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Abstract. Extracting the characteristics of rolling bearings in early weak failure stage before the 
occurring of complete failure has important safety and economic significance in engineering 
application. The wavelet transform (WT) is the commonly used and effective time-frequency 
method for fault feature extraction of rotating machinery due to that it could reflect the fault feature 
in time and frequency domains synchronously. However, WT would not work effectively when 
the impulsive fault signal is buried by strong background noise, and the situation is particularly 
serious in the early weak fault stage of rolling bearing. A frequency slice wavelet transform based 
on wavelet de-noising using neighboring coefficients method is proposed in the paper by combing 
frequency slice wavelet transform with wavelet de-noising using neighboring coefficient to solve 
the above problem: Firstly, the vibration signal of rolling bearing is de-noised by wavelet 
de-noising using the neighboring coefficients method. Then the frequency slice wavelet transform 
is applied on the de-noised signal, and satisfactory analysis results could be obtained. The 
effectiveness of the proposed method is verified by the vibration data of rolling bearing accelerated 
fatigue test. Besides, the analysis result of the same vibration data of rolling bearing accelerated 
fatigue test using Kurtogram method is also presented in the paper to verify the advantage of the 
proposed method. 
Keywords: frequency slice wavelet transform, wavelet de-noising using neighboring coefficients, 
feature extraction, rolling bearing, accelerated fatigue test, early weak fault. 

1. Introduction 

The failure of rolling element bearing represents a high percentage of the breakdowns in 
rotating machinery [1], and it is meaningful to study effective fault diagnosis method of rolling 
bearing in ensuring the reliable running of machinery. Vibration analysis has been established as 
the most common and practical method for detecting the fault of rolling bearing [2], and different 
fault diagnosis methods basing on signal processing have been proposed in recent years [3-8]. 
However, most of them are invalid when the fault characteristic signals are buried by strong 
background noise. The diagnosis of rolling bearing early weak fault is not only difficult, but also 
is very hot, and the fault diagnosis of rolling bearing early weak fault has been attracted a lot of 
attention in recent years. Sparse representation [9, 10] is a promising tool for early weak fault 
feature extraction of the rolling bearing. However, there exist two problems: Firstly, the prior 
knowledge is needed to construct the predefined dictionary to match the objected signal. Secondly, 
the self-learning dictionary method of sparse representation is susceptible to interfering factors. 
To overcome the above two problems, a hierarchical discriminating sparse coding method for 
weak fault feature extraction of rolling bearings was proposed in paper [11], and the analysis 
results of simulation and experimental signals using the proposed method showed that the 
proposed method was robust to strong noise and ambient interferences. Random noise was utilized 
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by vibration resonance also named as stochastic resonance method to detect the feature of the 
weak fault of rolling bearings in paper [12], and better performance was obtained by the proposed 
method compared with the other relating stochastic resonance methods. The Hilbert envelope and 
zero frequency resonator were combined in paper [13] to detect the weak impulse signal immersed 
in strong background noise. To overcome the shortcomings of variational mode decomposition 
such as the determination of the number of the decomposed modes, the selection of the balance 
parameter, a coarse-to-fine decomposing strategy was proposed for weak fault detection of 
rotating machines in paper [14]. In paper [15], the supervised orthogonal local fisher discriminant 
analysis was used as the feature reduction method for weak fault diagnosis of rolling bearings, 
and the diagnosis example demonstrated the advantage of the proposed over the other popular 
signal processing techniques. The weak feature caused by early fault of rolling bearing would be 
ignored by the traditional singular value decomposition (SVD) method, and a reweighted SVD 
method was proposed in paper [16] to overcome the above problem, and the robustness to heavy 
noise of the proposed method was verified through experiment. The convolutional restricted 
Boltzmann machine model was used as an unsupervised learning method for detecting the weak 
transient signals of rolling bearings [17], and the method was validated through two real bearing 
experiments.  

There exists the problem of low computational efficiency in most of the above mentioned 
rolling bearing early weak fault diagnosis methods. Wavelet transform is a classical and effective 
time-frequency analysis method and there have been arising a lot of literatures relating to its using 
in fault diagnosis of rolling bearings. However, the fault feature extraction result of traditional 
wavelet transform would not be ideal when early weak fault arises in rolling bearings. Besides, 
the extraction result of traditional wavelet transform is also not intuitive enough. In the paper, an 
improved wavelet transform method named as frequency slice wavelet transform [FSWT] is 
proposed and used in fault diagnosis of bearing early weak fault, and the FSWT is based on 
wavelet de-noising using neighboring coefficients [WDUNC]. Compared with the traditional 
wavelet transform analysis method, the FSWT has the advantages of more noise resist and more 
intuitive feature extraction effect. The effectiveness of the proposed method is verified through 
the vibration data of bearing accelerated fatigue test. Besides, its advantage over the other bearing 
fault diagnosis method such as spectral kurtosis is also presented. 

The paper is organized as follows. Section 2 is dedicated to the basis theory of WDUNC and 
the simulation verifying the effectiveness of WDUNC. The theory of FSWT is presented in 
Section 3. In Section 4, experiment and corresponding analysis results are showed. Comparison 
and conclusion are presented in Section 5 and 6 respectively. 

2. WDUNC 

The traditional wavelet threshold de-noising method is to determine a global threshold 
according to the different statistical rules of wavelet coefficients without considering the 
correlation between the adjacent wavelet coefficients. When wavelet coefficients contain feature 
information, the wavelet coefficient adjacent to it also contains some feature information. 
Therefore, the WDUNC method sets the threshold value of several adjacent wavelet coefficients 
(which are considered to have certain correlation) as a whole, and it can retain the characteristic 
information of the signal more effectively while filtering the noise compared with the traditional 
threshold processing methods. 

The main steps of WDUNC are as follows: 
(1) Apply discrete wavelet transform on the noised signal. 
(2) The wavelet coefficients are grouped into blocks 𝐵௜௝ for each scale 𝑗, and the length of each 

block is 𝐿. 
(3) The new coefficients are estimated and updated by the contraction rule for each block 𝐵௜௝ 

as follows: 
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𝑑ሚ௝,௞ = 𝛽௜௝𝑑௝,௞. (1)

The contraction factor 𝛽௜௝  is determined by the wavelet coefficients within the block 𝐵௜௝  as 
follows: 

𝛽௜௝ = 1 − 𝜆𝐿𝜎ଶ𝑆௝,௞ଶ , (2)

where 𝜆 is the parameter being used to adjust the threshold value. 𝐿 is the length of each block 𝐵௜௝. 𝜎 is the standard deviation of 𝐵௜௝, and 𝑆௝,௞ଶ  is determined by using the following equation: 𝑆௝,௞ଶ = ෍ 𝑑௝,௞ଶ(௝,௞)∈஻೔ೕ . (3)

(4) The de-noised signal is obtained by applying inverse wavelet transform on the handled 
wavelet coefficients. 

The correlation among the adjacent wavelet coefficients within the block with size of 𝐿 is taken 
into account while calculating the contraction factor 𝛽௜௝. The block size 𝐿 is one of the key factors 
affecting the performance of WDUNC, and the 𝐿 is set as 𝐿 = ln𝑛 (𝑛 represents the length of the 
signal) in the paper according to the suggestion in literature [18]. 

The time-domain waveforms of rolling bearing simulated signal and the rolling bearing 
simulated signal added with noise are presented in Fig. 1(a) and (b) respectively. In Fig. 1(c), the 
de-noised signal of the signal presented in Fig. 1(b) using WDUNC is given, and it could be seen 
that satisfactory de-noising effect is obtained. 

 
a) Bearing simulated signal 

 
b) Bearing simulated signal added with noise 

 
c) De-noised signal using WDUNC 

Fig. 1. Rolling bearing simulated signal and noise-added signal: a) bearing simulated signal;  
b) bearing simulated signal added with noise; c) de-noised signal using WDUNC 

3. The theory of FSWT 

3.1. FSWT 

Supposing signal 𝑓(𝑥) ∈ 𝐿ଶ(𝑅), and if the FFT of the generating wavelet function 𝜑(𝑡) exists 
which is represented by 𝜑ො(𝑤), and the FSWT of signal 𝑓(𝑥) could be calculated by Eq. (4): 
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𝑊(𝑡,𝑤, 𝜆,𝜎) = 12𝜋 𝜆න 𝑓መ(𝑢)𝜑ො∗ାஶ
ିஶ ቀ𝑢 − 𝑤𝜎 ቁ 𝑒௜௨௧𝑑𝑢, (4)

where 𝜎 and 𝜆 represent the scale factor and energy coefficient respectively, and both of them 
could be constant or the functions relating to𝑤and𝑡. 𝜑ො(𝑢) represents the frequency domain form 
of the generating wavelet function 𝜑(𝑡), and wavelet function 𝜆𝜑((𝑢 − 𝑤) 𝜎⁄ ) is the scaling and 
translation result of 𝜑(𝑡)  in the frequency domain. 𝜑ො∗(𝑤)  represents the conjugate function  
of 𝜑ො(𝑤). 

Eq. (4) could be transformed into time-domain as shown in Eq. (5) using Parseval equation: 

𝑊(𝑡,𝑤, 𝜆,𝜎) = 𝜎𝜆𝑒௜௪௧ න 𝑓(𝜏)ାஶ
ିஶ 𝑒௜௪ఛ𝜑∗ሾ𝜎 ∗ (𝜏 − 𝑡)ሿ𝑑𝜏. (5)

In fact, Eq. (5) is difficult to be defined in the frequency domain even if 𝜑(𝑡) and 𝜑ො(𝑤) are 
known. So only 𝜑ො(𝑤)  is focused in the signal processing process and 𝜑ො(𝑤)  is defined as 
frequency slice function which satisfies the following conditions: 

(1) 𝜑ො(0) ≠ 0 or 𝜑ො(0) = 1. 
׬ (2) |𝜑ො(𝑤)|ାஶିஶ ଶ 𝑑𝑤 < ∞. 
(3) 𝜑ො(±∞) = 0. 
(4) |𝜑ො(𝑤)| ≤ 𝜑ො(0), or |𝜑(𝑡)| ≤ 𝜑(0). 

3.2. The selection of scale factor in FSWT 

Let 𝜆 =  1 and suppose the scale factor 𝜎 = 𝑤 𝑘⁄ , 𝑘 > 0 , then there exists the following 
equation: 

𝑊(𝑡,𝑤, 𝑘) = 12𝜋න 𝑓መ(𝑢)𝜑ො∗ାஶ
ିஶ ቈ𝑘 (𝑢 − 𝑤)𝑤 ቉ 𝑒௜௨௧𝑑𝑢. (6)

Import frequency slice function into 𝑘 (𝑢 − 𝑤) 𝑤⁄   and use 𝑘 (𝑢 − 𝑤) 𝑤⁄   to adjust the 
transformation sensitivity to frequency or time, then Eq. (5) is changed into Eq. (7): 

𝑊(𝑡,𝑤, 𝜆,𝜎) = 1𝑘𝑤𝑒௜௪௧ න 𝑓(𝜏)𝑒௜௪ఛାஶ
ିஶ 𝜑∗ ቈ𝑤(𝜏 − 𝑡)𝑘 ቉ 𝑑𝜏. (7)

It is impossible to obtain high resolution in both time and frequency domain due to the 
limitation of Heisenberg uncertainty principle. Therefore, a compromise scheme is adopted in the 
transformation process to estimate 𝜎 and 𝑤, and two evaluation indexes are introduced to the 
analyzed signal. One of the evaluation indexes is frequency resolution 𝜂 which could be calculated 
by Eq. (8): 𝜂 = Δ𝑤𝑤 . (8)

The other evaluation index is amplitude expected response ratio 𝜈 (0 < 𝜈 ≤ 1), and the value 
of it could be set as √2/2, 0.5, 0.25 and so on. 

Suppose 𝑓(𝑡) = 𝑒௜௪బ௧ and its FSWT satisfies the following relational expression: |𝑊(𝑡,𝑤଴ + Δ𝑤, 𝜆,𝜎)||𝑊(𝑡,𝑤଴, 𝜆,𝜎)| ≤ 𝜈. (9)
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Then: ฬ𝜑ො ൬Δ𝑤𝑤 ൰ฬ ≤ 𝜈|𝜑ො(0)|. (10)

That is: |𝜑ො(𝑘𝜂)| ≤ 𝜈|𝜑ො(0)|. (11)

As for the impulsion function 𝑓(𝑡) = 𝛿(𝑡 − 𝑡଴), its FSWT satisfies the following relational 
expression: |𝑊(𝑡଴ + Δ𝑡,𝑤, 𝜆,𝜎)||𝑊(𝑡଴,𝑤, 𝜆,𝜎)| ≤ 𝜈. (12)

Then: |𝜑(𝜎Δ𝑡)| ≤ 𝜈|𝜑(0)|. (13)

That is: ฬ𝜑 ൬ 𝜇𝑘𝜂൰ฬ ≤ 𝜈|𝜑(0)|, (14)

where 𝜇 = Δ𝑤Δ𝑡. 
When the slice function 𝜑ො(𝑤) = exp(−𝑤ଶ 2⁄ )  and 𝜇 = 1 2⁄ ,  the following relational 

expressions could be obtained: 

𝑘 ≥ ඥ2 ln(1 𝜈⁄ )𝜂 , (15)𝑘 ≤ 𝜇𝜂ඥ2 ln(1 𝜈⁄ ), (16)

where 𝜈 = exp(−𝜇 2⁄ ) and 𝑘 = √2/2𝜂. 

 
a) Two-dimensional FSWT analysis result of the 

simulation signal presented on Fig. 1(a) 
b) Three-dimensional FSWT analysis result of the 

simulation signal presented on Fig. 1(a) 
Fig. 2. Two and three-dimensional FSWT analysis results of the simulation signal presented on Fig. 1(a) 

The FSWT could realize the time and frequency analysis of the signal simultaneously, and the 
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two and three-dimensional FSWT analysis spectrums of the signal shown in Fig. 1(a) are 
presented in Fig. 2(a) and (b) respectively from which intuitive fault feature extraction results are 
obtained. 

4. Experiment 

It is a complicated process from the installation and use of rolling bearings to their failure, and 
there is great safety and economic significance to study the effective feature extraction method in 
its early weak fault stage. The vibration signal of rolling bearing life cycle being collected from 
the ABLT-1A bearing life-cycle strengthening test rig of Hangzhou Bearing Experiment Center 
is the study object of the paper. The test rig is shown in Fig. 3 and the whole life test data of one 
of the test bearings is selected as the analysis object. The parameters and fault characteristic 
frequencies [FCF] of experimental bearings are shown in Tables 1 and 2 respectively: the FCFs 
in Table 2 are obtained by using the Eqs. (17-21): 𝑓𝑟 = 𝑛60, (17)𝑓𝑐 = 12 ൬1 − 𝑑𝐷 cos𝜃൰ 𝑓𝑟, (18)𝑓𝑏 = 𝐷2𝑑 ቈ1 − ൬𝑑cos𝜃𝐷 ൰2቉ 𝑓𝑟, (19)𝑓𝑖 = 𝑍2 ൬1 + 𝑑𝐷 cos𝜃൰ 𝑓𝑟, (20)𝑓𝑜 = 𝑍2 ൬1 − 𝑑𝐷 cos𝜃൰ 𝑓𝑟. (21)

Severe pitting failure was found in the inner ring of the test bearing after its complete failure, 
which is shown in Fig. 4. 

 
Fig. 3. The test rig 

 
Fig. 4. The inner race fault 

Table 1. Parameters of the test bearing 

Type Ball 
number 

Ball diameter 
(mm) 

Pitch diameter 
(mm) 

Contact 
angle 

Motors speed 
(rpm) 

Load 
(kN) 

6307 8 13.494 58.5 0 3000 12.744 

Table 2. Fault characteristic frequencies of the test bearing 𝑓௥ 𝑓௖ 𝑓௕ 𝑓௜ 𝑓௢ 
50 Hz 19 Hz 102 Hz 246 Hz 153 Hz 

In papers [19, 20], the RMS curve over the whole life of the test bearing is given. The kurtosis 
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index curve of the same selected test bearing is shown in Fig. 5 in the paper for the reason that the 
kurtosis index is more sensitive to the impact characteristic of the rolling bearing when fault occurs. 

 
Fig. 5. Kurtosis index of the test bearing over its whole life 

It could be seen that abrupt change of the kurtosis index occurs at 2306th minutes in Fig. 5 
which means that 2306th is the very moment of complete failure occurring. Same as paper [23], 
the set of data at 2297th minute before the occurring of complete failure is analyzed by the 
proposed method because 2297th minute could be regarded as the early weak fault stage of the 
selected test bearing. However, the kurtosis value at 2297th minute in Fig. 5 does not change 
abruptly, so the kurtosis index could not reflect its weak fault characteristics. The time domain 
diagram and the corresponding envelope demodulation spectrum of the original data at 
2297 minutes are shown in Figs. 6. 

 
a) Time-domain waveform of the selected  

bearing’ data at 2297th minute 

 
b) Envelope demodulation spectral  

of the signal shown in Fig. 6(a) 
Fig. 6. Time-domain waveform of the selected bearing’ data  

at 2297th minute with the corresponding envelope demodulation spectral 

 
a) Two-dimensional FSWT analysis result  

of the signal presented on Fig. 6(a) 

 
b) Three-dimensional FSWT analysis result  

of the signal presented on Fig. 6(a) 
Fig. 7. Two and three-dimensional FSWT analysis results of the signal presented on Fig. 6(a) 

It is impossible to extract the inner race fault characteristic frequency (FCF) 𝑓𝑖 = 246 Hz 
according to Fig. 6(b), which indicates that the early weak fault characteristic frequency of rolling 
bearing could not be extracted by the traditional envelope demodulation spectrum. Apply FSWT 
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analysis on the signal shown on Fig. 6(a) and the two and three dimensional FSWT spectral are 
presented in Fig. 7(a) and (b) respectively. Same as envelope demodulation spectral analysis result, 
the FCF of rolling bearing still could not be extracted based on Fig. 7. Apply the proposed method 
on the signal shown in Fig. 6(a): Firstly, de-noise the signal shown in Fig. 6(a) using WDUNC 
method and the de-noised signal is presented in Fig. 8 from which the fault impact characteristics 
of rolling bearing could be identified. Then apply FSWT on the signal shown in Fig. 8 and the two 
and three-dimensional FWST spectral analysis result are shown in Fig. 9(a) and (b). The FCF of 
rolling bearing inner race is extracted successfully based on Fig. 9(a) which illustrates the 
effectiveness of the proposed method: the frequency of 246.2 Hz as noted in Fig. 9(a) is just right 
the inner race FCF of the test bearing as shown in Table 2, and the slight difference between 246.2 
and 246 is due to the random sliding of rolling elements. 

 
Fig. 8. Time-domain waveform of the de-noised signal presented on Fig. 6(a) using WDUNC 

 
a) Two-dimensional FSWT analysis result  

of the signal presented on Fig. 8 

 
b) Three-dimensional FSWT analysis result  

of the signal presented on Fig. 8 
Fig. 9. Two and three-dimensional FSWT analysis results of the signal presented on Fig. 8 

5. Comparison 

In the section, the spectral kurtosis method is selected for the comparison purpose to verify the 
advantage of the proposed method. SK is very suitable for feature extraction of impact signals 
when rolling bearings fail, and it has been used widely in fault diagnosis of rolling bearings [21]. 
Apply SK analysis on the signal shown in Fig. 6(a) and the corresponding SK kurtogram is given 
in Fig. 10. Then, construct a band-pass filter using the optimal parameters obtained by Fig. 10: 
Band width (𝐵ௐ) = 2133.3 Hz and frequency center (𝑓௖) = 1066.6 Hz. Afterwards, filter the signal 
shown in Fig.6 (a) and the envelope and envelope demodulation spectrum of the filtered signal 
are shown in Fig. 11(a) and (b) respectively, and it is evident that the SK analysis result is poor 
compared with the analysis result using the proposed method: the inner race FCF (246 Hz) of the 
test bearing could not observed in Fig. 11(b). 
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Fig. 10. Kurtogram of SK of the original signal shown on Fig. 6(a) 

 
a) The envelope of filtered signal 

 
b) The FFT of the envelope of filtered signal 

Fig. 11. Envelope of the filtered signal and corresponding demodulation spectrum 

6. Conclusions 

To solve the difficulty in extracting the early weak fault features of a rolling bearing and the 
disadvantage of the worse effect in extracting fault feature under strong noise interference by using 
FSWT, the paper combines the WDUNC with FSWT to extract the features of the weak fault 
signal of the rolling bearing. The combined method not only could extract the fault feature of 
bearing early weak fault successfully, but also could express the fault feature result much more 
intuitive, and the effectiveness of the proposed method is verified through the rolling bearing 
whole life cycle fatigue experiment. Besides, its advantage over the other signal rolling bearing 
signal processing method such as SK is also presented. The proposed method provides a new idea 
for time-frequency analysis of early weak fault signal of rolling bearing. 

Besides, the following conclusions could be summarized: 
1) The features of rolling bearing’ early weak fault are hard to extract using the traditional 

rolling bearing signal processing methods such as envelope demodulation method due to the 
strong background noise interference. Besides, the relatively new rolling bearing signal processing 
method such as SK is also ineffective in feature extraction of rolling bearing because the optimal 
band-pass filter is hard to be constructed by using SK when there exists strong background noise. 

2) Time-frequency analysis is a comprehensive rolling bearing signal processing method 
because it could reflect the fault feature in the time and frequency domains simultaneously. 
However, it would work effectively when the impulsive characteristic of fault bearing is buried 
by strong background noise. So, it is better to de-noise the noised signal before applying 
time-frequency analysis on the vibration signal. 
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