number: 

𝜎 = 𝜎𝜎 _ ,    𝜎 = 𝜎𝜎 _ ,    𝛼 = 𝑤 ∗ 𝜎 + (1 − 𝑤) ∗ 𝜎𝑟 , (2) 

where 𝜎 , 𝜎 _  and 𝜎  are the von Mises stress for the 𝑖th element,  the maximum of von Mises 
stress, and the normalized von Mises stress for the 𝑖th element in static simulation. 𝜎 , 𝜎 _   
and 𝜎  are the von Mises stress for the 𝑖th element, the maximum of von Mises stress and the 
normalized von Mises stress for the 𝑖 th element in dynamics simulation. 𝛼  is the sensitivity 
number for 𝑖th element, 𝑤 is the weighting factor of the static simulation, 1 − 𝑤 is the weighting 
factor of the dynamics simulation, 𝑟  is the distance between centroid of the 𝑖th element and the 
load point, and 𝑝 is the distance penalty factor. The influence of the distance 𝑟  increases with the 𝑝, where 𝑝 is not smaller than 0. This filter scheme can be expanded to multiple loading points. 

We take the dynamics analysis, static analysis and the position of the load point into account 
with this filter scheme. The influences of the static analysis and the position of the load point 
depend on the weighting factor 𝑤 and the distance penalty factor 𝑝. 
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4. Vibration reduction measures 

4.1. Natural frequency based measure (NFBM) 

In this subsection, we discuss how to push the most significant natural frequency away from 
the driving frequency with the BESO method.  

Because the BESO method has a standard procedure as mentioned in the introduction, here we 
only clarify our implementation of step 2, the other steps are same as the standard procedure. In 
step 2 of the BESO method, we perform the FEM analysis, which includes the static stress 
simulation, the natural frequency extraction simulation and the steady state dynamics simulation. 
We get the static von Mises stress from the static stress simulation. As a result of the natural 
frequency extraction simulation we get the natural frequency and the dynamic von Mises stress of 
all modes, then we use the static von Mises stress and dynamic von Mises stress of the most 
significant mode to calculate the sensitivity number with the filter scheme proposed in Section 3. 
Thereafter we smooth the filtered sensitivity number again with a mesh-dependency and 
checkerboard filter proposed in paper von Xie and Huang [6]. 

The natural frequencies of the structure change after every iteration step, therefore the order 
of the modes could also vary, this phenomenon is called mode switching. In order to avoid the 
influence of the mode switching and track the most significant mode after every iteration step, we 
employ a mode tracking technique using a so-called Modal Assurance Criterion (MAC) [9]: 

𝑀𝐴𝐶 =  |{𝜑 } {𝜑 }|({𝜑 } {𝜑 })({𝜑 } {𝜑 }), (3) 

where {𝜑 } is the reference eigen vector and {𝜑 } is the test eigen vector. The MAC takes values 
between 0 (representing no consistent correspondence) and 1 (representing a consistent 
correspondence).  

We save the eigen vector of the most significant natural frequency after each iteration and use 
it as the reference eigen vector {𝜑 } in the next iteration, the eigen vectors after the new iteration 
are the test eigen vectors {𝜑 }. We calculate MAC for all the test eigen vectors, and the test eigen 
vector with the maximum of MAC values is used as the new reference vector, the associated mode 
being the target mode for the optimization.  

4.2. Steady state dynamics-based measure (SSDBM) 

The most important difference between the SSDBM and the NFBM is how the dynamic von 
Mises stress is derived. In step 2 of the BESO method, the NFBM uses the dynamic von Mises 
stress in the natural frequency extraction simulation as the dynamic sensitivity indicator. Here, we 
use the dynamic von Mises stress in the steady state dynamics simulation as the dynamic 
sensitivity indicator. 

Because the SSDBM concerns about the superposition of all the calculated modes, we do not 
need the MAC mode tracking technique. 

5. Numerical example 

We present one numerical example to show the effect of those two measures. The example is 
a traditional 3D cantilever beam as shown in Fig. 1. The external harmonic load excites the beam 
at the middle point of the right edge with a driving frequency of 7500 Hz. The target volume is 
70 % of the design domain. The objective is to minimize the vibration amplitude in 𝑌-direction at 
the load point. We calculate the vibration amplitude at the load point in the mode-based steady 
state dynamics analysis, which considers the first 10 modes in this example. We set the above 
proposed weighting factor of the static simulation 𝑤 as 0.1 and the distance penalty factor p as 0.5 
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(see Eq. (2)).  
The first four modes before the optimization process are shown in Fig. 1. 

 
Fig. 1. Design problem for the example 

5.1. Vibration reduction with the NFBM 

Mode 2 and 3 are both significant modes, because their natural frequencies are near the driving 
frequency. In order to pick the most significant one, we observe these two mode shapes as shown 
in Fig. 1. The displacement of load point in mode 2 is mainly in 𝑌-direction whereas in mode 3 is 
mainly in 𝑋-direction. Because we only consider the vibration in 𝑌-direction in our example, the 
mode 2 is most relevant. 

Fig. 2 shows the optimization history with the NFBM. In the first ten iterations, the 
displacement at load point reduces obviously, because the natural frequency of mode 2 increases 
and therefore moves away from the driving frequency. The second natural frequency still increases 
after 10 iterations, but the fourth natural frequency decreases dramatically, the displacement of 
the load point in mode 4 is also mainly in 𝑌 -direction, so the vibration reduction effect is 
compensated. The displacement starts to increase after 16 iterations, which means the total 
influence of other 9 modes has suppressed the influence of the second mode. As shown in (d) of 
Fig. 2, the mode 2 moves away from the driving frequency, while another significant mode moves 
closer. The most significant mode could change after the turnover point, which is shown in (b) of 
Fig. 2. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. Optimization history: a) frequency, b) displacement, c) topology history, d) FRF 

5.2. Vibration reduction with the SSDBM 

Fig. 3 shows the optimization history with the SSDBM. We can see clearly, the displacement 
at load point keeps decreasing for 30 iterations. Because this measure considers not only the most 
significant mode 2, but also other 9 modes. As shown in Fig. 3, the second natural frequency 
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increases more slowly as in the NFBM, but mode 1 is pushed away from the driving frequency 
and the mode 4 approaches the driving frequency slower than with the NFBM. The synergy effect 
of the changes of all natural frequencies contribute to the continuous minimization of the vibration 
at the load point.  

The vibration reduction slows with the increasing iteration number. The reason for this is: one 
can’t reduce the vibration and the amount of structure material at the same time with no limit.  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. Optimization history: a) frequency, b) displacement, c) topology history, d) FRF 

6. A brief comparison with existing ESO and BESO methods 

Xie and Steven used a hard-kill ESO method for dynamics optimization problems in 1990s 
[10]. They calculated the sensitivity number for each element as follows: 𝛼 =  1𝑚 {𝑢 } (𝜔 𝑀 − 𝐾 ){𝑢 }, (4) 

where 𝛼 , 𝑚 , 𝑢 , 𝜔  are the elemental sensitivity number, the modal mass, the elemental 
eigenvector and the corresponding natural frequency. 𝑀  and 𝐾  are the elemental mass matrix 
and the elemental stiffness matrix [10]. 

In order to avoid the direct deletion of elements, Huang has developed a new soft-kill BESO 
method for dynamics optimization problems in 2010 [11]. The sensitivity number is expressed as 
follows: 

𝛼 = ⎩⎪⎨
⎪⎧ 12𝜔 {𝑢 } 1 − 𝑥1 − 𝑥 𝐾 − 𝜔𝑝 𝑀 {𝑢 },   𝑥 = 1,12𝜔 {𝑢 } 𝑥 − 𝑥1 − 𝑥 𝐾 − 𝜔𝑝 𝑀 {𝑢 },    𝑥 =  𝑥 , (5) 

where 𝜔  and 𝑢  are the same as in Eq. (4). 𝑥 , 𝑥  are the elemental density and the lower limit 
of the density, 𝑝  is the penalty factor, 𝐾  and 𝑀  are the elemental stiffness matrix and the 
elemental mass matrix for the stiffer element [11]. 

As shown in Eqs. (4), (5), the sensitivity number of these two existing methods depends on the 
elemental mass matrix and the elemental stiffness matrix, which means that the calculation of the 
sensitivity number is much more expensive than in this paper, and it takes place outside the 
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commercial FEM software.  
Furthermore, these existing methods can only directly use the natural frequency as the 

optimization target. To the best of my knowledge, there is no existing ESO or BESO method 
concerning directly about the vibration reduction at a use-defined point of structures under a 
harmonic loading, while the SSDBM proposed in this paper use the vibration amplitude at a 
user-defined point directly as the optimization target. Additionally, the NFBM and the SSDBM 
take the influence of the load position into account at the same time. 

7. Conclusions  

This paper presents the von Mises stress as a sensitivity number and a new filter scheme for 
the BESO method focusing on dynamics topology optimization problems. The new filter scheme 
takes the static analysis, dynamic analysis and load position into account at the same time. Based 
on the extended BESO method, we propose two measures to reduce the vibration and demonstrate 
them with two numerical examples. Examples have shown that these two measures are effective 
for structures subjected to a single external harmonic loading, and that the vibration reduction 
effect of the SSDBM is better than the NFBM. Furthermore, the SSDBM does not need the MAC 
mode tracking technique, which saves computation time compared to the NFBM.  

The calculation of the von Mises stress is not computationally expensive and takes place within 
the commercial FEA software. Furthermore, the BESO method reduces the FEM problem size 
after every iteration. Because of these advantages, these two proposed measures are very efficient 
from the aspect of computation time. We will extend these two measures in the future research, in 
order to make it suitable for large-scale FEM-meshes. 
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