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Abstract. A nonlinear dynamical system is investigated which consists from a mass between two
linear elastic connecting elements with different coefficients of stiffness. Laws of vibrations and
characteristics of eigenvibrations of the system as well as of self-decaying vibrations of the system
with damping and of the system with harmonic excitation are determined. Dynamical qualities of
the system are revealed. It is shown that the system has infinite number of eigenfrequencies and
that in the resonance zones multivalued stable and unstable motions do not exist in the system.

Keywords: nonlinear system, coefficients of stiffness, amplitude-frequency characteristics,
dynamical qualities.

1. Introduction

Basic concepts of investigation of vibrating systems are presented in [1]. Stabilisation of
periodic nonlinear systems is investigated in [2]. Frequency analysis of a typical system is
performed in [3]. Pendulum mechanism is investigated in [4]. Nonlinear vibrations of a piecewise
linear model are analysed in [5]. Multiple resonant zones are investigated in [6]. Sommerfeld
effect is analysed in [7]. Isolated resonances are investigated in [8]. Dynamics of vibromotors is
analysed in [9].

This paper is dedicated for the investigation of a nonlinear system which does not possess
multivalued regimes. Moreover, amplitude-frequency characteristics of such kind of system are
linear. Such types of systems are important from the point of view of different engineering
applications where stationary regimes do posses the stability in respect to different law of motions
and energy regimes. The governing system of equations describing the investigated class of
systems reads:

%+ 2hyx + p?x = fsinwt, x <0, (1)
¥ + 2hyx + p3x = fsinwt, x = 0. )

It is assumed that:

p1 <y hip;, (i =12), f=const, = 3)

2. The conservative system
In this case in the Egs. (1), (2) it is assumed that:

hi=0, (i=12), f=0. 4)
According to the Egs. (1), (4) when the initial conditions of motion are:
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; _.. 0, x -~ ’ (5)

it is obtained in the interval t € [0, T, ]:

).C+
x = ——sinp,t,
p (©)
x = —x*cosp;t.
From where it is obtained:
T, == 7
L= (7)
Motion in the interval:
te[T, T, +T,], (8)
takes place continuously, that is at t = Ty: x = 0, X = %~. According to the Egs. (2), (4):
b _
x = —sinp,(t — Ty),
p, C ! 9)
X = %" cosp,(t —T,).
From the Egs. (8), (9):
T, =— 10
2= (10)
and:
— + 2w
T = nu = (11)
pP1Db2 w
where the frequency of eigenvibrations w:
_ P1P2
w=2 . 12
p1+ D2 (12)
The whole solution by performing general notation x is obtained:
b
X = _p_smp1t {t € [0, T1]} + p_smpz(t - Tl) {te [Tp ]}; (13)
x = —%"cosp;t {t €[0,T,1} + % cosp,(t — Ty) {t € [T}, T}, (14)
X = p;x~sinp;t {t € [0, T;]} — px~sinp,(t — Ty) {t € [T}, T]}. (15)

Further x, X, ¥ by taking into account the Egs. (13)-(15) expansion into the Fourier series with
respect to @ is performed:

[oe] [ee) [ee)

x= ) x,(nwt), x= ) x,(nwt), ¥= ) i,(nwt), (16)
2, 2, 2,

n=0 n=0 n=0
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and the following relationships are obtained:

(o] (o] (o)
Xq = Z Xnay Xq = Z Xna Xq = Z Xnas (17)

where x, is the maximum deviation from the medium value of the whole process, x,, are the
amplitudes of the respective harmonics. In the same way the expansions of x and X are performed.
According to the Egs. (13)-(17) by assuming:

=1 p=2 (18)
and the initial conditions of motion at t = 0:
x=0 x=-%"<0, (19)

graphical relationships are obtained x = x(t), x = x(t), ¥ = ¥(t), xX = x¥(t), x = x(x),
X = X%(%), x%& = x%(x) (see Fig. 1).
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Fig. 1. Dynamics of the system for the initial conditions of motion t = 0, x(0) = 0, x(0) = -1 (thin line),
t =0,x(0) =0, x(0) =-2/3 (line of medium thickness) and t = 0, x(0) = 0, x(0) = —1/3 (thick line)
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According to the Eq. (12) eigenfrequency of the system:

1-2 4

o =
1+

22— =

2 3

(20)

In the expansions into the Fourier series the first four members n = 0,1,2,3 are taken into

account.

By taking into account the Egs. (11), (12) Table 1 is obtained.
According to the Egs. (13)-(17) by taking into account Egs. (18)-(20) graphical relationships
are obtained (see Fig. 2).

Table 1. Analysis of harmonics

n 0 1 2 3 n
_ 0 4 2 4 3 4 4
nw —_— . —_ Ppp— Ppp—
3 3 3 "3
7o 2m o 3 3 3 3
LY "122" 35" n2"
Xpa Rra .. %,
0.74 0.98
/;ﬂa iﬂm
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20w ™Mw 2w| "3w Foe ( Tae
032 0 w
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¢) Acceleration frequency characteristic

d) Velocity multiplied by acceleration frequency

characteristic

Fig. 2. Amplitude frequency characteristics (constant part and first three harmonics)

3. Forced vibrations

According to the Eqgs. (1), (2) by assuming:

100

=1p,=2h; =01h, =02, f = var,
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steady state solutions are found and their spectral analysis w, 2w, 3w, 4w, ... is performed.
Steady state solutions are presented in Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8.
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Fig. 3. Steady state motions of the system for the first value of frequency of excitation and
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Fig. 4. Steady state motions of the system for the second value of frequency of excitation and
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Fig. 5. Steady state motions of the system for the third value of frequency of excitation and
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b) Velocity as function of time
Fig. 6. Steady state motions of the system for the fourth value of frequency of excitation and
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Fig. 7. Steady state motions of the system for the fifth value of frequency of excitation and
f =1 (thin line), f = -2/3 (line of medium thickness), f = —1/3 (thick line)
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Fig. 8. Steady state motions of the system for the sixth value of frequency of excitation and
f =1 (thin line), f = -2/3 (line of medium thickness), f = —1/3 (thick line)

Amplitude frequency characteristics are presented in Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13,

Fig. 14.
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Fig. 9. Amplitude frequency characteristics (constant part and first three harmonics)
for the first value of frequency of excitation
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Fig. 10. Amplitude frequency characteristics (constant part and first three harmonics)
for the second value of frequency of excitation
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Fig. 11. Amplitude frequency characteristics (constant part and first three harmonics)
for the third value of frequency of excitation
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Fig. 12. Amplitude frequency characteristics (constant part and first three harmonics)
for the fourth value of frequency of excitation
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Fig. 13. Amplitude frequency characteristics (constant part and first three harmonics)
for the fifth value of frequency of excitation
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Fig. 14. Amplitude frequency characteristics (constant part and first three harmonics)
for the sixth value of frequency of excitation
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4. Conclusions

On the basis of the presented results the qualities of dynamic behavior of the nonlinear
vibrating system which consists from a mass between two linear elastic connecting members with
different coefficients of stiffness can be used in different engineering applications requiring the
stability in a wide range of parameters.

The motions of the system and amplitude frequency characteristics are determined by
analytical — numerical method relationships. It is determined that for the case of the conservative
system eigenfrequencies do not depend on the value of the amplitude of excitation. It is shown
that for the case of forced harmonic excitation stable and unstable multivalued regimes do not
exist in the system. Also, separate classes of nonlinear dynamical systems are investigated which
have qualities of similar type.

The presented results enable to perform the design of nonlinear vibrating systems of this type.
This enables to create new systems which can be noted by high stability properties, because in the
vicinities of resonances they do not have multivalued solutions.
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