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Abstract. We discuss advantages and limitations of the harmonic balance method and the locus 
of a perturbed relay system (LPRS) method in the problem of finding periodic oscillations. In this 
paper we present the results of using harmonic balance method and LPRS method while 
investigating a 3rd order dynamic system in Lurie form. In this system a symmetric periodic 
oscillation is found, while other two asymmetric periodic motions are not found using both 
methods. 
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1. Introduction 

The necessity of studying stability and limiting dynamical regimes (attractors) arises in 
classical theoretical and applied problems. In [1] the classification of oscillations as being hidden 
or self-excited was proposed: self-excited oscillations can be visualized numerically by a 
trajectory starting from a point in a neighborhood of unstable equilibrium. In contrast, the basin 
of attraction for a hidden oscillation is not connected with equilibria and, it is necessary to develop 
special analytical and numerical methods to find initial points for their visualization. For nonlinear 
systems with a unique equilibrium and bounded solutions, the question that arises is how to find 
a class of systems for which the condition of the impossibility of generation of self-excited 
oscillations implies the absence of hidden oscillations. 

Among engineers, one of the most widely used methods for searching and analyzing 
oscillations in nonlinear control systems is the harmonic balance method. It was developed in the 
1920-1930s in the works of van der Pol [2] and Krylov and Bogolyubov [3] and later developed 
in the works of their followers (see [4-6]). It is known [1] that the harmonic balance method is an 
approximate method for determining the frequency and amplitude of periodic solutions.  
Moreover, the harmonic balance method may not predict hidden periodic oscillations [1]. 

The latter is true for the locus of a perturbed relay systems approach (LPRS method), that was 
developed in [7, 8] for Lurie systems with relay nonlinearities, despite the fact that the LPRS 
method makes it possible in many cases to predict oscillations not discoverable by the harmonic 
balance method. 

In this article, using the example of known dynamical system with coexisting self-excited 
periodic oscillations, we will show that these methods may not reveal self-excited oscillations. 

2. Oscillations in relay systems  

Consider the following system with one scalar relay nonlinearity in the Lurie form: 𝐱ሶ =  𝐀𝐱 + 𝐁 sign(𝜎),    𝜎 = −𝐂𝐱, (1)
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where 𝐱 ∈ ℝ௡  is a state vector, 𝜎 ∈ ℝଵ , 𝐀 ∈ ℝ௡×௡ , 𝐁 ∈ ℝ௡×ଵ , 𝐂 ∈ ℝଵ×௡  are matrices, all 
quantities are real. We consider the solution of system Eq. (1) in the Filippov sense [9]. 

2.1. Harmonic balance method 

The classical harmonic balance method (e.g., see [10]) for system Eq. (1) computes a periodic 
oscillation 𝑎 cos 𝜔଴𝑡 in the following way: introduce a linearization coefficient 𝑘 so that matrix 𝐀 + 𝑘𝐁𝐂  has purely imaginary eigenvalues ±𝑗𝜔଴ (𝜔଴ > 0) , with the rest of its eigenvalues 
having negative real parts. Values of 𝜔଴ and 𝑘 can be found from equations: 𝐼𝑚 𝑊(𝑗𝜔଴) = 0,    𝑘 =  −൫𝑅𝑒 𝑊(𝑗𝜔଴)൯ିଵ , (2)

where 𝑊 is the transfer function of system Eq. (1). 
Finally, the amplitude 𝑎 can be found from the following harmonic balance equation: 

න (sign(𝑎 cos 𝜔଴𝑡) − 𝑘 𝑎 cos 𝜔଴𝑡)𝑎 cos 𝜔଴𝑡 𝑑𝑡ଶగఠబ଴ = 0. (3)

Solving equation Eq. (3), we get: 𝑎 =  4𝜋𝑘. (4)

2.2. LPRS method 

Consider another method of analysis of periodic motions in relay feedback systems. The locus 
of a perturbed relay system (LPRS) method [7, 8] can be considered as a further development of 
Tsypkin’s ideas [11] on exact analysis of discontinuous systems. The basic concept of the method 
is as follows. 

For system Eq. (1), following [8], we define a function 𝐽(𝜔) which contains information on 
the frequency and amplitude of periodic oscillations. In this paper we apply a matrix state-space 
description approach to construct LPRS function for system Eq. (1): 

𝐽(𝜔) =  −0.5𝐂 ቈ𝐀ିଵ + 2𝜋𝜔 ൬𝐈 − 𝑒ଶగఠ 𝐀൰ିଵ 𝑒 గఠ𝐀቉ 𝐁 + 𝑗 𝜋4 𝐂 ቀ𝐈 + 𝑒 గఠ𝐀ቁିଵ ቀ𝐈 − 𝑒 గఠ𝐀ቁ 𝐀ିଵ𝐁 . (5)

Suppose we have computed the LPRS of a given system. Then there is a finite number of 
points of intersection of the LPRS and the horizontal axis. The following equation defines a 
frequency of a possible symmetric periodic solution of system Eq. (1): 𝐼𝑚 𝐽(𝜔଴) = 0. (6)

Therefore, an actual periodic motion can be found only among these candidate points. Note 
that formula Eq. (6) is a necessary condition for the existence of the frequency of symmetric 
periodic motion in the system (the actual existence of a periodic motion depends on a number of 
other factors [8]). 

3. Example: Atherton’s system 

Consider a relay control system in Lurie form, introduced by D. Atherton in [12], with the 
following matrices: 
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𝐀 = ൭ 0 1 00 0 110𝑑 2𝑑 − 10 𝑑 − 2൱ ,     𝐁 = ൭001൱ ,     𝐂 = ൭100൱், (7)

where 𝑑 is a parameter. 
The linear part of system Eq. (7) is defined by the transfer function: 𝑊஺௧௛(𝑠) = 1(𝑠 − 𝑑)(𝑠ଶ + 2𝑠 + 10), (8)

and the stationary set is as follows: 

Λ஺௧௛ = ቊ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) ∈ ℝଷ| 𝑥ଶ = 𝑥ଷ = 0,   𝑥ଵ ∈ ൜− 110𝑑 , 110𝑑ൠቋ. (9)

From Eq. (2) we get value of 𝜔଴: 

𝐼𝑚 𝑊஺௧௛(𝑗𝜔଴) = 0 ⟺  𝐼𝑚 −1𝑗𝜔଴ଷ + (2 − 𝑑)𝜔଴ଶ − (10 − 2𝑑)𝑗𝜔଴ + 10𝑑 = 0 ⟺     ⟺ 𝜔଴ଷ − (10 − 2𝑑)𝜔଴(𝜔଴ଷ − (10 − 2𝑑)𝜔଴)ଶ + ൫(2 − 𝑑)𝜔଴ଶ + 10𝑑൯ଶ = 0 ఠబஷ଴ሯልሰ     ఠబஷ଴ሯልሰ 𝜔଴ଶ = 10 − 2𝑑 ఠబவ଴ሯልሰ 𝜔଴ = √10 − 2𝑑, (10)

and from: 

𝑅𝑒 𝑊஺௧௛(𝑗𝜔଴) = − (2 − 𝑑)𝜔଴ଶ + 10𝑑(𝜔଴ଷ − (10 − 2𝑑)𝜔଴)ଶ + ൫(2 − 𝑑)𝜔଴ଶ + 10𝑑൯ଶ, (11)

we get 𝑘 = 2𝑑ଶ − 4𝑑 + 20. 
Next, from Eq. (4) we get value of amplitude 𝑎: 

𝑎 =  4𝜋𝑘 ⟺ 𝑎 = 2𝜋(𝑑ଶ − 2𝑑 + 10). (12)

For the value 𝑑 = 1.2 we find frequency 𝜔௛௕  of a periodic solution as 2.75681. Now using 
formula Eq. (5) we build LPRS for system Eq. (7) (see Fig. 1). 

 
Fig. 1. The LPRS for system Eq. (7) for 𝑑 = 1.2 and 𝜔 ∈ [0.5, 10] 
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Solving equation Eq. (6) using MATLAB function “vpasolve()” with a given tolerance 10-8, 
we find frequency of periodic solution as 𝜔௅௉ோௌ = 2.739991399. Initial data this periodic solution 
is given in Table 1. 

We can examine orbital stability of the oscillations using the following approach proposed in 
[13] and generalized for the linear parts containing delays and integrators in [8]. It is formulated 
as the following theorem: 

Theorem 1. Periodic motions in system Eq. (1) are locally orbitally asymptotically stable if 
and only if all eigenvalues of the matrix: 

Φ଴ = ቎𝐈 − 𝐯 ቀ𝑇2 − 0ቁ 𝐂𝐂𝐯 ቀ𝑇2 − 0ቁ቏ 𝑒𝐀ଶ், (13)

where 𝑇 = 2𝜋 𝜔⁄  is the period of the oscillations, 𝐯 is the value of the velocity matrix at the time 

of the relay switch, in the periodic motion, 𝐯 ቀଶ் − 0ቁ = 2 ቀ𝐈 + 𝑒𝐀೅మቁିଵ 𝑒𝐀೅మ𝐁, have magnitudes 
less than one. 

For system Eq. (7) the corresponding eigenvalues are 𝜆ଵ = 1.457, 𝜆ଶ = 0.279, 𝜆ଷ = 0. Since 
one of eigenvalues has magnitude greater than 1, the motion is not orbitally stable. Therefore, a 
symmetric periodic solution exists but it is orbitally unstable and cannot reveal itself as an 
oscillation. 

3.1. Numerical modeling 

Using special computational package [14] and initial data from Table 2 we can visualize two 
self-excited (with respect to rest segment) asymmetric periodic solutions (see Fig. 2), that cannot 
be found using harmonic balance method and LPRS method. 

Table 1. Parameters of two asymmetric  
solutions of system Eq. (7) 𝜔 2.608029064355592 𝑇 2.409169971705080 𝜆 0.296489410929823 

 

Table 2. Initial data of two asymmetric  
solutions of system Eq. (7) 𝑥ଵ ±0.000000000312706 𝑥ଶ ∓0.110095383325227 𝑥ଷ ±0.037742341170832 

 

 
Fig. 2. Trajectories with initial data from Table 3 
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4. Conclusions 

In this paper it is shown that the harmonic balance method and the LPRS method may not 
predict the existence of all self-excited oscillations. A symmetric periodic solution exists but it is 
orbitally unstable and cannot reveal itself as an oscillation. Although the LPRS does not detect 
hidden and self-excited asymmetric oscillations, it would be possible to develop a certain 
extension to the LPRS method to solve these problems. 
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