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Abstract. In order to investigate the mechanism of a rotor system with unbalance and blade-casing 
rubbing coupling faults, the vibration and rub force in a rotor system resulting from unbalance and 
blade-casing rubbing coupling faults are simulated. At first, a dynamic model of 0-2-1 form rotor 
is established, and a blade-casing model, which considered blade number, clearance between the 
blade tip and stator, stiffness and size of the blade, is introduced to the rotor model. The 
characteristics of unbalance and blade-casing rubbing coupling faults are analyzed by waterfall 
plot, spectrum, time domain chart of vibration and rub force, and the effects of speed and clearance 
between the blade tip and stator. Secondly, a rotor system tester is established according to the 
model structure. The experimental test of rubbing is simulated by adjusting the Feeding Device to 
control the clearance between the blade and stator. After simulation and experimental results were 
compared, it was found that fraction frequencies and high integer frequencies were affected by a 
blade-casing rubbing fault, the clearance and speed had different influence on the dynamic 
characteristic of rotor system with blade-casing rubbing fault. 
Keywords: aero-engine rotor system, blade-casing rubbing, vibration characteristic, rub force 
signal. 

1. Introduction 

The clearance between the blade tip and inner casing face has a great influence on compressor 
efficiency and fuel consumption of aero-engine. To improve the engine performance, one of the 
modern designs for such improvements aims at minimizing the blade-casing clearance [1]. 
However, with the decreasing clearance, the rotor and stator are at a high risk of collision which 
leads to rubbing faults. The rubbing has great effects on the vibration of the rotor system and has 
been recognized as the major causes of machine failure. 

The blade-casing rubbing fault dynamic characteristic of the rotor system is one of the hot 
issues on rotor dynamics. Padovan [2] considered the transient analysis of rubbing problems, 
assumed the blade as a cantilever beam, built a blade-casing of a Jeffcott system which ignored 
the bearing support force, and studied the effects of blade parameters on rub force and blade stress. 
On the basis of this study, Jiang [3] deduced a model of normal rubbing force between the blade 
and casing with the consideration of Centrifugal Force and rotating speed. Lesaffre [4, 5] built an 
analytic model for calculating the blade dynamic nonlinear behavior associated with critical 
speeds during deceleration and acceleration processes, and used it for system stability analyses. 
Batailly [6] adopted an explicit time integration method to deal with blade-casing interaction on 
the basis of the Lagrange multiplier method and Coulomb friction law. Nan [7] deduced a blade 
model according to the cantilever beam assumption and analyzed the effects of stiffness, mass and 
excitation force on impact vibration of the system. Sinha [8] derived the basic dynamical equations 
for a rotating radial cantilever blade, and analyzing the transient response of displacement 
vibration and rub-force load; Almeida [9] studied the influence of friction on the blade response 
by time-frequency graph to show the spectrum of a contact force that followed exactly Signorini’s 
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unilateral law with a single harmonic input; Ma [10] established a dynamic model of rotating 
shrouded blade considering the impact and analyzed the nonlinear and frequency characteristics 
of vibration and impact force, found that the impact force increased linearly with the increase of 
aerodynamic force amplitude. Legrand [11] proposed a three-dimensional investigation of 
structural contact interactions of turbo-machine, studied the displacement and contact force of 
nodes on blade, and analyzed the sensitivity to friction. 

The above researches mostly focused on vibration features of the blade and casing, and few of 
them applied blade-casing rub models directly on the rotor system which considered other parts. 
Many scholars study blade casing rubbing faults by using an experimental test. Kennedy [12] 
performed the experimental test and simulation analysis on the rubbing between a steel blade tip 
and a flat copper plate which considered the temperature field and blade deformation. Wang B. 
[13] proposed an experimental study on rotating blade and static casing rubbing faults, the 
influences of the penetration depth and sliding speed on the rubbing faults were researched. Jiang 
[14] and Ahrens et al. [15] investigated the dynamics of rotor rubbing by experiment and measured 
the force and the duration during the contact process. Ma et al. [16] put up a blade-casing test rig 
with elastic casing, and analyzed the effects of casing materials on the normal force at lower 
speeds. Abdelrhman et al. [17] put up a multi-stage rotor system experiment test, which consisted 
of three rows of rotors each with different numbers of blades, and used casing vibration signals to 
extract the rubbing fault features. On the model simulation, Chen [18] developed an improved 
force model of blade-casing rubbing fault, simulated all kinds of rubbing, and analyzed their 
acceleration response, but the blade model only considered the casing stiffness, and ignored the 
blade characteristics. On the other hand, the rubbing fault always occurs along with another fault, 
and the unbalance is a common twinborn fault resulting in the rubbing fault. But these researches 
neglected the unbalance of the rotor which mostly led to the rubbing effect. 

In this paper, a rotor-blade rubbing model which considered the rotor unbalance, blade number, 
stiffness and size is applied on a “0-2-1” form rotor system with bearing and coupling. The 
waterfall map, spectrogram, time domain chart are used to investigate the vibration characteristics 
of a rotor system with unbalance and blade-casing rubbing coupled faults and effects by the 
unbalance and blade-casing clearance. A “0-2-1” form rotor experimental test is built, and the 
vibration and rub force signals are collected and analyzed to verify the simulation results. 

2. Model descriptions 

2.1. Rotor system  

In order to study the nonlinear dynamic behavior under blade-casing fault, a mathematical 
model of a rotor-bearing system with rigid coupling is developed. The rotor model is developed 
as a two-shaft rotor connected by a gear coupling, with each shaft having a disk. The rotor is 
supported in the “0-2-1” form. The coupling is in the middle of the first and second supports, 
which are shown in Fig. 1. 

 
Fig. 1. Model of blade-rotor-bearing system 
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The motion equations of the above rotor system can be established as: 

⎩⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎧𝑀ௗଵ𝑦ሷௗଵ + 𝐶ௗ𝑦ሶௗଵ + 𝐾௥ሺ𝑦ௗଵ − 𝑦௥ଵሻ = 𝑀ௗଵ𝜔ଶ𝑒ௗଵsin𝜔𝑡 + 𝐹௉,௬ − 𝑀ௗଵ𝑔,𝑀ௗଵ𝑥ሷௗଵ + 𝐶ௗ𝑥ሶௗଵ + 𝐾௥ሺ𝑥ௗଵ − 𝑥௥ଵሻ = 𝑀ௗଵ𝜔ଶ𝑒ௗଵcos𝜔𝑡 + 𝐹௉,௫,𝑀ௗଶ𝑦ሷௗଶ + 𝐶ௗ𝑦ሶௗଶ + 𝐾௥ሺ𝑦ௗଶ − 𝑦௥଺ሻ + 𝐾௥ሺ𝑦ௗଶ − 𝑦௥଻ሻ = 𝑀ௗଶ𝜔ଶ𝑒ௗଶsin𝜔𝑡 −𝑀ௗଶ𝑔,𝑀ௗଶ𝑥ሷௗଶ + 𝐶ଵ𝑥ሶௗଶ + 𝐾௥ሺ𝑥ௗଶ − 𝑥௥଺ሻ + 𝐾௥ሺ𝑥ௗଶ − 𝑥௥଻ሻ = 𝑀ௗଶ𝜔ଶ𝑒ௗଶcos𝜔𝑡,𝑀௥ଵ𝑦ሷ௥ଵ + 𝐶௕𝑦ሶ௥ଵ + 𝐾௥ሺ𝑦௥ଵ − 𝑦௥ଶሻ + 𝐾௥ሺ𝑦௥ଵ − 𝑦ௗଵሻ = 𝐹௕,௬ଵ − 𝑀௥ଵ𝑔,𝑀௥ଵ𝑥ሷ௥ଵ + 𝐶௕𝑥ሶ௥ଵ + 𝐾௥ሺ𝑥௥ଵ − 𝑥௥ଶሻ + 𝐾௥ሺ𝑥௥ଵ − 𝑥ௗଵሻ = 𝐹௕,௫ଵ,𝑀௥ଶ𝑦ሷ௥ଶ + 𝐶௕𝑦ሶ௥ଶ + 𝐾௥ሺ𝑦௥ଶ − 𝑦௥ଵሻ + 𝐾௥ሺ𝑦௥ଶ − 𝑦௥ଷሻ = 𝐹௕,௬ଶ − 𝑀௥ଶ𝑔,𝑀௥ଶ𝑥ሷ௥ଶ + 𝐶௕𝑥ሶ௥ଶ + 𝐾௥ሺ𝑥௥ଶ − 𝑥௥ଵሻ + 𝐾௥ሺ𝑥௥ଶ − 𝑥௥ଷሻ = 𝐹௕,௫ଶ,𝑀௥ଷ𝑦ሷ௥ଷ + 𝐾௥ሺ𝑦௥ଷ − 𝑦௥ଶሻ + 𝐾௥ሺ𝑦௥ଷ − 𝑦௥ସሻ = −𝑀௥ଷ𝑔,𝑀௥ଷ𝑥ሷ௥ଷ + 𝐾௥ሺ𝑥௥ଷ − 𝑥௥ଶሻ + 𝐾௥ሺ𝑥௥ଷ − 𝑥௥ସሻ = 0,𝑀௥ସ𝑦ሷ௥ସ + 𝐾௥ሺ𝑦௥ସ − 𝑦௥ଷሻ + 𝐾௥ሺ𝑦௥ସ − 𝑦௥ହሻ = −𝑀௥ସ𝑔,𝑀௥ସ𝑥ሷ௥ସ + 𝐾௥ሺ𝑥௥ସ − 𝑥௥ଷሻ + 𝐾௥ሺ𝑥௥ସ − 𝑥௥ହሻ = 0,𝑀௥ହ𝑦ሷ௥ହ + 𝐾௥ሺ𝑦௥ହ − 𝑦௥ସሻ + 𝐾௥ሺ𝑦௥ହ − 𝑦௥଺ሻ = −𝑀௥ହ𝑔,𝑀௥ହ𝑥ሷ௥ହ + 𝐾௥ሺ𝑥௥ହ − 𝑥௥ସሻ + 𝐾௥ሺ𝑥௥ହ − 𝑥௥଺ሻ = 0,𝑀௥଺𝑦ሷ௥଺ + 𝐾௥ሺ𝑦௥଺ − 𝑦௥ହሻ + 𝐾௥ሺ𝑦௥଺ − 𝑦ௗଶሻ = −𝑀௥଺𝑔,𝑀௥଺𝑥ሷ௥଺ + 𝐾௥ሺ𝑥௥଺ − 𝑥௥ହሻ + 𝐾௥ሺ𝑥௥଺ − 𝑥ௗଶሻ = 0,𝑀௥଻𝑦ሷ௥଻ + 𝐾௥ሺ𝑦௥଻ − 𝑦ௗଶሻ = 𝐹௕,௬ଷ − 𝑀௥଻𝑔,𝑀௥଻𝑥ሷ௥଻ + 𝐾௥ሺ𝑥௥଻ − 𝑥ௗଶሻ = 𝐹௕,௫ଷ,

 (1)

where 𝑀ௗଵ and 𝑀ௗଶ are the masses of Disk 1 and Disk 2, 𝑀௥ଵ–𝑀௥଻ are the masses of rotor points, 𝐶ௗ and 𝐶௕ are viscous damping factors of disk and ball bearing, 𝐾௥ is the stiffness of rotor, 𝐹௣,௬ 
and 𝐹௣,௭ are blade-casing rub-impact force in the 𝑦-axis and 𝑧-axis directions, 𝐹௕,௬ and 𝐹௕,௭ are 
supported forces of ball bearing in the 𝑦-axis and 𝑧-axis directions, 𝑒ௗଵ and 𝑒ௗଶ are eccentricities 
of Disk 1 and Disk 2.  

2.2. Ball bearing with elastohydrodynamic lubrication 

The sketch of the ball bearing is shown in Fig. 2. For the bearing model ignoring the effect of 
the lubrication oil, the load distribution of the bearing can be determined based on the Hertzian 
contact theory [19, 20]. Due to the operating condition of the rotor system, the centrifugal forces 
of the rolling elements should be considered. The model of ball bearing can be developed by 
following assumptions: 

1. The outer rings are connected rigidly to the support and inner rings are fixed rigidly to the 
shaft. 

2. The inner race, ball, and outer race move in the plane of bearing only. 
3. The temperature of bearing is stable when the bearing is in operation. 
According to the Harris’ work [21], the contact stiffness of a ball bearing can be calculated as 

follows: 𝐻௕ = 2.69𝑈଴.଺଻𝐺଴.ହଷ𝑊ି଴.଴଺଻ሾ1 − 0.61expሺ−0.73𝑒௕ሻሿ, (2)

where 𝑄௕ is the load of ball, 𝑘௖ is the contact deformation coefficient of the ball, and 𝐹௕,௖ is the 
centrifugal force of the ball. The subscript “𝑗” refers to the ball number, and the superscripts “𝑖” 
and “𝑜” refer to the inner and outer races, respectively. 

Regarding the point contact, the oil film thickness equation proposed by Hamrock and Dawson 
[20] is appropriate for the ball bearing: 
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𝑘ாு௅௜ = 𝜕𝑄௝𝜕𝐻௕௜ = ቆ𝜕𝐻௕௜𝜕𝑄௝ቇିଵ= − 10.18023𝑈ഥି଴.଺଻𝐺̅ି଴.ହଷ𝑄௝ଵ.଴଺଻𝐸ᇱି଴.଴଺଻𝑅௢௜ ିଵ.ଵଷସሺ1 − 0.61𝑒ି଴.଻ଷ௄೐೗೔ሻିଵ, (3)

where 𝑈 = 𝜇௕𝑢 2𝐸′𝑅௢⁄  is a non-dimensional velocity, 𝐺 = 𝛼𝐸′ is a non-dimensional material 
parameter, 𝑊 = 𝑄௕ 𝐸′𝑅௢ଶ⁄  is a non-dimensional load parameter, 𝑒௕ is the ellipticity of the rolling 
element, 𝜇௕ is the dynamic viscosity, 𝑢 is the linear velocity, 𝐸′ = 𝐸 ሺ1 − 𝜈ଶሻ⁄ is the equivalent 
Young’s modulus, 𝜐 is the Poisson’s ratio, and 𝛼 is the pressure-viscosity coefficient. 

 
Fig. 2. Schematic diagram of ball bearing 

Then the oil film stiffness between the rolling element and the inner race can be calculated as: 

𝑘ாு௅௜ = 𝜕𝑄௝𝜕𝐻௕௜ = ቆ𝜕𝐻௕௜𝜕𝑄௝ቇିଵ= − 10.18023𝑈ഥି଴.଺଻𝐺̅ି଴.ହଷ𝑄௝ଵ.଴଺଻𝐸ᇱି଴.଴଺଻𝑅௢௜ ିଵ.ଵଷସሺ1 − 0.61𝑒ି଴.଻ଷ௄೐೗೔ሻିଵ. (4)

The oil film stiffness between the rolling element and the outer race, 𝑘ாு௅଴ , can be calculated 
in the same way. Thus, the total oil film stiffness of the bearing and rolling elements can be 
obtained: 

𝑘௕,௝ா = ቆ 1𝑘ாு௅௜ + 1𝑘ாு௅௢ ቇିଵ, (5)

𝑘௕,௝ = ቆ 1𝑘௕,௝ு + 1𝑘௕,௝ா ቇିଵ. (6)

Accordingly, the radial contact load of a rolling element can be calculated as: 𝑄௕,௝௜ = 𝑘௕,௝ ⋅ 𝛿௕,௝ . (7)

Then the supporting forces of the ball bearing in the 𝑦 and 𝑥 directions are given as: 

൞𝐹௕,௬ = −𝑄௕ 𝑦𝛿௕ ,𝐹௕,௫ = −𝑄௕ 𝑥𝛿௕ . (8)
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2.3. Rub-impact model 

On the basis of Padova’s study [2], a rub model, which considered the parameters of blade and 
the relationship between rotor vibration and blade tip, was proposed. This model relies on the 
following assumptions: 

1) The blade is assumed as a cantilever beam and fixed at the rotor mounting, the interaction 
between blades is neglected. 

2) The bare casing is assumed to be rigid compared to the blade flexibility. 
3) The connection structure between blade and rotor is ignored, they are assumed as a whole. 
4) The Coulomb type of frictional relationship is used in blade and casing connection. The 

material removal is no longer in consideration. 

 
Fig. 3. Blade-casing rub model 

Assuming the 𝑥, 𝑦 are the rotor vibrations in the in the 𝑥 and 𝑦 directions, the vibration of 𝑖th 
blade tip can be calculated as: ൜𝑥௕௧௜ = 𝑥 + ሺ𝑅௕ + 𝑅௧ሻcos𝛼௜,𝑦௕௧௜ = 𝑦 + ሺ𝑅௕ + 𝑅௧ሻsin𝛼௜ ,  (9)

where 𝑅௕ is the length of blade, 𝑅௧ is the radius of rotor, 𝛼௜ is the angle of the 𝑖th blade, and the 
radial displacement of 𝑖th blade tip can be calculated as: 

𝜂௜ = 𝑅௕ + 𝑅௖ + 𝛿 − ට𝑥௕௧௜ଶ + 𝑦௕௧௜ଶ . (10)

According to the research of Padova [2], the Normal rubbing force of 𝑖th blade can be as: 

𝐹௡௜ = 𝐸𝐼𝜋ଷට𝜂௜𝑅௕4𝐿ଶ ൬2𝜇 + 𝜋ට𝜂௜𝑅௕൰, (11)

𝐹்௜ = 𝜇𝐹௡௜ , (12)

where 𝐸 is the Young’s modulus of blade, 𝐼 is the moment of inertia of the blade, 𝐿 is the length 
of the blade, 𝜂௜ is the radial displacement of 𝑖th blade in the radial direction. 𝐸𝐼 is the flexural 
rigidity, in this paper, the blade is assumed to be rectangular. 

Then the rub-impact forces on the rotor in the 𝑦 and 𝑥 directions are given as: 

൜𝐹௣,௫𝐹௣,௬ൠ = −∑ 𝐹௡௜௠௜ୀଵ𝑒 ൤1 −𝜇𝜇 1 ൨ ቄ𝑥𝑦ቅ. (13)
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3. Experimental rotor test 

According to the structure of aero-engine, a test facility to simulate a compressor rotor system 
was built. Figure shows the overall test setup, test system and blade-casing rub simulation device. 
The system is simplified to a 0-2-1 support structure form. There are two supports between two 
disks and one support at the right side of the disk without blade. The left disk with blades which 
is disk 1 in Fig. 1 is to simulate the blade-casing rubbing faults. The rotor system was supported 
by three bearings, two shafts connected by coupling. To simulate the blade-casing rubbing, a 
feeding device was introduced. This device can adjust the clearance between stator and blade by 
the control system. Two force sensors mounted behind the stator are used to measure the rub force. 
The contact force is measured by using biaxial piezoelectric sensors (axial and tangential 
directions) located at the contact surface and on the mounting. The blades were mounted on the 
disk by rivet connection. The parameters of the experiment are shown in Table 1. 

 
a) b) 

Fig. 4. Rotor tester: a) tester structure, b) test system and feeding device of tester 

4. Computation solutions of model and results discussion 

4.1. Numerical method 

The motion equations of rotor system are solved by the Runge-Kutta method. The time varying 
data corresponding to the first 100 periods generated by numerical integration are deliberately 
excluded in order to discard the transient solutions. The Waterfall maps, time-domain maps and 
spectrogram were used to analyze the blade-casing rubbing vibration characteristics in the rotor 
system.  

4.2. Result and discussion 

4.2.1. Blade-casing rubbing characteristics 

In this section, the vibration of rotor system with blade-casing rub fault was analyzed. The 
simulation conditions were as follows: (1) the Young’s modulus of blade 𝐸 = 2.09×1011 Pa and 
the moment of inertia of the blade 𝐼 = 6.75×10-9m4; (2) the clearance 𝛿 = 10-5 m; (3) the number 
of blade 𝑚 = 6; (4) the friction coefficient 𝜇 = 0.3; (5) the rotation speeds are 500 and 1000 rpm. 

From Fig. 5, it can be found that the fundamental frequency is the maximum frequency at any 
speed, when the speed is 50 rad/s. It is found that the fundamental frequency amplitude is 1.624, 
and 2 × fundamental frequencies and some fraction frequencies also appear there. With the speed 
increasing, the amplitude of the fundamental frequency and 2 × fundamental frequencies have 
demonstrated a significant growth, the fundamental frequency increases to 16.49 at 200 rad/s and 
2 × fundamental frequencies increase from 0.2824 to 6.601 in the same range. The fraction 
frequency disappears, and high frequencies such as 4 × fundamental frequency, 5 × fundamental 
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frequency appear at the speed of 125 rad/s and increase with the speed gain. 

 
Fig. 5. Waterfall plot of blade-casing rub under different speed 

 
Fig. 6. Vibration response of blade-casing rub at 50 rad/s  

 
Fig. 7. Vibration response of blade-casing rub at 100 rad/s  
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Figs. 6, 7, 8 show the vibration response of blade-casing rub system under different speeds. It 
can be found that the time domain of the system has several tip peak signals, it is also found that 
the fraction frequencies and integer frequencies appear on the spectrogram. The amplitude of time 
domain signal has changed under the effect of rubbing. The fraction frequency also appears. With 
the increase of speed, the amplitude of vibration has been greatly increased, the tip peak signal 
became weak, with the fundamental frequency and 2 × fundamental frequency have a great 
development on spectrogram. It is also found that the amplitude of rub force is increased with the 
development of speed, and the time interval between appeared rub force was shortened. 

 
Fig. 8. Vibration response of blade-casing rub at 150 rad/s 

4.2.2. Effects of clearance 

Fig. 9 is a waterfall plot of blade-casing rub under different clearances at 100 rad/s. According 
to this waterfall plot, the amplitude of fundamental frequency decreased from 5.132 to 1.496, the 
amplitude of 2 × fundamental frequency decreases from 1.838 to 0.2367, the amplitude of 4 × 
fundamental frequency decreases from 0.2649 to 0.021, while the amplitude of 3 × fundamental 
frequency changes in the range of 0.12 to 0.14, and 5 × fundamental frequency changes in the 
range of 0.05 to 0.06. Multiple frequencies and fraction frequencies also demonstrate some 
reduction. That means the blade casing rubbing levels have a great influence on the fundamental 
frequency and 2 × fundamental frequency and 4 × fundamental frequency, but affected a little on 
3 × fundamental frequency and 5 × fundamental frequency. 

 
Fig. 9. Waterfall plot of blade-casing rub under different clearances 
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Figs. 10 and 11 show the vibration response of blade-casing rub system under different speeds. 
It is found that the clearance affects a little the amplitude of vibration on the time domain.  
However, the clearance affects obviously the fundamental frequency and 2 × fundamental 
frequency. The rub force decreases with increasing the clearance, and the interval time of rubbing 
also increases.  

 
Fig. 10. Vibration response of blade-casing rub at clearance 1.5e-6 m  

 
Fig. 11. Vibration response of blade-casing rub at clearance 2e-6 m  

5. Experimental results 

In the experiments, the blade-casing vibration data is collected at 500 rpm, 1000 rpm, 
1500 rpm. The Feeding Device is adjusted to control the clearance between the blade and stator, 
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and the displacement data and force signals are collected to analyze the accuracy of the 
blade-casing rub model. 

 
Fig. 12. Vibration response of blade-casing rub at 500 rpm 

 
Fig. 13. Vibration response of blade-casing rub at 1000 rpm 

The experiment results are shown in Figs. 12, 13 and 14. It is found that the vibration of 
placement has several tip peaks, and some fraction frequencies appear at the speed of 500 rpm. 
When the speed increases, the amplitude of displacement vibration demonstrates a great growth, 
the amplitude of fundamental frequency also develops greatly, it grows from 24.2 μm to 43.2 μm. 
The rub force is developed, and no distribution rule is applied for the rub force at 1500 rpm. The 
results are agreed well with the characteristics of simulation results, and demonstrate the 
correctness of the blade-casing rub model. 
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Fig. 14. Vibration response of blade-casing rub at 1500 rpm 

Ding Kunying designed the study, performed the research, analysed data, and wrote the paper. 
Wang Zhe designed research, performed research, analyzed data, and wrote the paper. Lu Xin 
helped develop the rotor model and developed the rotor test rig. Zhang Junhong did some of 
simulation works, and help to finish the fault experimental test. Ma Liang collected the simulation 
data and help on writing paper. 

6. Conclusions 

A model of blade-casing rub which considers the number, stiffness and size of blade is 
developed and applied on a “0-2-1” form rotor system with bearing and coupling, the 
characteristics of vibration and rub force signal are studied under different rotor speeds and 
clearances. 

The rotor model with blade-casing rubbing is used to simulate and calculate the response of 
displacement and rub force vibration under different conditions. Several results are obtained as 
follows: (1) The blade-casing rubbing affects the fundamental frequency, 2 × fundamental 
frequency, some fraction frequencies and high integer frequencies of the rotor system. (2) When 
the speed increases, the amplitude of the fundamental frequency and 2 × fundamental frequencies 
has a great development, and the fraction frequency begins disappearing, and the high integer 
frequency appears. When the clearance increases between blade and stator, the amplitude of the 
fundamental frequency, 2 × fundamental frequencies has great decreasing trend, fraction 
frequencies and high integer frequencies also decrease but not so obviously. (3) The rub force 
amplitude and distribution are also affected by the clearance and speed, the amplitude of rub force 
increases after the speed growth and clearance decrease, the time interval between rub force 
generations is shortened with the growth of speed and decrease of clearance. 

A rotor system tester is established according to the model configuration. The blade-casing 
rubbing experiment is made by adjusting the Feeding Device to control the clearance between the 
blade and stator. The experimental results are agreed well with the simulation and demonstrate the 
correctness of the blade-casing rubbing model. 
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