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Abstract. Vibration signals of rolling element bearings during operation are always very complex, 
random strongly and broadband. Adaptive Local Iterative Filtering Decomposition (ALIFD) can 
overcome the smoothness and adaptive flaws of Iterative Filtering Decomposition (IFD), but it is 
so susceptible to random noise that it’s less effective. Here, spatial correlation was proposed. 
Firstly, the signal was denoised by spatial correlation and decomposed into several modes by 
ALIFD. Finally, the envelope demodulation was analyzed to extract fault feature. The simulating 
signal analysis and bearing fault simulator show that this method can be available for separating 
different frequencies of bearing fault vibration signals.  
Keywords: rolling element bearing, spatial correlation, ALIFD, fault diagnosis. 

1. Introduction 

Vibration signals of rolling element bearings during operation are always very complex and 
random broadband [1]. What’s more, different reasons result in different bearing system 
incentives. For example, the incentive, which is caused by the surface damage (fatigue pitting or 
peeling) of the bearing components, is a shock. So the vibration signal is the carrier of bearing 
fault, and the fault location can theoretically be diagnosed through the analysis of the bearing 
vibration signal. When there is a local fault in rolling bearing, there are the nonlinear and non-
stationary characteristics and periodic pulse in vibration signals of bearings. The traditional signal 
analysis technology is difficult to achieve remarkable results. For instance, Fourier transform is 
more suitable for periodic or stationary and linear system [2]. Wavelet transform needs to 
predefine basis function, and cannot meet the adaptive requirements [3]. In practical application, 
this pulse has a lower energy proportion, and is vulnerable to be interfered by background noise. 
Especially in the early bearing failure, fault characteristics are faint, making it not easy to identify 
and extract the periodic pulse in the background noise. Single fault diagnosis methods fail to show 
good effect [4-7]. Therefore, what kind of vibration monitoring and signal processing technology 
used to effectively extract the bearing fault characteristic information becomes the key of the 
bearing fault diagnosis [8]. 

In order to extract the features of the bearing fault vibration signal, the time-frequency analysis 
based on signal decomposition is widely used in recent years [9]. Empirical Mode Decomposition 
(EMD) works as a nonlinear and non-stationary signal analysis which doesn't need to be 
predetermined basis-functions and has the completeness, orthogonality and adaptability, so it is 
widely used in fault diagnosis of rolling bearing [10]. But this method also has limitations, such 
as end effects, incomplete envelope and mode mixing. Luan Lin et al. built a low-pass Filtering 
function and proposed the IFD [11]. However, the compact support low pass filters used in the 
existing IFD are not smooth enough. Antonio Cicone et al. designed smooth filters with compact 
support from solutions of Fokker–Planck equations (FP filters) in order to realize a local, adaptive 
and stable iterative filtering, and proposed the ALIFD [12].  

The actual vibration signal in addition to reflecting the bearing working condition, also 
contains a large number of background noise, which produced by other moving parts in machinery 
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and structure. Owing to the strong background noise, the early fault feature is often buried and is 
difficult to extract. Spatial correlation denoising method based on correlation information of 
wavelet coefficient in a variety of scale and product with the coefficient of the neighboring scales, 
can suppress noise and sharpen edges effect [13]. Therefore, this paper combined the advantages 
of spatial correlation and ALIFD, and then proposed rolling bearing fault feature extraction based 
on spatial correlation and ALIFD. Firstly, the signal was denoised by spatial correlation and 
decomposed into several Intrinsic Mode Functions (IMFs) by ALIFD. Finally, the envelope 
demodulation was analyzed to extract different frequencies of bearing fault vibration signals and 
diagnose bearing fault location. 

2. Spatial correlation 

2.1. The principle of spatial correlation  

Given a simple signal: 𝑦 𝑛 = 𝑥 𝑛 + 𝑒 𝑛 , (1)

where 𝑥 𝑛  is the original signal and 𝑒 𝑛  is the noise [14]. 
(1) The signal 𝑦 𝑛  is decomposed by wavelet transform to get wavelet coefficients  𝛚 , = 𝐔 , + 𝐕 ,  with 𝑛  indexing position and 𝑚  indexing scale, where 𝐔 ,  is the 

corresponding wavelet coefficients of original signal 𝑥 𝑛  and 𝐕 ,  is the corresponding wavelet 
coefficients of noise 𝑒 𝑛 . By normalizing 𝛚 ,  and comparing their absolute values with 𝛚 , . 
If 𝛚 , > 𝛚 , , 𝛚 , = 𝐔 , ; If 𝛚 , < 𝛚 , , 𝛚 , = 𝐕 , . 

(2) Repeat steps (1) until 𝐕 ,  is nearly equal to a threshold 𝛒  associated with noise level, 
and 𝛒 = 𝐸 𝐕 ,𝟐 ＝ |𝛙| 𝜎 𝑚⁄ , where 𝛙 is the norm of mother wavelet and 𝜎 is the noise 
variance in 𝑚 indexing scale.  

(3) 𝐔 ,  is the target decomposition coefficient and is reconstructed to get the denoised signal 
by spatial correlation. 

The wavelet coefficients of fault signals after wavelet transform have strong correlation 
between the various scales, especially stronger on the edge of the signal correlation, which the 
corresponding correlation of noise is relatively weak. Spatial correlation method can achieve the 
noise reduction while the fault signal and the noise have different characteristics of spatial 
correlation on the scale wavelet coefficients. 

 
Fig. 1. Time-domain waveform of the simulation signal 

2.2. Comparison analysis of spatial correlation and wavelet shrinkage denoising  

The noise signal, whose signal-to-noise ratio (SNR) is 7, is constructed by 𝑊 noise function 
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of MATLAB. The time domain waveform of original signal and added noise signal are shown in 
Fig. 1. The signal is decomposited into 5 level to get the waveform of high frequency coefficients 
by wavelet transform and spatial correlation respectively, which is shown in Fig. 2. 

 
Fig. 2. Waveform of high frequency coefficients and high frequency  

coefficients after spatial correlation denoising 

Fig. 3 is the denoised signal after reconstruction, and the SNR of spatial correlation filtering 
signal is 47 and the SNR of threshold filtering signal is 17. So SNR by spatial correlation is 
improved obviously and noise is effectively restrained in Table 1; what’s more, this method has an 
obvious advantage over threshold filtering, improves SNR greatly, and has high level of the 
closeness and smoothness. 

 
Fig. 3. Two methods of signal denoising 

Table 1. Signals’ SNR 
Signal SNR 

The simulation signal 7 
Threshold filtering signal 17 

Spatial correlation filtering signal 47 
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3. Adaptive local iterative filtering decomposition (ALIFD) 

3.1. The principle of ALIFD 

Given two derivable functions 𝑓 𝑥  and 𝑦 𝑥 , then 𝑚 < 0 < 𝑛 [12]: 
1) 𝑓 𝑚 = 𝑓 𝑛 = 0, 𝑓 𝑥 > 0 and 𝑥 ∈ 𝑚,𝑛 ; 
2) 𝑦 𝑚 < 0 < 𝑦 𝑛 . 
Let us consider the Fokker-Planck equation: 𝑢 = −𝛼(𝑦(𝑥)𝑢) + 𝛽(𝑓 (𝑥)𝑢) , (2)

where 𝛼, 𝛽 are steady-state coefficient and 𝛼, 𝛽 ∈ (0,1). 
The (𝑓 (𝑥)𝑢)  of Ep. (1) generates diffusion effect and pulls out the solution 𝑢(𝑥) from the 

center towards endpoint, while the −(𝑦(𝑥)𝑢)  term transports it from endpoint towards the center 
of the interval. When the two forces are balanced: 0 = −𝛼(𝑦(𝑥)𝑢) + 𝛽(𝑓 (𝑥)𝑢) , (3)

satisfying 𝑢(𝑥) ≥ 0 for 𝑥 ∈ (𝑚,𝑛), and 𝑢(𝑥) = 0 for 𝑥 ∈ (𝑚,𝑛). That means the solution is 
concentrated in the interval [𝑚,𝑛] and 𝑢(𝑥) is a local filter. 

The ALIF method has two iterations: the inner iteration, to capture each single IMF, and the 
outer iteration to produce all the IMFs. The specific process can be shown as follows in Fig. 4. 

3.2. The inner iteration 

Firstly, the sliding operator 𝐾 𝑥(𝑡)  computed by Ep. (4) is the convolution of signal 𝑥(𝑡) and 
filtering function 𝑙(𝑡): 

𝐾 , 𝑥(𝑡) = 𝑥(𝑡 + 𝑠)𝑙 , 𝑠, 𝑥(𝑡) 𝑑𝑠, ( )
, ( ) , (4)𝑙 , (𝑥) = 2 𝑠𝜏𝑚 , (5)

where 𝑆 is the total sample points of signal 𝑥(𝑡), 𝑚 is the number of its extreme points, 𝜏 is a 
parameter usually fixed around 1.6. 

The sliding operator 𝐾 𝑥(𝑡)  computed by Ep. (4) is extracted from signal 𝑥(𝑡) to obtain 
fluctuations operator 𝛽 𝑥(𝑡) : 𝛽 , 𝑥(𝑡) = 𝑥(𝑡) − 𝐾 , 𝑥(𝑡) , (6)

while the fluctuation factor 𝛽 can meet IMF’s requirements, 𝛽 is the IMF. But the initial 𝛽 does 
not meet the conditions, IMFs corresponding to frequency oscillations were carefully chosen by a 
more restrictive stopping criterion. 

3.2.1. The outer iteration 

To produce the 𝑘-th IMF, we apply the previous process to the residual signal 𝑟, and the 
algorithm stops when r becomes a trend signal, meaning it has at most one local extreme: 

𝑟(𝑡) = 𝑥(𝑡) − 𝑎 (𝑡). (7)
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On account of space limitations, no specific deduction is given. Please refer to reference [15] 
for details. 

 
Fig. 4. Flow chart of ALIFD 

3.3. Comparison analysis of simulation signals  

Given the simulation signals: 
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𝑥 (𝑡) = cos − 8𝜋 𝑡 − 20|𝑡| ,𝑥 (𝑡) = cos − 8𝜋 𝑡 − 4|𝑡| ,𝑥(𝑡) = 𝑥 (𝑡) + 𝑥 (𝑡) + 1,  
where sampling number is 5000, and 𝑡 ∈ [0, 2𝜋]. 

Fig. 5 is the waveform of simulation signal 𝑥(𝑡), 𝑥 (𝑡) and 𝑥 (𝑡), which are also the ideal 
IMFs of the signal decomposition, but the fact is not necessarily consistent with them.  

 
Fig. 5. The waveform of simulated signal 

 
Fig. 6. The waveform of EMD 

 
Fig. 7. The waveform of IFD 

 
Fig. 8. The waveform of ALIFD 

Fig. 6 is the result of EMD. It shows that the IMF1, IMF2 decomposed by EMD are simply 
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similar to 𝑥 (𝑡) and 𝑥 (𝑡) in the middle. Because the instantaneous frequency between the two 
signals has overlapping portion, this makes a difference on both ends of the signal, and the original 
signal waveform component is not decomposed completely. Meanwhile, some mistakes appear in 
the result of the decomposition, which complicates the signal analysis. Fig. 7 is the result of IFD. 
It is evident that the IMF1, IMF2 decomposed by IFD have great difference with 𝑥 (𝑡) and 𝑥 (𝑡). 
Because of the overlapping portion of instantaneous frequency between the two signals, IFD can 
change adaptively filter length according to the signal features. Fig. 8 is the result of ALIFD. 
Because ALIFD sets out from point to point changing adaptively the filter length to realize the 
signal decomposition, and does not need to know any information about signal in advance, but 
also can filter the small amplitude oscillation of the signal and the derivation process. So the IMFs 
decomposed by ALIFD coincide with 𝑥 (𝑡) and 𝑥 (𝑡). 

4. Numerical simulation 

To verify the effectiveness of the proposed method, a mixed signal 𝑥(𝑡) is studied: 𝑥(𝑡) = 𝑥 exp(−2𝜋𝑓 𝜉𝑡)sin2𝜋𝑓 1 − 𝜉 𝑡 + 𝑛(𝑡), (8)

where 𝑓 = 3000 Hz is carrier frequency, 𝑥 = 5 is displacement constant, 𝜉 = 0.1 is damping 
coefficient, 𝑇 = 0.01 s is the period of impact, 𝑓 = 20 kHz is the sampling frequency, 𝑁 = 4096 
is the sampling number, 𝑡 is the sampling time, and 𝑛(𝑡) is white noise with variance of 2. 

As shown in Fig. 9, it is the waveform of simulation signal. Due to the influence of noise, it is 
very hard to identify the bearing fault feature. To test the validity of the method uniting the spatial 
correlation with ALIFD, the signal and denoised signal by the spatial correlation are decomposed 
by ALIFD respectively. The denoised signal by the spatial correlation is processed by ALIFD, 
and then analyzed the envelope spectrum of the first IMF. From the Fig. 10, the impact frequency 
(100 Hz) and its harmonic (200 Hz, 300 Hz, 400 Hz, 500 Hz, etc.) can be shown. However, the 
simulation signals are decomposed by ALIFD directly, and the envelope spectrum of the first IMF 
is demonstrated in Fig. 11. Owing to strong noise, the feature frequency is not discerned exactly 
and distinctly. All in all, it confirms the validity of the method combining the spatial correlation 
with ALIFD, and can be used to diagnose the early bearings fault. 

 
Fig. 9. The waveform of simulated signal 

5. Experimental verification 

Fig. 12 is the experimental device including a 2 hp motor (left), a torque transducer and 
encoder (center), a dynamometer (right), and control electronics (not shown). The bearings type 
is SKF 6205-2RS (ball diameter 8 mm, pitch diameter 39 mm, inside diameter 25 mm, outside 
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diameter 52 mm, rolling element 9 and contact angle 0°). The test bearings were seeded by using 
electro- discharge machining with fault diameters of 0.71 mm (depths 1.27 mm) at the inner 
race-way. The motor speed is 1772 r/min, and the sampling frequency is 12 kHz. In theory, this 
bearing rotation frequency is 29.53 Hz, and ball pass frequency, inner race (BPFI) is  
159.91 Hz [15]. 

 
Fig. 10. Envelope spectrum denoised  

by spatial correlation 

 
Fig. 11. Envelope spectrum of no processed  

with spatial correlation 

From the Fig. 13 it is the waveform of bearing inner fault signals and the one denoised by 
spatial correlation. Because of the influence of the noise, the fault features of inner ring fault signal 
are not obvious. After being denoised by spatial correlation, the inner race fault vibration signals’ 
noise is decreased obviously, and the impact of the waveform is more clear. 

In Fig. 14, the signals are processed by ALIFD. And IMF3 (the stronger correlation) is 
analyzed by the envelope demodulation in Fig. 15. 

 
Fig. 12. The schematic diagram of experimental device 

 
Fig. 13. The waveform of bearing vibration signal 

 
Fig. 14. Time-domain waveform of ALIFD 

In Fig. 15, the vibration signals of the bearing inner race fault include the BPFI and harmonics, 
sidebands spaced at 𝑓 . Based on the synthetic analysis of the spatial correlation and ALIFD, 
bearing inner race weak fault can be diagnosed, and the results are consistent with practice. In 



ROLLING ELEMENT BEARING WEAK FAULT DIAGNOSIS BASED ON SPATIAL CORRELATION AND ALIFD.  
LEI ZHAO, YONGXIANG ZHANG, DANCHEN ZHU 

564 JOURNAL OF VIBROENGINEERING. MAY 2020, VOLUME 22, ISSUE 3  

order to highlight the advantages of this method, in reference [16] (square envelope spectrum, 
cepstrum prewhitening, benchmark method), three methods using the same bearing data could not 
recognize the bearing fault feature (Without repeating the exposition owing to space constraints). 
Hence, the bearing fault diagnosis based on the spatial correlation and ALIFD is of innovation 
and practical significance. 

 
Fig. 15. The envelope spectrum of IMF3 

6. Conclusions 

Spatial correlation can use performance characteristics between the real signal and noise on 
different scales, keep signal details at the same time, effectively reduce noise, and improve the 
SNR. Simulation shows that this method has obvious advantages over the wavelet threshold 
denoising. ALIFD is a new adaptive time-frequency method analyzed the nonlinear and 
non-stationary signals, and remains locality, adaptability and stability. Simulation shows that 
ALIFD not only overcomes IFD non-adaptability and further improves the smoothness of IFD 
decomposed component, but also surmounts the presence of spurious modes and residual noise in 
modes compared with EMD. This paper goes on the bearing inner ring fault as the object, 
researching the vibration signal denoised by spatial correlation and decomposed into several 
modes by ALIFD. The simulating signal analysis and bearing fault simulator show that this 
method based on Spatial Correlation and ALIFD can be available for separating different 
frequencies of bearing fault vibration signals. 
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