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Abstract. The vibroisolation properties of the lattices with dynamic-selfsimilar structures are 
investigated. The concept of dynamic-selfsimilarity (dynamic fractal) is introduced. It consists in 
the similarity of the elastic-inertial parameters of the forming cells (in contrast to the geometric 
scaling). It was shown that such structures are equivalent in frequency to the periodic structure 
with additional fixation, but the nature of the wave propagation in them is significantly different. 
The elastic waves propagation in dynamically self-similar lattices is investigated. It is shown that 
in such lattices there is a decrease in the level of a harmonic signal in the all frequency ranges, 
and in the non-pass band the signal attenuation is significantly higher than in the lattices with a 
periodic structure. 
Keywords: lattice, vibroisolation, passband, dynamic-selfsimilarity, wave propagation. 

1. Introduction 

The lattice structures are often used as vibroisolation systems. Their main advantage is the 
possibility of vibration damping and the ability to withstand the significant static loads [1, 2]. On 
Fig.1a a planar lattice structure with a periodic structure is presented. It can also be considered as 
a lattice filter element. Due to the periodicity of the lattice structure is characterized by the 
alternating of the passband and non- passband. In the non-passband, the harmonic signal 
propagates with the great attenuation. Therefore, these lattices are called as the mechanical 
band-pass filter. Lattice structures, both beam and plate, were theoretically and experimentally 
investigated in [1, 3]. They have been studied the lattices wave properties, the passbands 
depending on the angle of wave propagation, and the estimates of their effectiveness are received.  

However, as studies [4, 5] have shown the stronger vibro-isolation properties have the systems 
with dynamic self-similarity structures. In this paper the wave properties of such systems are 
investigated, the non-passbands and the attenuation intensity for the harmonic signal are 
determined. 

First, we define the concept of the dynamic self-similarity (dynamic fractal) and introduce the 
corresponding analytical criteria. 

2. Dynamic-selfsimilar structures (dynamic fractals). Definition 

Currently, the geometric fractals of Mandelbrot are well known [6, 7]. 
“Selfsimilarity, invariance with respect to scaling (or scaling)” invariance with multiplicative 

scale changes. In short, a self-similar object looks unchanged after increasing and decreasing its 
size (Mandelbrot P. [6])”. 

“Fractal – a term meaning a geometric figure that has the property of selfsimilarity, which is 
composed of several parts, each of which is similar to the whole figure as a whole”. 

As follows from these definitions, the Mandelbrot’s fractals describe the structures which 
similar in geometric parameters (scaling), that is, they are geometric fractals. The study of such 
systems is devoted to a large number of works, including computer studies relating to the 
formation [8]. The study of the wave and acoustic properties of fractal structures dedicate the 
works of L. M. Lyamshev, V. V. Zosimov, I. A. Urusovskii [9-12]. In these works, the elastic 
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vibrations and waves in materials with geometric-fractal structure are investigated, their 
dispersion equations are found. The oscillations of fractal clusters characterized by the dependence 
of their elastic properties on the scale are also studied. 

 
a) 

 
b) 

Fig. 1. a) A lattice with the periodic structure, b) the dynamic-selfsimilar lattice (dynamic fractal) 

However, the dynamic properties of the system determine its elastic-inertial parameters. 
Therefore, it is interesting to study the dynamic properties of structures consisting of cells which 
similar not in geometric but in dynamic parameters. For this purpose, it is necessary to introduce 
the concept of dynamic fractal. To this end, it is logical to require the parameters scaling 
determining the dynamic properties of the system, i.e. its elastic and inertial parameters [4, 5]. It’s 
a completely different kind of structures that are different from the Mandelbrot’s fractals. Dynamic 
fractals reflect the dynamic (not geometric) properties of the system and therefore they describe 
well the dynamic and wave properties. 

Definition. We call the dynamic-selfsimilar structures in which their elastic and inertial 
parameters change with the same scale 𝛾 for each 𝑠th cell of the structure (or subsystem): 𝐾 = 𝛾𝐾  ,   𝐽 = 𝛾𝐽 . (1) 

where 𝐾  – is stiffness, 𝐽  – is the inertia parameter of the 𝑠th cell. 
A necessary consequence of the conditions Eq. (1) is equality of the partial frequencies for all 

forming cells: 𝜈 = 𝐾𝐽 = 𝑐𝑜𝑛𝑠𝑡 = 𝜈,   (𝑠 = 1, . . . , 𝑁). (2) 

The condition of the equality for partial frequencies Eq. (2) is a condition for the dynamic 
selfsimilarity. Such structures can be called as the dynamic fractals. 

The above definition of a dynamic fractal can be easily generalized to the structures in which 
the number of DOF for the forming cells is greater than one. In this case, each coordinate can have 
its own similarity factor. 

Comment. Note that the conditions Eq. (2) for a dynamic fractal do not coincide with the 
conditions for the geometric similarity (scaling) used in geometric Mandelbrot fractals. Indeed, 
suppose that the elastic elements of the 𝑠th cell is the rod, its stiffness is equal to (𝐸𝐹 )/𝑙 , and the 
inertial element is a rigid ball of radius 𝑅, i.e., 𝑚 = (4𝜌𝜋𝑅 )/3 (here: 𝐹  is the cross-sectional 
area for the 𝑠th cell, 𝑙  is its length). Geometric scaling conditions have the form: 𝐹 = 𝛾 𝐹 , 𝑙 = 𝛾𝑙 , 𝑅 = 𝛾𝑅 . It is obvious that the conditions Eq. (2) for the dynamic fractal in this case are 
not met: 

𝜈 = 34 𝐸𝐹 𝛾𝜌𝛾 𝑙 𝑅 =  𝜈𝛾 ≠ 𝑐𝑜𝑛𝑠𝑡.  
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Thus, the fulfillment of the conditions Eqs. (1), (2) for a dynamic fractal requires different 
scaling of geometric parameters, which is a certain generalization of the geometric fractal.  

On Fig. 1(a) the dynamic-selfsimilar lattice is represented. 

3. The wave properties and non-pass bands for the dynamic-selfsimilar structures 

First, we study the wave properties for the dynamically-selfsimilar structures on the example 
of the simplest structure in Fig. 2(a), here 𝛾 > 1. It is an unbranched chain structure in which the 
each 𝑠th cell consists from a concentrated mass 𝑚  and a spring with stiffness 𝑘 . 

a) b) 

 
c) 

 
d) 

Fig. 2. a) The dynamic-selfsimilar chain structure with increasing parameters (𝛾 > 1); b) the periodic 
structure, equivalent in frequency to selfsimilar one, c) the dispersion curve for the chain system of 

Fig. 2(b), d) the partial subsystem, which determines the lowest frequency of the non-pass band,  
e) the partial subsystem, which determines the highest frequency of the non-pass band 

Let the elastic and inertial parameters change with the same scale 𝛾 from cell to cell (Fig. 2(a)). 
Then the stiffness and mass for the element 𝑠 + 1 is: 𝑘 = 𝛾𝑘 ,   𝑚 = 𝛾𝑚 . (3) 

Equation for 𝑠th cell is the finite difference equations [13, 14]: −𝑘 𝑥 + (−𝑚 𝜔 + 𝑘 (1 + 𝛾))𝑥 − 𝛾𝑘 𝑥 = 0, (4) 

where 𝐗 = 𝑥 , 𝑥 , 𝑥 , . . . , 𝑥 , 𝑥  – displacement of the 𝑠th mass, 𝜔 is natural frequency. With  𝛾 < 1 we obtain a structure with length-decreasing parameters, and for 𝛾 > 1 with increasing 
parameters. Make the change of variables: 𝑥 = 𝑥 (√𝛾) . (5) 

As a result, we find the equation for the 𝑠th cell in the new variables: 

− 𝑘√𝛾 𝑥 + −𝑚 𝜔 + 𝑘 (1 + 𝛾)𝛾 𝑥 − 𝑘√𝛾 𝑥 = 0, − 1√𝛾 𝑥 + (−𝜔 /𝜈 )𝑥 − 1√𝛾 𝑥 = 0. (6) 

Eq. (6) is the same for any number s and therefore describes the periodic structure of Fig. 2(b). 
Indeed, the partial frequencies of each mass �̅� = (𝑘 + 𝑘 ) 𝑚⁄ = + 1 𝜈  are the same due 
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to the condition Eq. (3), the stiffness between the masses is equal 1 √𝛾⁄ , and there is an additional 
fixation of mass: 

𝑘 ∗= (1 + 𝛾)𝛾 ,   − 2√𝛾 = (1 − √𝛾)𝛾 .  

The partial solution of Eq. (6) is [15]: 𝑥 = 𝐶exp 𝑖(𝜇𝑠 − 𝜔𝑡) . (7) 𝜔 is the natural frequency, 𝜇 is a wave parameter characterizing the phase change between the 
elements s and 𝑠 + 1.  

From Eqs. (7), (6), we find the dispersion equation for the periodic structure Fig. 2(b). For 
real 𝜇: 

−𝑚 𝜔 + 𝑘 (1 + 𝛾)γ − 2 𝑘√𝛾 cos𝜇 = 0, (8) 

and for purely imaginary 𝜇 = 𝑖𝜇′. 
The linear transformation of the coordinates Eq. (5) does not change the frequency properties, 

so the dynamic fractal Fig. 2(a) and the periodic structure of Fig. 2(b) have the same frequency. 
The periodic structure is a mechanical bandpass filter with harmonic signal bandwidth equal to: 𝜔  < 𝜔 < 𝜔∗ (Fig. 2(e)): 

𝜔 =  𝑘 (1 − √𝛾)𝑚𝛾 ,    𝜔∗ =  𝑘 (1 + √𝛾)𝑚𝛾 . (9) 

The band pass from Eq. (9) is: 

Δ𝜔 = 𝜔∗ − 𝜔 = 4𝑘𝑚 √𝛾.  

It is easy to see that the lower and upper limits of the bandwidth are defined as the partial 
frequencies of the forming subsystems with free and fixed ends, respectively: so 𝜔  corresponds 
to Fig. 2(c) and 𝜔∗  corresponds to Fig. 2(d). 

Thus, the bandwidth is inversely proportional to the similarity parameter 𝛾 . When 𝛾  > 1 
increases, the lower limit of the bandwidth increases. 

It is seen from Eq. (5) the distinctive feature of the dynamic self-similar structures with 
increasing parameters: in the non-pass band, the decrease in the oscillations level is significantly 
higher than in the periodic one. It allows increase the effectiveness of vibroisolation and reduce 
the lattice size. 

4. The branched structures (two-dimensional lattice) and its wave features 

Consider now a two-dimensional dynamic-selfsimilar lattice shown in Fig. 3. Each lattice 
element has presently a double index 𝑠𝑗, wherein s is row number (axis 𝑥), 𝑗 is column number 
(axis 𝑦). 

Let’s find the conditions for lattice dynamic-selfsimilarity. For each 𝑠th row and for each 𝑗th 
column we assume that the elastic-inertial elements vary according to the similarity coefficient 𝛾, 
i.e.: 𝑘 = 𝑘 𝛾,    𝑘 = 𝑘 𝛾,   𝑚 = 𝑚 𝛾.  
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This implies the equality of the partial frequencies: 

𝜔 = 𝑘𝑚 = 𝜔 = 𝑐𝑜𝑛𝑠𝑡,     𝜔 = 𝑘𝑚 = 𝜔 = 𝑐𝑜𝑛𝑠𝑡.  

Equation of oscillations for 𝑠𝑗th lattice element has the form: −(𝐌𝜆 + 𝐊) 𝐙 − 𝐊 (𝐙  ,  + 𝐙  , ) − 𝐊 (𝐙  ,  + 𝐙  , ) = 0. (10) 

Suppose for certainty that the lattice is formed by the rod elements, that is: 

𝑘 = 𝐸𝐹𝑙 ,    𝑘 = 𝐸𝐹𝑙 . (11) 

By virtue of Eq. (11) the vibrations along the 𝑥  and 𝑦 -axis are independent. Then from  
Eq. (10) the equation in finite differences for masses located in the 𝑠th column is: −𝑘 𝑥 + (−𝑚 𝜔 + 𝑘 (1 + 𝛾))𝑥 − 𝛾𝑘 𝑥 = 0.  

Under this the dispersion equations coincide with the equations for the dynamic-selfsimilar 
structure shown in Fig. 1. Its bandwidth is defined similarly to the Eq. (9). 

 
a) 

 
b) 

 
c) 

Fig. 3. a) The two-dimensional dynamic fractal lattice at 𝛾 = 2, b) the dynamic fractal chain  
describing the oscillations in vertical plane, c) the highest natural mode in passband b) 

5. Comparison of vibroisolation properties of periodic and dynamic- selfsimilar lattices 

Despite the fact that the frequency spectrum for the periodic and dynamic fractal structure 
coincides, the wave propagation in them is significantly different. We study the wave behavior of 
a dynamic fractal inside and outside of the bandwidth. The solution for the fractal structure, given 
the coordinate transformation Eq. (5), is: 

𝑥 = 𝐶exp(𝑖(𝜇𝑠 − 𝜔𝑡))√𝛾 = 𝐶exp(𝑖(𝜇 + 𝑖𝛼)𝑠 − 𝜔𝑡),   𝛼 = (ln𝛾)2 . (12) 

In the bandwidth for the periodic structure Fig. 1(b) the highest vibration mode is known as a 
sine wave, in which the neighboring masses are in the ant phase. The wave in the dynamic fractal 
structure, as seen from the coordinate transformation Eq. (5), obtained from the corresponding 
wave in the periodic structure of Fig. 1(b), by proportionally increase in the oscillations amplitude 
for each 𝑠th section in (√𝛾)  times. Therefore, for the dynamic fractal we receive the wave with 
decreasing amplitude (Fig. 4(b)). The envelope of this wave is the exponent. Thus, for a dynamic 
self-similar lattice in the passband is a decrease in the vibration level also in contrast to the 
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periodic structure. 
As for the non-pass band, in the periodic structure, as is known, there is an exponential 

attenuation of the harmonic signal along the chain at the rate of exp(𝜇) [14, 15]: 

𝑋 = 𝐴(−1) 𝑒  ,    𝑐ℎ𝜇 = 1 − 𝜔2𝜈 . (13) 

But, in a self-similar structure at 𝛾 > 1 (Fig. 4(a)), (as follows from Eq. (12) there is an increase 
in the decay rate equal to 𝜇 + 𝛼. Thus, at 𝛾 = 1.3, the decrease in the oscillation amplitude occurs 
almost 1.15 times, (15 %) faster in each row of the lattice. Therefore, it is possible to achieve the 
necessary level of vibration amplitude reduction using a lattice with a fewer rows. 

Table 1. The limiting frequency of passbands for various similarity coefficients 𝛾 
– 𝛾 > 1 𝛾 = 1 (periodic chain) 𝛾 1.2 1.5 2.0 4.0 1 𝜔 /𝜈   0.01 0.03 0.09 0.25 0 𝜔∗/𝜈  3.66 3.30 2.91 2.25 4 

6. Conclusions 

1) The dynamic-selfsimilar lattice is frequency equivalent to the lattice with periodic structure 
with additional fastening. 

2) The dynamic-selfsimilar lattice with -increasing parameters exhibits the vibroisolation 
properties in the whole range, both in the passband and outside it (in contrast to the periodic lattice). 

3) In the non-pass band, the decrease of the oscillations amplitude in the dynamic-selfsimilar 
lattice is higher than in the periodic one, and depends on the similarity coefficient. 
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