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Abstract. The hybrid finite element method and statistical energy method was used to study the 
vibro-acoustic coupling characteristics of an engineering vehicle cab. The parameters of the 
statistical energy method, such as modal densities, damping loss factors and coupling loss factors 
of substructures, were acquired by numerical and analytical methods. The acoustic-structure 
coupling of the cab was established based on the modal densities of substructures. The vibration 
and noise excitations of the cab were measured by test and the sound pressure level response of 
the driver’s ear was predicted. It was shown that the prediction results based on the hybrid method 
are in agreement with the experiments and the proposed method can be applied to predict the 
mid-frequency response of complex vibro-acoustic coupling systems with a moderate 
computational cost and accuracy. 
Keywords: structural-acoustic modeling, mid-frequency range, hybrid FE-SEA method. 

1. Introduction 

At present, the dynamic response of the structure-acoustic problem can be predicted by the 
deterministic or statistical methods. Deterministic methods, such as boundary element method 
(BEM) [1, 2] and finite element method (FEM) [3, 4], are usually applied to low-frequency range 
due to the prohibitive calculational cost. Statistical methods, such as statistical energy analysis 
(SEA) [5-8], applied to dynamic analysis from the energy point of view are limited to the high 
frequencies as a result of the lack of accuracy. In some cases, however, there is a mid-frequency 
range, in which neither deterministic methods nor statistical methods can be used here with 
accuracy and validity. 

For the “mid-frequency problem”, the hybrid FEM-SEA had been recently proposed [9-13], 
which combine advantages of the two well established methods. Shorter [14] investigated the 
prediction of the transmission loss of a front-of-dash component based on the hybrid method and 
the results obtained by simulation was in good agreement with the test. Prasanth S. [15] built the 
hybrid model of structure-borne noise in a fully trimmed vehicle from 200 Hz to 1000 Hz. It was 
shown that the hybrid model could accurately predict absolute panel vibration and cavity SPL. 
Azevedo [16] modeled the floor structure of an aircraft using the hybrid method to predict the 
response of the vibration and the results was experimentally validated. Cordioli [17] investigated 
the transmission loss of various slits based on the hybrid FE-SEA method, and analyzed the 
parameters of influencing the transmission loss of the typical slits and seals. 

The purpose of the present contribution was to predict the structure-acoustic response of an 
engineering machinery cab firstly based on the hybrid FE-SEA method in the mid-frequency  
range. Firstly, the theories behind the hybrid model and the governing equations of the hybrid 
method were presented, and then, the parameters of the hybrid model were calculated by analytical 
methods. Finally, the response of the cab is conducted by comparing with experiment and some 
conclusions are discussed. 
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2. Mathematical formulation 

2.1. Theory of the hybrid FE-SEA method 

In hybrid model, the FE part is represented by a set of degrees of freedom 𝑞, and the SEA 
subsystems by their average vibrational energy level 𝐸 [10-12]. The relation is written in terms of 
the cross-spectral matrix of force 𝑆 : 

𝑆 = 𝐸 𝑓( )𝑓( )∗ = 4𝐸𝜔𝜋𝑛 Im 𝐷( ) , (1)

where 𝐸 ·  denotes the ensemble average, 𝐷  is the “direct field” dynamic stiffness matrix, 𝜔 is 
the angular frequency and 𝑛 is the modal density of the SEA subsystem. The response of the FE 
dofs is given in cross-spectral form by: 

𝑆 = 𝐸 𝑞𝑞 = 𝐷 𝑆 ， + 4𝐸𝜔𝜋𝑛 Im 𝐷( ) 𝐷 , (2)

where 𝐷 ( ),  𝐸 ,  and 𝑛  represent “direct field” dynamic stiffness matrix, the average 
vibrational or sound energy level, and the modal density of the 𝑘th statistical subsystem. 𝑆  and 𝑆 ,  represent the cross-spectral matrices of 𝑞 and 𝑓, and the dynamic stiffness matrix of the FE 
model 𝐷  can be written as: 

𝐷 = 𝐷 + 𝐷( ). (3)

The average energy response of the SEA subsystems, written as: 

𝑃 + 𝑃( , ) = 𝜔 𝜂 + 𝜂 , 𝐸 + 𝜔𝜂 𝜂 𝐸𝑛 − 𝐸𝑛 , (4)

where, power input 𝑃( , ) can be computed by the displacement response 𝑞  arising from external 
load 𝑓 applied to the subsystem 𝑗 and its dynamic stiffness matrix 𝐷( ) . 𝜂  is the coupling loss 
factor. 

Eq. (2) and Eq. (4) constitute primary equations of the hybrid FE-SEA method. Once, the 
energy response of SEA subsystem is computed by Eq. (4), the response of 𝑞 is also computed by 
Eq. (2) eventually. 

2.2. Parameters of the hybrid model 

For ideal subsystems, the modal densities of which can be given by Eq. (5) and Eq. (6): 

𝑛(𝑓) = 𝑑𝑁(𝑓)𝑑𝑓 , (5)𝑛(𝜔) = 𝜔 𝑉2𝜋 𝑐 + 𝜔 𝐴16𝜋𝑐 + 𝜔 𝑙16𝜋𝑐, (6)

where 𝑁(𝑓) is modes in band, 𝑓 is the representation of the frequency. 𝜔 is the circular frequency. 𝑐 is the sound speed. 𝑉  is the volume of the acoustic field. 𝐴  is the surface area of the acoustic 
cavity and 𝑙  is the total length of the edges. 

DLF is a measure of the rate of energy flowing out of a subsystem through a dissipation 
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mechanism, which is defined as follows: 𝜂 = 𝜂 + 𝜂 + 𝜂 , (7)

where, structural loss factor (𝜂 ) caused by internal friction of the 𝑘th subsystem is the inherent 
properties of materials. According to the structure loss factor-material table, 𝜂  of tempered glass 
is 0.001 and 𝜂  of steel plates range from 0.0001 to 0.0006. The loss factor of acoustic radiation 
(𝜂 ) can be acquired from the Eqn. (8) and Eqn. (9): 

𝜂 = 𝜌 𝑐𝛿𝜔𝜌 ,     𝛿 = 𝜆𝜋𝐴 𝑝𝜋 arcsin 𝑓𝑓 𝛽, (8)

where 𝜌  is the air mass density. 𝑐 represents the sound speed. 𝜌 , 𝛿 represent the area density and 
radiation ratio of the structure. 𝐴  represents the radiation area. 𝑃  represents the circumference 
of the plate. 𝑓  represents the critical frequency. 𝜆  represents the critical wavelength and 𝛽 
represents the boundary condition factor. (𝑓 𝑡 = 12.9 m/s with steel plate and 𝑓 𝑡 = 12.6 m/s with 
glass plate. 𝛽 = 1 with simple supported condition and 𝛽 = 2 with clamped condition).  

The interior acoustic cavity regarded as semi-free sound field is written as: 𝜂 = 𝛼𝑐𝐴8𝜋𝑓𝑉, (9)

where 𝜂  represents the loss factor of cavity. 𝛼 represents the sound absorption coefficient, 𝐴  
represents the surface area of cavity. 𝑓 is the center frequency, and 𝑉 represents the volume of 
cavity. 

The coupling loss factors (CLFS) are created simultaneously when the appropriate wave fields 
are connected. As to the point connected subsystems, the CLFs can be acquired by the Eq. (11): 

𝜂 = 2𝑅 𝑅𝜋𝜔𝑛 (𝜔) 𝑍 + 𝑍 , (10)

where  𝑍 + 𝑍  is the total impedance of the point junction. 𝑛 (𝜔)  is the model density of 
subsystem 𝑖  and 𝑅 , 𝑅  is the real part of input impedance at the point junction between 
subsystems 𝑖, 𝑗, respectively.  

The CLFs for the line junction subsystems can be defined as: 

𝜂 = 𝑙𝑐𝜋𝜔𝐴 𝜏 , (11)

where 𝑙 represents the length of coupling line, 𝑐  is the bending wave velocity of subsystem, 𝐴  
represents the surface area, and 𝜏  is the wave transmission coefficient from subsystem 𝑖 to 𝑗. 

For the area coupling structure, the CLFs can be defined as follows: 𝜂 = 𝜌 𝑐𝜎𝜔𝜌 , (12)𝜂 = 𝜌 𝑐𝜎𝑛𝜔𝜌 𝑛 , (13)

where 𝜂 , 𝜂  represents the DLF from structural subsystem to acoustic cavity and the reverse 
one, respectively. 𝜎  represents the sound radiation coefficient from structural subsystem to 
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acoustic cavity. 
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Fig. 1. a) Structural-acoustic system of engineering machinery cab,  
b) modes per 1/3rd octave band for the principal structural subsystems 

3. Modeling of the engineering machinery cab 

3.1. Description of the structural-acoustic system 

In this paper, we are interested in studying the acoustic response of an engineering machinery 
cab at passengers’ ears under engine’s structure-borne and air-borne excitations in middle 
frequency range. The cab is made of two shield panels, two windscreen panels, four door glass 
panels and two top and bottom panels, plotted in Fig. 1(a). The frame is of rectangular shape and 
made of connected steel beams with different cross sections. The cavity encloses a volume of  𝑉 = 2.63 m3 and the total surface area is 𝐴 = 13.48 m2.  

3.2. Modeling of the cab based on the hybrid model 

In this study, most of subsystems in the cab are simplified into regularly ideal flat plates, 
singly-curved shells etc. The modal densities of subsystems are estimated based on analytical 
methods above shown in the Fig. 1(b). According to the mid-frequency domain division principle 
[9], the hybrid model can be used from 100 Hz to 800 Hz. 

DLFs of the major subsystems were shown in Fig. 2 and CLFs for each junction calculated by 
analytical equations were shown in Fig. 3. As can be observed, the coupling loss factors of 
acoustic cavity to rear windscreen does not equal to the reverse one. This indicates the 
directionality of coupling loss factors. 
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Fig. 2. DLFs for the principal  

structural subsystems 
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Fig. 3. CLFs between the front windscreen  

and the acoustic cavity 

3.3. Excitations of the hybrid cab model 

The cab mounting system is supported with four symmetric mounts: left front mount (L-F), 
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right front mount (R-F), left rear mount (L-R) and right rear mount (R-R). Four accelerometers 
were placed in the passive sides of cab mounting system and accelerations of these were collected 
at the highest speed in static situation. Meanwhile, the sound radiation excitations were measured 
by surface acoustic sensors in same condition. 

Then excitation forces can be figured out by imposing integral transform on acceleration 
signals. The forces were defined as follows: 𝐹 (𝑓) = 𝐾(𝑗2𝜋𝑓) 𝑥(𝑓) − 𝑥(𝑓) , (14)

where 𝑥(𝑓)  and 𝑥(𝑓)  represent the acceleration at mounting system of the cab and the 
vehicle body, 𝐾𝑖  represents the stiffness of the mount. The vibration and sound radiation 
excitations of the cab respectively was plotted in Fig. 4 and Fig. 5. 
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Fig. 4. Vibration excitations for the mounting system 
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Fig. 5. Sound excitations of the primary panels 

3.4. Results analysis 

The results by averaging the sound responses through experiment in the engineering machinery 
cab is compared with that of the hybrid FE-SEA method plotted in Fig. 6. It is shown that in 
general the predicted results are in good agreement with the test results. The frequencies at the 
peaks and variation trend in the response are basically consistent from 100 Hz to 800 Hz. Some 
discrepancies were also observed at lower frequencies due to low modal density shown in Fig. 3 
which does not meet the application assumptions of SEA in this band. Moreover, another possible 
reason could be the assumption of hard-wall boundary conditions, whereas the actual cab has tiny 
holes and gaps because of doors, windows and pipelines.  
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Fig. 6. Comparisons (SPLs) between the predicted and test results 

4. Conclusions 

In this paper, studies of interior sound pressure response of the engineering machinery cab 
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were made using the FE-SEA method. In the hybrid model the frame structure was described by 
finite element method while the panels such as windows, doors and windscreens were modeled 
based on the statistic energy method. Then parameters of the SEA, such as modal densities, DLFs 
and CLFs of substructures, were acquired by analytical methods. Finally, comparisons were used 
to validate the hybrid model and verify its accuracy through experimental results. It is shown that 
the hybrid FE-SEA method is an alternative for improve traditional deterministic or statistic 
models for structure-acoustic predictions in the mid-frequency range with a moderate 
computational cost and accuracy. It is worth noting that the hybrid method can only obtains the 
results averaging at frequencies and not get results at single frequencies. What’s more, it’s 
accuracy is closely to the application of frequency range. 
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