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Abstract. We consider a method of applied symbolic dynamics which may be used to obtain wide 
spectrum of characteristics of complex dynamical systems: approximation of invariant sets, 
estimation of topological entropy and approximation of invariant measures. The method has 
received wide acceptance in studying complex dynamical systems. The main idea of the method 
is to describe the system behaviour approximately by means of an oriented graph (called symbolic 
image). Such a graph is a representation of symbolic dynamical system which is more 
appropriately known as topological Markov chain. There exists a correspondence between 
trajectories of a given system and paths on the graph, which allows us to design algorithms for 
estimation of topological entropy, approximate invariant measures of a given system by using 
stationary flows on the graph and calculate corresponding metric entropies. These values 
characterize complex behaviour of dynamical systems such as the existence of trajectories with 
large periods and chaotic regimes. The results of experiments are given for systems with chaotic 
dynamics. 
Keywords: dynamical systems, applied symbolic dynamics, topological entropy, symbolic  
image, invariant measure. 

1. Introduction 

Symbolic dynamical systems form an important class of dynamical systems. They are defined 
on the space of infinite symbol sequences which are constructed as words over a finite alphabet. 
On such a space one may consider shift operator that shifts a sequence one symbol left. These 
systems are often used for the coding smooth dynamical systems. The coding means that we 
consider a finite partition of a phase space and assign a symbol from a finite alphabet to each 
element of the partition. Then a trajectory may be written (coded) as a symbol sequence in 
accordance with the transition of a trajectory from one partition element to another, being one step 
along the trajectory corresponds to one step in symbol sequence, i.e. the action of shift map. The 
coding describes the order in which the points of a trajectory visit elements of the partition.  

The methods implementing ideas of symbolic dynamics are said to be applied symbolic 
methods. The work of J. Hadamar [1] published in 1898 is likely the first example of the 
application of symbolic dynamics. The author used trajectory coding for description of global 
behavior of geodesics on the surfaces with negative curvature. H. Morse and G. Hedlung [2, 3], 
and R. Bowen [4] contributed significantly to the progress of the method. V. Alekseev [5] applied 
it for celestial mechanics problems. To study global structure of dynamical systems C. Hsu 
elaborated “cell-to-cell mapping” method [6]. He considered cells of a given partition and their 
images under the action of a system. Two variants of such mapping were proposed, but symbolic 
dynamics was not used. M. Delnitz, A. Hohmann and O. Junge [7, 8] considered set-oriented 
methods that use graph for representation of the dynamics of a system and the subdivision technics 
to refine the initial covering and obtain more detailed information about the system behaviour. 
Symbol sequences were not used. 

Of particular interest is the application of symbol sequences to study chaotic attractors in 
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discrete discontinuous systems which are models of inverter systems [9], and in periodic 
nonautonomous systems [10, 11], where the authors considered stroboscopic map and analysed 
its behaviour by using symbolic dynamics. 

The method of symbolic image in which the transitions of a trajectory between partition 
elements are represented by an oriented graph was proposed by G. Osipenko [12]. This approach 
combines C. Hsu’s idea and symbolic dynamics. The obtained graph is the topological Markov 
chain defined by its adjacency matrix, and symbol sequences correspond to paths on the graph. 
This method was successfully applied to approximation of invariant sets and Morse spectrum [13]. 

In this work we propose the approach to the investigation of dynamical systems which is based 
on ideas of the symbolic image method and allows us to elaborate algorithms for an approximation 
of invariant measures of dynamical systems and estimation of such important characteristics as 
topological and metric entropy.  

Any invariant measure of the system generates a stationary flow on the graph of symbolic 
image. To construct such a flow, we designed and implemented algorithms which are based on 
finding simple cycles (the algorithm was implemented for 3 variants of assigning weight to a 
cycle), and the balance method. It is significant that by constructing stationary flows by different 
ways we obtain an interval for metric entropies, being the method of simple cycles gives minimal 
value for metric entropy and the balance method gives maximal one. Topological entropy 
calculated by adjacency matrix of symbolic image turns out to be more than maximal metric 
entropy. To illustrate our approach, we give numerical results for two chaotic maps. 

2. Symbolic dynamics 

2.1. Space of sequences 

Symbolic dynamical systems are defined on the space of symbol sequences and may be models 
for smooth dynamical systems or used for their coding. 

For a given natural number 𝑚 ≥ 2 consider the space of bi-infinite sequences of the form: Ω௠ = {𝜔 = (… , 𝜔ିଵ, 𝜔଴, 𝜔ଵ, … ), 𝜔௜ ∈ {0,1, … , 𝑚 − 1}, 𝑖 ∈ 𝑍}. (1) 

By the same way one may consider the space of infinite sequences: Ω௠ோ = {𝜔 = (𝜔଴, 𝜔ଵ, … ), 𝜔௜ ∈ {0,1, … , 𝑚 − 1}, 𝑖 ∈ 𝑁}. (2) 

For the space defined by Eq. (1) shift map 𝜎 is introduced as: 𝜎:  Ω௠ → Ω௠,     𝜎(ω) = 𝜔ᇱ = (… 𝜔଴ᇱ , 𝜔ଵᇱ , … ),      𝜔௡ᇱ = 𝜔௡ାଵ,  

and for Eq. (2) shift map may be defined analogously. The restriction of shift map 𝜎 on any closed 
invariant set Ω௦ of the space of sequences is said to be symbolic dynamical system. 

2.2. Topological Markov chain 

Topological Markov chains form the class of symbolic dynamical systems which is defined as 
follows. Consider space Ω௠ and {0, 1}-matrix 𝐴 = ൛𝑎௜௝ൟ, 𝑖, 𝑗 ∈ {0, 𝑚 − 1}. 

Now construct the space of sequences defined by 𝐴 in the following manner: Ω஺ = ൛𝜔 ∈ Ω௠, 𝑎ఠ೙ఠ೙శభ = 1ൟ. (3) 

In other words, according to Eq. (3) elements of 𝐴 mark transitions in sequences of symbols, 
and we consider the sequences in which there are only admissible transitions. It is easy to note 
that Ω஺ is 𝜎-invariant. The restriction of 𝜎 on Ω஺ is said to be topological Markov chain defined 
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by matrix 𝐴. This construction is widely used in application because it may be represented by the 
oriented graph with adjacency matrix 𝐴. 

2.3. Coding of smooth systems 

Consider a dynamical system generated by a homeomorphism 𝑓 defined on a set 𝑀 and a finite 
partition {𝑀௜}, 𝑖 = 1, … , 𝑛. It is easy to understand that: 𝑥 ∈∩௞ୀ଴௡ିଵ 𝑓ିଵ(𝑀௜ೖ) ⇒ 𝑓௞(𝑥) ∈ 𝑀௜ೖ. (4) 

The intersections of such a kind may contain more than one point, and it means that several 
trajectories will be coded by one symbolic sequence. 

If we place the restriction that the intersection in Eq. (4) consists of one point, one may consider 
a continuous and onto map ℎ (a factor map) between the symbolic dynamical system and the initial 
one, such that ℎ ∘ 𝜎 = 𝑓 ∘ ℎ. In this case dynamical system (𝑀, 𝑓) is said to be factor of dynamical 
system (Ω௦, 𝜎), and there is a semi-conjunction between the systems. If the systems considered 
are conjugate, we have exact coding, as for the Smale horseshoe (when system trajectories are 
coded by binary sequences), and hyperbolic automorphism of torus. 

The connection between a smooth system and its symbolic representation defines the 
estimation of topological entropy of the first one. If 𝑓 is factor of 𝜎 then topological entropy 𝑓 
less or equal topological entropy 𝜎. Hence in this case the transition to a symbolic dynamical 
system allows us to obtain an upper bound for the entropy of the given system. Conjugated systems 
have the same entropies. Unfortunately, for arbitrary system we have no prior knowledge of the 
type of connection between the given and symbolic systems. Note that the using topological 
Markov chain makes it possible to obtain upper bound for topological entropy by easier way. 

3. Symbolic image of a dynamical system 

For a discrete dynamical system defined by a homeomorphism 𝑓and the given partition {𝑀௜} 
the corresponding symbolic dynamical system is constructed as follows. For each 𝑀௜ we consider 
its image 𝑓(𝑀௜) and find all 𝑀௝ such that 𝑓(𝑀௜) ∩ 𝑀௝ ≠ ∅. Let 𝐺 be a directed graph in which 
vertices {𝑖} correspond to cells {𝑀௜}, and there is edge 𝑖 → 𝑗 iff 𝑓(𝑀௜) ∩ 𝑀௝ ≠ ∅. Then 𝐺 is said 
to be the symbolic image of 𝑓 with respect to the partition {𝑀௜}. 

For symbolic image the following parameters are defined: 𝑑 – maximal diameter of {𝑀௜},  𝑞 – maximal diameter of 𝑓(𝑀௜), 𝑟 – low bound, the smallest distance between 𝑓(𝑀௜) and 𝑀௞ such 
that 𝑓(𝑀௜) ∩ 𝑀௝ = ∅. 

Let 𝜀 > 0  be given. A bi-infinite sequence {𝑥௞, 𝑘 ∈ 𝑍}  is called 𝜀 -trajectory (or 
pseudo-trajectory) of 𝑓 if for any 𝑘 we have 𝑑𝑖𝑠𝑡(𝑓(𝑥௞), 𝑥௞ାଵ) < 𝜀. A pseudo-trajectory is called 𝑝-periodic if 𝑥௞ = 𝑥௞ା௣ for each 𝑘. Note that in calculation we operate with an approximation of 
real trajectories with some small 𝜀. 

In what follows we assume that a path on a graph of symbolic image is written as a sequence 
of vertices. There is a correspondence between trajectories of initial system and paths on the graph 
of symbolic image, such that a set of 𝜀-trajectories corresponds to one path on the graph, and we 
will not obtain exact coding. The main idea of the symbolic image method is to construct a 
sequence of partitions for 𝑑 → 0, the sequence of corresponding them symbolic images and a 
special mapping between paths of symbolic images. It has been proved [12] that in the limit we 
obtain the correspondence “one trajectory-one path”. 
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4. The estimation of the complexity of dynamical systems 

4.1. Topological entropy 

There are several methods to define topological entropy of a dynamical system, for example 
through minimal coverings or separated sets [14]. For some systems it coincides with the growth 
rate of periodic orbits and may be calculated easily (linear extending maps, hyperbolic 
automorphism of torus). But for the most part of systems direct calculations are difficult and we 
should use methods of estimations. S. Newhouse and T. Pignataro [15] proposed to estimate the 
topological entropy of a smooth dynamical system by calculating the logarithmic growth rates of 
suitably chosen curves in the system (entropy on the curve length). The method may be 
successfully applied for studying the complex system having strange attractors. Topological 
entropy with relative ease may be obtained for topological Markov chain as the module of 
maximal eigenvalue of the adjacency matrix for the correspondent graph. It was shown in [12] 
that the entropy of a given dynamical system not greater than the entropy of symbolic image, in 
other words symbolic image allows us to obtain an upper estimation. 

4.2. Metric entropy 

Another approach to the obtaining characteristics of dynamics is statistical description of orbit 
behavior. For this purpose, measure-preserving transforms are considered. A mapping 𝑓: 𝑋 → 𝑋 
is said to be measure 𝜇 preserving (or 𝜇 is invariant measure for 𝑓), if for any measurable set 𝐴 
the set 𝑓ିଵ(𝐴)  is measurable and 𝜇൫𝑓ିଵ(𝐴)൯ = 𝜇(𝐴).  For any invariant measure 𝜇  one may 
calculate metric entropy of the map 𝑓, and according to variational principle, topological entropy 
is supremum of metric entropies. One can say that metric entropy accounts for average complexity 
of a system, whereas topological entropy measures its maximal dynamical complexity. 

In practical applications it is of value to construct an approximation to an invariant measure 
for a dynamical system, and calculate metric entropy by this measure to obtain lower bound for 
topological one. The symbolic image method may be effectively applied to solve this problem. 

Consider an invariant measure 𝜇 for a dynamical system 𝑓. Then we assign to an edge (𝑖 → 𝑗) 
value 𝜇൫𝑓(𝑀௜) ∩ 𝑀௝൯, from which the relation ∑ 𝜇(𝑓(𝑀௜) ∩ 𝑀௝௝ ) = 𝜇(𝑓(𝑀௜) = 𝜇(𝑀௜) follows. 
By the same way we assign an edge (𝑗 → 𝑖) value 𝜇(𝑓ିଵ(𝑀௜) ∩ 𝑀௝) and obtain: ෍  𝜇൫𝑓ିଵ(𝑀௜) ∩  𝑀௝൯ = 𝜇(௝ 𝑓ିଵ(𝑀௜)) =  𝜇(𝑀௜),  

so the constructed flow on the symbolic image graph is stationary, i.e. for any vertex the sum of 
weights of incoming edges is equal to the sum of weights of outcoming ones. One may say that 
an invariant measure of a dynamical system generates a stationary flow on symbolic image. 
Usually the normed flow is considered. 

It is known that the set of all invariant measures for a system 𝑓 is closed convex set in weak 
topology [14], and the convergence 𝜇௡ → 𝜇 in this topology means that for any continuous 
function 𝜑: 𝑀 → 𝑅 we have ׬ 𝜑𝑑𝜇௡ → ׬ 𝜑𝑑𝜇. 

The structure of the set of flows and the connection between the set 𝐷(𝑓) of 𝑓 – invariant 
measures and the set 𝐷(𝐺) of stationary flows on symbolic image 𝐺 was formulated and proved 
in [16] as the following statement. 

Theorem. For any neighborhood (in weak topology) 𝑈 of the set 𝐷(𝑓) there is a positive 
number 𝑑଴, such that for any partition {𝑀௜} with maximal diameter 𝑑 < 𝑑଴ and any stationary 
flow {𝑚(𝑀௜) = 𝑚௜} on the symbolic image 𝐺 constructed in accordance with this partition the 
measure 𝜇ଵ(𝐴) = ∑ 𝑚௜𝑣(𝐴 ∩ 𝑀௜)/𝑣(𝑀௜)௜ , where 𝑣 is Lebesgue measure, lies in 𝑈. □ 

Hence any measure calculated by a stationary flow on a symbolic image (which is density 



ON A METHOD OF APPLIED SYMBOLIC DYNAMICS FOR INVESTIGATION OF DYNAMICAL SYSTEMS.  
NATALIA AMPILOVA, IGOR SOLOVIEV 

132 VIBROENGINEERING PROCEDIA. JUNE 2019, VOLUME 25  

distribution for a measure of a given system) approximates an invariant measure of the initial 
system if we use the partition with the diameter small enough. Moreover, this theorem guarantees 
that set 𝐷(𝐺) approximates set 𝐷(𝑓). This fact is the substantiation for numerical experiments. 

In our investigations we used two methods for the construction of stationary flow on the 
symbolic image: 1) assigning values of edges of simple cycles, being weights for cycles were 
chosen by 3 different ways; 2) assigning values to all edges and applying balance method to obtain 
a stationary flow. The convergence of balance method was proved by L. Bregman in [17]. In [18] 
a lower bound of topological entropy for delay map and double logistic map was obtained. The 
metric entropy of the obtained stationary flow was calculated by the formula for topological 
Markov chain by Markov’s measure [14]. If a stationary flow on the graph is given by a vector {𝑚௜}  (measures of vertices) and a transition matrix 𝑃 = {𝑚௜௝}  and ∑ 𝑚௜௝௜,௝ =  1, then metric 
entropy ℎ௠ by this measure may be calculated as follows: ℎ௠ = ෍ 𝑚௜ log 𝑚௜ − ෍ 𝑚௜௝ log 𝑚௜௝(௜→௝)∈ா௜∈௏ , (5) 

where 𝐺 = (𝑉, 𝐸), and 𝑉 is the set of vertices and 𝐸 is the set of edges. 

5. Examples 

5.1. Henon map 

Consider the map 𝑥ଵ = 1 − 𝑎𝑥ଶ + 𝑦 , 𝑦ଵ = 𝑏𝑥 , where 𝑎 =  1.4, 𝑏 =  0.3, square  𝐵 = [–10, 10]×[–10, 10] and the initial partition consisting from 9 cells. On each step every cell 
is subdivided in 4 cells. After 6 iterations the number of vertices was 231. Values of metric entropy 
for 3 variants of the method of simple cycles are 0.551141, 0.656916, 0.685731. Metric entropy 
calculated by the measure constructed by balance method is equal to 1.384079. 

Logarithm of maximal eigenvalue of the adjacency matrix for 𝐺 (upper bound for topological 
entropy) is 1.386763. On Fig. 1 densities of invariant measures on the invariant set are shown: the 
method of simple cycles (Fig. 1(a)); balance method (Fig. 1(b)). 

 
a) 

 
b) 

Fig. 1. Densities of invariant measures constructed for the Henon map by the method of  
simple cycles (weights of all cycles are the same) and balance method 

5.2. Ikeda map 

Consider the map: 𝑥ଵ = 𝑑 − 𝐶ଶ(𝑥 cos 𝜏(𝑥, 𝑦) − 𝑦 sin 𝜏(𝑥, 𝑦)),    𝑦ଵ = 𝐶ଶ(𝑥 sin 𝜏(𝑥, 𝑦) + 𝑦 cos 𝜏(𝑥, 𝑦)),  

where 𝜏(𝑥, 𝑦) = 𝐶ଵ − ஼యଵା௫మା௬మ, 𝑑 = 2, 𝐶ଵ = 0.4, 𝐶ଶ = 0.9, 𝐶ଷ = 6. 
The calculations were performed on the area 𝐵 = [–10, 10]×[–10, 10]. After 10 step the graph 
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contained 104799 vertices. Values of metric entropy for 3 variants of methods of simple cycles 
are 0.797314, 0.900477, 0.909025. Metric entropy calculated by the measure constructed by 
balance method is equal to 2.107914. Logarithm of maximal eigenvalue of the adjacency matrix 
for 𝐺  (upper bound for topological entropy) is 2.200624. On Fig. 2 the densities of invariant 
measures on the invariant set are shown for the method of simple cycles (weights of all cycles are 
the same) (Fig. 2(a)) and for balance method (Fig. 2(b)). 

 
a) 

 
b) 

Fig. 2. Densities of invariant measures constructed for the Ikeda map by the method of  
simple cycles (weights of all cycles are the same) and balance method 

6. Conclusions 

The method of symbolic image is used for coding smooth dynamical systems in such a way to 
describe the dynamics of a system by an oriented graph constructed in accordance with a given 
partition. By constructing a sequence of partitions using subdivision technique when diameters of 
partitions tend to zero we obtain the sequence of symbolic images, which gives a closer 
approximation to the system under study, and thereby a better correspondence between the initial 
system and its symbolic representation. An essential advantage of the method is that the symbolic 
image graph turns out to be topological Markov chain. Precisely because of this one may obtain 
an upper bound for topological entropy of the system as a maximal eigenvalue of the adjacency 
matrix of a symbolic image graph.  

The proposed algorithms make it possible to approximate invariant measures of a given 
dynamical system by stationary flows on the graph of symbolic image. Depending on the method 
for the construction of a stationary flow one may obtain an interval for metric entropies, and in 
doing so for possible low bounds of topological entropy. Thus, practical application of the 
algorithms described permits to calculate characteristics that reveal the existence of complex and 
chaotic regimes in dynamical systems. 
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