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Abstract. A nonlinear dynamical system is investigated which consists from a mass between two 
linear elastic connecting elements with different coefficients of stiffness. Laws of vibrations and 
characteristics of eigenvibrations of the system as well as of self-decaying vibrations of the system 
with damping and of the system with harmonic excitation are determined. Dynamical qualities of 
the system are revealed. It is shown that the system has infinite number of eigenfrequencies and 
that in the resonance zones multivalued stable and unstable motions do not exist in the system. 
Keywords: nonlinear system, coefficients of stiffness, amplitude-frequency characteristics, 
dynamical qualities. 

1. Introduction 

Basic concepts of investigation of vibrating systems are presented in [1]. Stabilisation of 
periodic nonlinear systems is investigated in [2]. Frequency analysis of a typical system is 
performed in [3]. Pendulum mechanism is investigated in [4]. Nonlinear vibrations of a piecewise 
linear model are analysed in [5]. Multiple resonant zones are investigated in [6]. Sommerfeld 
effect is analysed in [7]. Isolated resonances are investigated in [8]. Dynamics of vibromotors is 
analysed in [9]. 

This paper is dedicated for the investigation of a nonlinear system which does not possess 
multivalued regimes. Moreover, amplitude-frequency characteristics of such kind of system are 
linear. Such types of systems are important from the point of view of different engineering 
applications where stationary regimes do posses the stability in respect to different law of motions 
and energy regimes. The governing system of equations describing the investigated class of 
systems reads: 𝑥ሷ + 2ℎଵ𝑥ሶ + 𝑝ଵଶ𝑥 = 𝑓sin𝜔𝑡,    𝑥 ൑ 0, (1)𝑥ሷ + 2ℎଶ𝑥ሶ + 𝑝ଶଶ𝑥 = 𝑓sin𝜔𝑡,    𝑥 ൒ 0. (2)

It is assumed that: 

𝑝ଵ < 𝑝ଶ, ℎ௜, 𝑝௜,   ሺ𝑖 = 1,2ሻ,   𝑓 = 𝑐𝑜𝑛𝑠𝑡,   ሶ = 𝑑𝑑𝑡. (3)

2. The conservative system 

In this case in the Eqs. (1), (2) it is assumed that: ℎ௜ = 0,    ሺ𝑖 = 1,2ሻ,    𝑓 = 0. (4)

According to the Eqs. (1), (4) when the initial conditions of motion are: 
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𝑡 = 0: 𝑥 = 0,   𝑥ሶ = −𝑥ሶ ି,    𝑥ሶ ି > 0,𝑡 = 𝑇തଵ: 𝑥 = 0,    𝑥ሶ = +𝑥ሶ ି,  (5)

it is obtained in the interval 𝑡 ∈ ሾ0, 𝑇തଵሿ: 
𝑥 = − 𝑥ሶ ା𝑝 sin𝑝ଵ𝑡,𝑥ሶ = −𝑥ሶ ାcos𝑝ଵ𝑡.  (6)

From where it is obtained: 𝑇തଵ = 𝜋𝑝ଵ. (7)

Motion in the interval: 𝑡 ∈ ሾ𝑇തଵ, 𝑇തଵ + 𝑇ଶሿ, (8)

takes place continuously, that is at 𝑡 = 𝑇തଵ: 𝑥 = 0, 𝑥ሶ = 𝑥ሶ ି. According to the Eqs. (2), (4): 

𝑥 = 𝑥ሶ ି𝑝ଶ sin𝑝ଶሺ𝑡 − 𝑇തଵሻ,𝑥ሶ = 𝑥ሶ ିcos𝑝ଶሺ𝑡 − 𝑇തଵሻ. (9)

From the Eqs. (8), (9): 𝑇തଶ = 𝜋𝑝ଶ, (10)

and: 𝑇ത = 𝜋 𝑝ଵ + 𝑝ଶ𝑝ଵ𝑝ଶ = 2𝜋𝜔ഥ , (11)

where the frequency of eigenvibrations 𝜔ഥ: 𝜔ഥ = 2 𝑝ଵ𝑝ଶ𝑝ଵ + 𝑝ଶ. (12)

The whole solution by performing general notation 𝑥 is obtained: 

𝑥 = − 𝑥ሶ ି𝑝ଵ sin𝑝ଵ𝑡 ሼ𝑡 ∈ ሾ0, 𝑇തଵሿሽ + 𝑥ሶ ି𝑝ଶ sin𝑝ଶሺ𝑡 − 𝑇തଵሻ ሼ𝑡 ∈ ሾ𝑇തଵ, 𝑇തሿሽ, (13)𝑥ሶ = −𝑥ሶ ିcos𝑝ଵ𝑡 ሼ𝑡 ∈ ሾ0, 𝑇തଵሿሽ + 𝑥ሶ ିcos𝑝ଶሺ𝑡 − 𝑇തଵሻ ሼ𝑡 ∈ ሾ𝑇തଵ, 𝑇തሿሽ, (14)𝑥ሷ = 𝑝ଵ𝑥ሶ ିsin𝑝ଵ𝑡 ሼ𝑡 ∈ ሾ0, 𝑇തଵሿሽ − 𝑝ଶ𝑥ሶ ିsin𝑝ଶሺ𝑡 − 𝑇തଵሻ ሼ𝑡 ∈ ሾ𝑇തଵ, 𝑇തሿሽ. (15)

Further 𝑥, 𝑥ሶ , 𝑥ሷ  by taking into account the Eqs. (13)-(15) expansion into the Fourier series with 
respect to 𝜔ഥ is performed: 

𝑥 = ෍ 𝑥௡ሺ𝑛𝜔ഥ𝑡ሻ,ஶ
௡ୀ଴     𝑥ሶ = ෍ 𝑥ሶ௡ሺ𝑛𝜔ഥ𝑡ሻ,ஶ

௡ୀ଴     𝑥ሷ = ෍ 𝑥ሷ௡ሺ𝑛𝜔ഥ𝑡ሻ,ஶ
௡ୀ଴  (16)
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and the following relationships are obtained: 

𝑥௔ = ෍ 𝑥௡௔,ஶ
௡ୀ଴     𝑥ሶ௔ = ෍ 𝑥ሶ௡௔,ஶ

௡ୀ଴     𝑥ሷ௔ = ෍ 𝑥ሷ௡௔,ஶ
௡ୀ଴  (17)

where 𝑥௔ is the maximum deviation from the medium value of the whole process, 𝑥௡௔ are the 
amplitudes of the respective harmonics. In the same way the expansions of 𝑥ሶ  and 𝑥ሷ  are performed. 

According to the Eqs. (13)-(17) by assuming: 𝑝ଵ = 1,    𝑝ଶ = 2, (18)

and the initial conditions of motion at 𝑡 = 0: 𝑥 = 0,    𝑥ሶ = −𝑥ሶ ି < 0, (19)

graphical relationships are obtained 𝑥 = 𝑥ሺ𝑡ሻ,  𝑥ሶ = 𝑥ሶ ሺ𝑡ሻ,  𝑥ሷ = 𝑥ሷ ሺ𝑡ሻ,  𝑥ሶ𝑥ሷ = 𝑥ሶ𝑥ሷ ሺ𝑡ሻ,  𝑥ሶ = 𝑥ሶ ሺ𝑥ሻ,  𝑥ሷ = 𝑥ሷ ሺ𝑥ሶ ሻ, 𝑥ሶ𝑥ሷ = 𝑥ሶ𝑥ሷ ሺ𝑥ሻ (see Fig. 1). 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

 
c) Acceleration as function of time 

 
d) Velocity multiplied by 

acceleration as function of time 

 
e) Phase trajectory: velocity  
as function of displacement 

 
f) Phase trajectory: acceleration  

as function of velocity 

 
g) Phase trajectory: velocity multiplied by acceleration as function of displacement 

Fig. 1. Dynamics of the system for the initial conditions of motion 𝑡 = 0, 𝑥ሺ0ሻ = 0, 𝑥ሶሺ0ሻ = –1 (thin line), 𝑡 = 0, 𝑥ሺ0ሻ = 0, 𝑥ሶሺ0ሻ = –2/3 (line of medium thickness) and 𝑡 = 0, 𝑥ሺ0ሻ = 0, 𝑥ሶሺ0ሻ = –1/3 (thick line) 
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According to the Eq. (12) eigenfrequency of the system: 

𝜔ഥ = 2 1 ⋅ 21 + 2 = 43. (20)

In the expansions into the Fourier series the first four members 𝑛 = 0,1,2,3 are taken into 
account. 

By taking into account the Eqs. (11), (12) Table 1 is obtained. 
According to the Eqs. (13)-(17) by taking into account Eqs. (18)-(20) graphical relationships 

are obtained (see Fig. 2). 

Table 1. Analysis of harmonics 𝑛 0 1 2 3 … 𝑛 𝑛𝜔ഥ 0 43 2 ⋅ 43 3 ⋅ 43 … 𝑛 ⋅ 43 𝑇ത௡ = 2𝜋𝑛𝜔ഥ ∞ 32 𝜋 
32 ⋅ 2 𝜋 

33 ⋅ 2 𝜋 … 3𝑛 ⋅ 2 𝜋 
 

 
a) Displacement frequency characteristic 

 
b) Velocity frequency characteristic 

 
c) Acceleration frequency characteristic 

 
d) Velocity multiplied by acceleration frequency 

characteristic 
Fig. 2. Amplitude frequency characteristics (constant part and first three harmonics) 

3. Forced vibrations 

According to the Eqs. (1), (2) by assuming: 𝑝1 = 1, 𝑝2 = 2, ℎ1 = 0.1, ℎ2 = 0.2, 𝑓 ≡ var, (21)

and at: 

𝜔 = 34 𝜔ഥ, 𝜔ഥ, 43 𝜔ഥ, 53 𝜔ഥ, 2𝜔ഥ, 52 𝜔ഥ, (22)
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steady state solutions are found and their spectral analysis 𝜔, 2𝜔, 3𝜔, 4𝜔, ... is performed. 
Steady state solutions are presented in Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8. 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

Fig. 3. Steady state motions of the system for the first value of frequency of excitation and  𝑓 = –1 (thin line), 𝑓 = –2/3 (line of medium thickness), 𝑓 = –1/3 (thick line) 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

Fig. 4. Steady state motions of the system for the second value of frequency of excitation and  𝑓 = –1 (thin line), 𝑓 = –2/3 (line of medium thickness), 𝑓 = –1/3 (thick line) 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

Fig. 5. Steady state motions of the system for the third value of frequency of excitation and  𝑓 = –1 (thin line), 𝑓 = –2/3 (line of medium thickness), 𝑓 = –1/3 (thick line) 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

Fig. 6. Steady state motions of the system for the fourth value of frequency of excitation and  𝑓 = –1 (thin line), 𝑓 = –2/3 (line of medium thickness), 𝑓 = –1/3 (thick line) 
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a) Displacement as function of time 

 
b) Velocity as function of time 

Fig. 7. Steady state motions of the system for the fifth value of frequency of excitation and  𝑓 = –1 (thin line), 𝑓 = –2/3 (line of medium thickness), 𝑓 = –1/3 (thick line)  

 
a) Displacement as function of time 

 
b) Velocity as function of time 

Fig. 8. Steady state motions of the system for the sixth value of frequency of excitation and  𝑓 = –1 (thin line), 𝑓 = –2/3 (line of medium thickness), 𝑓 = –1/3 (thick line) 

Amplitude frequency characteristics are presented in Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13, 
Fig. 14. 

 
a) Displacement frequency characteristic 

 
b) Velocity frequency characteristic 

Fig. 9. Amplitude frequency characteristics (constant part and first three harmonics)  
for the first value of frequency of excitation 

 
a) Displacement frequency characteristic 

 
b) Velocity frequency characteristic 

Fig. 10. Amplitude frequency characteristics (constant part and first three harmonics)  
for the second value of frequency of excitation 
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a) Displacement frequency characteristic 

 
b) Velocity frequency characteristic 

Fig. 11. Amplitude frequency characteristics (constant part and first three harmonics)  
for the third value of frequency of excitation 

 
a) Displacement frequency characteristic 

 
b) Velocity frequency characteristic 

Fig. 12. Amplitude frequency characteristics (constant part and first three harmonics)  
for the fourth value of frequency of excitation 

 
a) Displacement frequency characteristic 

 
b) Velocity frequency characteristic 

Fig. 13. Amplitude frequency characteristics (constant part and first three harmonics)  
for the fifth value of frequency of excitation 

 
a) Displacement frequency characteristic 

 
b) Velocity frequency characteristic 

Fig. 14. Amplitude frequency characteristics (constant part and first three harmonics)  
for the sixth value of frequency of excitation 
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4. Conclusions 

On the basis of the presented results the qualities of dynamic behavior of the nonlinear 
vibrating system which consists from a mass between two linear elastic connecting members with 
different coefficients of stiffness can be used in different engineering applications requiring the 
stability in a wide range of parameters. 

The motions of the system and amplitude frequency characteristics are determined by 
analytical – numerical method relationships. It is determined that for the case of the conservative 
system eigenfrequencies do not depend on the value of the amplitude of excitation. It is shown 
that for the case of forced harmonic excitation stable and unstable multivalued regimes do not 
exist in the system. Also, separate classes of nonlinear dynamical systems are investigated which 
have qualities of similar type. 

The presented results enable to perform the design of nonlinear vibrating systems of this type. 
This enables to create new systems which can be noted by high stability properties, because in the 
vicinities of resonances they do not have multivalued solutions. 
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