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Abstract. From the point of view of bridge structures, the moving load is one of the most 
important components of the load. The analysis of the influence of moving load on bridges is 
carried out numerically or experimentally and can be traced in the literature since the year 1849. 
The first impulse was the collapse of the Chester Rail Bridge in England in the year 1847. The 
present paper analyses the effect of the moving load on a two-span bridge, both numerical and 
experimental way. The planar model of the vehicle and the bridge is adopted. The bridge is 
modeled as Bernoulli-Euler beam. The heavy vehicle is modeled as a discrete computational 
model with 8 degrees of freedom. Two approaches are used in numerical modeling. For the first 
time, the task is solved by the finite element method in the environment of the program system 
ADINA. The Newmark's method is used for the solution of equations of motion. The classic 
approach is used for the second time. A discrete computational model of a bridge with two degrees 
of freedom is used. Equations of motion are solved numerically in the environment of program 
system MATLAB by the Runge-Kutta 4th order method. The influence of vehicle speed on 
vertical deflections in the middle of individual bridge fields is analyzed in the speed range from 0 
to 130 km/h with a step of 5 km/h. The detailed comparison of both numerical approaches is made 
at a vehicle speed of 70 km/h. The deflections of the bridge and the deflection of the vehicle are 
compared with each other. The correctness of the assumptions used in the numerical solutions was 
verified by measurement on a model beam in the laboratory. The results of the experimental tests 
were compared with the results of the numerical solution. 
Keywords: moving load, vehicle, bridge, numerical simulation, experimental test, dynamic 
response. 

1. Introduction 

The moving load on bridges is one of the most important components of the load. Simulation 
of moving load effect on bridges was induced by the collapse of the Chester Rail Bridge in 
England in the year 1847 and it can be traced in the literature since the year 1849, [1, 2]. The 
authors as V. Koloušek [3] and L. Frýba [4] laid the foundations to the deep tradition of modeling 
of moving load effects on transport structures. Their work obtained world acknowledgment. To 
the dynamic of railway and highway bridges are especially dedicated the monographs [5, 6]. 
While the problem of the dynamic of railway bridges was studied since the year 1847, the 
problems of dynamic of highway bridges start to be studied only in the 20th century. American 
Society of Civil Engineers in [7] published the 1st important report on this topic. The complete 
overview of the works in this area until the year 1975 was published by Tseng Huang in [8]. New 
findings to the solution of the problem can be found for example in [9-12]. A numerical approach 
to the solution of the vehicle-bridge interaction problems requires to pay attention to the following 
matters: creating the vehicle and the bridge computational models, creating the computing 
programs for the solution of equations of motion and displaying of obtained results. To solve this 
problem, it is advantageous to work with discrete computational models. Computational models 
can be created from the spirit of classical dynamics or in the spirit of the finite element method. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2020.21056&domain=pdf&date_stamp=2020-05-15
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When working with the finite element method, it is advisable to use the ADYNA or ANSYS 
program systems [13-15]. Classic computational models can be advantageously solved in the 
environment of the program system MATLAB [16]. This contribution is devoted to the numerical 
modeling of vehicle movement over the two-span highway bridge on the basis of two approaches 
(FEM and classical approach). It described the creation of a discrete computational model of the 
vehicle and a bridge. The time courses of vehicle and bridge oscillation are shown graphically. 
Important results are given in the numerical form. 

2. Computational models of a bridge 

The subject of numerical analysis is a highway bridge with two fields. It is a prestressed 
concrete bridge made of I-73 bridge prefabricated elements. Planar models of a bridge are often 
used in practical engineering tasks. For the purpose of this paper, the bridge is modeled as a 
Bernoulli-Euler continuous beam with two fields. Two models are created for the solution of this 
task. One model is based on classical dynamics and the other is based on the finite element method. 

2.1. Model-based on classical dynamics 

The bridge model based on classical dynamics is a discrete computational model with two 
degrees of freedom, Fig. 1. One application of such a computational model was already introduced 
in [17]. We need to solve two problems when we want to use such a computational model. We 
must adopt the assumption about the shape of the deflection curve, the function Φ௩ሺ𝑥ሻ, and define 
the load distribution function Φிሺ𝑥ሻ. The functions Φ௩ሺ𝑥ሻ and Φிሺ𝑥ሻ can be linear, sinusoidal or 
parabolic. Numerical studies show that the best results are obtained if the function Φ௩ሺ𝑥ሻ is 
sinusoidal and the function Φிሺ𝑥ሻ is linear, as it is seen in Fig. 1. 

 
Fig. 1. Computational model of a bridge with two degrees of freedom 

The equations of motion describing such computational model are as follows: 𝑣ሷଵሺ𝑡ሻ ∙ 𝑚௕ଵ ൅ 2𝜔௕ ∙ 𝑣ሶଵሺ𝑡ሻ ൅ 𝑘ଵଵ ∙ 𝑣ଵሺ𝑡ሻ ൅ 𝑘ଵଶ ∙ 𝑣ଶሺ𝑡ሻ ൌ 𝐹ଵሺ𝑡ሻ, 𝑣ሷଶሺ𝑡ሻ ∙ 𝑚௕ଶ ൅ 2𝜔௕ ∙ 𝑣ሶଶሺ𝑡ሻ ൅ 𝑘ଶଵ ∙ 𝑣ଵሺ𝑡ሻ ൅ 𝑘ଶଶ ∙ 𝑣ଶሺ𝑡ሻ ൌ 𝐹ଶሺ𝑡ሻ, (1)

where 𝜔௕  is the damping circular frequency in rad/s and 𝑘௜௝ are the stiffness constants in N/m.  
The load distribution function is defined as: 

0 ൑ 𝑥ଵ ൑ 𝑙ଵ2 ,     Φிሺ𝑥ଵሻ ൌ 2𝑙ଵ 𝑥ଵ ,     𝑙ଵ2 ൑ 𝑥ଵ ൑ 𝑙ଵ,     Φிሺ𝑥ଵሻ ൌ 2𝑙ଵ ሺ𝑙ଵ − 𝑥ଵሻ, 0 ൑ 𝑥ଶ ൑ 𝑙ଶ2 ,     Φிሺ𝑥ଶሻ ൌ 2𝑙ଶ 𝑥ଶ ,     𝑙ଶ2 ൑ 𝑥ଶ ൑ 𝑙ଶ,      Φிሺ𝑥ଶሻ ൌ 2𝑙ଶ ሺ𝑙ଶ − 𝑥ଶሻ. (2)
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Approximation of the deflection curve can be described as: 𝑣ሺ𝑥ଵ, 𝑡ሻ = Φ௩ሺ𝑥ଵሻ ∙ 𝑣ଵሺ𝑡ሻ + 𝑢ሺ𝑥ሻ,     𝑣௫ଵሺ𝑡ሻ = Φ௩ሺ𝑡ሻ ∙ 𝑣ଵሺ𝑡ሻ + 𝑢ሺ𝑡ሻ, 𝑣ሺ𝑥ଶ, 𝑡ሻ = Φ௩ሺ𝑥ଶሻ ∙ 𝑣ଶሺ𝑡ሻ + 𝑢ሺ𝑥ሻ,     𝑣௫ଶሺ𝑡ሻ = Φ௩ሺ𝑡ሻ ∙ 𝑣ଶሺ𝑡ሻ + 𝑢ሺ𝑡ሻ, (3)

where the shape function Φ௩ሺ𝑥ሻ is defined as: Φ௩ሺ𝑥ଵሻ = sin ൬𝜋 ∙ 𝑥ଵ𝑙ଵ ൰ ,      Φ௩ሺ𝑥ଶሻ = sin ቀ𝜋 ∙ 𝑥ଶ2 ቁ. (4)

Function 𝑢ሺ𝑥ሻ represents the road unevenness. In relation to the particular vehicle speed the 
functions 𝑢, Φ௩, Φி can be expressed as functions of time 𝑡. For example: Φ௩ሺ𝑥ሻ = sin ቀ𝜋 ∙ 𝑥𝑙 ቁ ,     Φ௩ሺ𝑡ሻ = sin ൬𝜋 ∙ 𝑒 ∙ 𝑡𝑙 ൰ = sinሺ𝜔 ∙ 𝑡ሻ ,     𝜔 = 𝜋 ∙ 𝑒𝑙 , (5)Φிሺ𝑥ሻ = 2𝑙 𝑥,      Φிሺ𝑡ሻ = 2𝑙 𝑒 ∙ 𝑡, Φிሺ𝑥ሻ = 2𝑙 ሺ𝑙 − 𝑥ሻ,      Φிሺ𝑡ሻ = 2𝑙 ሺ𝑙 − 𝑒 ∙ 𝑡ሻ, (6)

where e is the vehicle speed in m/s. 
The force 𝐹ሺ𝑡ሻ acting on the mass point 𝑚௕ at time 𝑡 can be expressed as: 𝐹ሺ𝑡ሻ = 𝐹௜௡௧ሺ𝑡ሻ ∙ Φிሺ𝑡ሻ. (7)

Derivatives of functions with respect to time are denoted by a dot above the symbol. 

2.2. Model-based on finite element method 

It is necessary to create a numerical model as the most describe the real situation on 
construction. The vehicle-bridge contact task model was created in computer software ADINA 
based on the FEM principle [18]. The FEM is a very often used method for differential equations 
calculating. In our numerical simulation is heavy vehicle passing across the two-span bridge, with 
two independent surfaces, namely the vehicle acceleration area and the vehicle deceleration area. 
The equation of motion for this situation is: ሾ𝑀ሿ ∙ ሼ𝑤ሷ ሺ𝑡ሻሽ + ሾ𝐶ሿ ∙ ሼ𝑤ሶ ሺ𝑡ሻሽ + ሾ𝐾ሿ ∙ ሼ𝑤ሺ𝑡ሻሽ = ሼ𝐹ሺ𝑡ሻሽ, (8)

where [𝑀], [𝐶] and [𝐾] are mass, damping and stiffness matrices. 
For the numerical simulation of the problem, the FEM computational model was adopted. The 

planar model of the bridge is created using beam elements. Two-node Hermitian’s beam elements 
with constant cross-section are used. The advantage of this element in our linear simulation is 
quick calculation and representation of displacement, rotations and stress analyses. The bridge 
computational model statically acts as a two-span continuous beam. The planar beam elements 
have four degrees of freedom. The effect of the normal and torsional load is not considered. Such 
a beam element is suitable for the solution of this task because during the numerical calculation 
only the vertical load is considered. 

3. Computational model of a vehicle 

For the purpose of this paper the half planar computational model of the lorry Tatra 815 was 
adopted, Fig. 2. It is a discrete computational model with eight degrees of freedom [19]. The five 
degrees of freedom are mass and the three degrees of freedom are mass-less. 
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Fig. 2. Two-dimensional computational model of Tatra 815 lorry 

Equations of motion for five unknown functions 𝑟ଵሺ𝑡ሻ-𝑟ହሺ𝑡ሻ describing the vehicle vibration 
and corresponding to displacements of mass degrees of freedom are derived as ordinary 
differential Eq. (9): 𝑟ሷଵሺ𝑡ሻ ∙ 𝑚ଵ + 𝑏ଵ ∙ ሾ𝑟ሶଵሺ𝑡ሻ − 𝑎 ∙ 𝑟ሶଶሺ𝑡ሻ − 𝑟ሶଷሺ𝑡ሻሿ + 𝑏ଶ ∙ ሾ𝑟ሶଵሺ𝑡ሻ + 𝑏 ∙ 𝑟ሶଶሺ𝑡ሻ − 𝑟ሶସሺ𝑡ሻሿ      + 𝑘ଵ ∙ ሾ𝑟ଵሺ𝑡ሻ − 𝑎 ∙ 𝑟ଶሺ𝑡ሻ − 𝑟ଷሺ𝑡ሻሿ + 𝑘ଶ ∙ ሾ𝑟ଵሺ𝑡ሻ + 𝑏 ∙ 𝑟ଶሺ𝑡ሻ − 𝑟ସሺ𝑡ሻሿ + 𝑓ଶ ∙ 𝑑ሶଶ(𝑡)/𝑑ሶ௖ = 0, 𝑟ሷଶ(𝑡) ∙ 𝐼௬ଵ − 𝑎 ∙ 𝑏ଵ ∙ ሾ𝑟ሶଵ(𝑡) − 𝑎 ∙ 𝑟ሶଶ(𝑡) − 𝑟ሶଷ(𝑡)ሿ + 𝑏 ∙ 𝑏ଶ ∙ ሾ𝑟ሶଵ(𝑡) + 𝑏 ∙ 𝑟ሶଶ(𝑡) − 𝑟ሶସ(𝑡)ሿ      − 𝑎 ∙ 𝑘ଵ ∙ ሾ𝑟ଵ(𝑡) − 𝑎 ∙ 𝑟ଶ(𝑡) − 𝑟ଷ(𝑡)ሿ + 𝑏 ∙ 𝑘ଶ ∙ ሾ𝑟ଵ(𝑡) + 𝑏 ∙ 𝑟ଶ(𝑡) − 𝑟ସ(𝑡)ሿ𝑓ଶ ∙ 𝑑ሶଶ(𝑡)/𝑑ሶ௖ = 0, 𝑟ሷଷ(𝑡) ∙ 𝑚ଶ − 𝑏ଵ ∙ ሾ𝑟ሶଵ(𝑡) − 𝑎 ∙ 𝑟ሶଶ(𝑡) − 𝑟ሶଷ(𝑡)ሿ + 𝑏ଷ ∙ ሾ𝑟ሶଷ(𝑡) − 𝑢ሶ ଷ(𝑡)ሿ      − 𝑘ଵ ∙ ሾ𝑟ଵ(𝑡) − 𝑎 ∙ 𝑟ଶ(𝑡) − 𝑟ଷ(𝑡)ሿ + 𝑘ଷ ∙ ሾ𝑟ଷ(𝑡) − 𝑢ଷ(𝑡)ሿ = 0, 𝑟ሷସ(𝑡) ∙ 𝑚ଷ − 𝑏ଶ ∙ ሾ𝑟ሶଵ(𝑡) + 𝑏 ∙ 𝑟ሶଶ(𝑡) − 𝑟ሶସ(𝑡)ሿ + 𝑏ସ ∙ ሾ𝑟ሶସ(𝑡) − 𝑐 ∙ 𝑟ሶହ(𝑡) − 𝑢ሶ ସ(𝑡)ሿ      +𝑏ହ ∙ ሾ𝑟ሶସ(𝑡) + 𝑐 ∙ 𝑟ሶହ(𝑡) − 𝑢ሶ ହ(𝑡)ሿ − 𝑘ଶ ∙ ሾ𝑟ଵ(𝑡) + 𝑏 ∙ 𝑟ଶ(𝑡) − 𝑟ସ(𝑡)ሿ      + 𝑘ସ ∙ ሾ𝑟ସ(𝑡) − 𝑐 ∙ 𝑟ହ(𝑡) − 𝑢ସ(𝑡)ሿ + 𝑘ହ ∙ ሾ𝑟ସ(𝑡) + 𝑐 ∙ 𝑟ହ(𝑡) − 𝑢ହ(𝑡)ሿ −  𝑓ଶ ∙ 𝑑ሶଶ(𝑡)/𝑑ሶ௖ = 0, 𝑟ሷହ(𝑡) ∙ 𝐼௬ଷ − 𝑐 ∙ 𝑏ସ ∙ ሾ𝑟ሶସ(𝑡) − 𝑐 ∙ 𝑟ሶହ(𝑡) − 𝑢ሶ ସ(𝑡)ሿ + 𝑐 ∙ 𝑏ହ ∙ ሾ𝑟ሶସ(𝑡) + 𝑐 ∙ 𝑟ሶହ(𝑡) − 𝑢ሶ ହ(𝑡)ሿ      − 𝑐 ∙ 𝑘ସ ∙ ሾ𝑟ସ(𝑡) − 𝑐 ∙ 𝑟ହ(𝑡) − 𝑢ସ(𝑡)ሿ + 𝑐 ∙ 𝑘ହ ∙ ሾ𝑟ସ(𝑡) + 𝑐 ∙ 𝑟ହ(𝑡) − 𝑢ହ(𝑡)ሿ = 0. 

(9)

The contact forces 𝐹௜௡௧,௜ (𝑖 = 6, 7, 8) belong to individual contact points are expressed as: 𝐹௜௡௧,଺(𝑡) = −𝐺଺ + 𝑘ଷ ∙ ሾ𝑟ଷ(𝑡) − 𝑢ଷ(𝑡)ሿ + 𝑏ଷ ∙ ሾ𝑟ሶଷ(𝑡) − 𝑢ሶ ଷ(𝑡)ሿ     = −𝑔 ∙ ൬𝑚ଵ 𝑏𝑠 + 𝑚ଶ൰ + 𝑘ଷ ∙ ሾ𝑟ଷ(𝑡) − 𝑢ଷ(𝑡)ሿ + 𝑏ଷ ∙ ሾ𝑟ሶଷ(𝑡) − 𝑢ሶ ଷ(𝑡)ሿ, 𝐹௜௡௧,଻(𝑡) = −𝐺଻ + 𝑘ସ ∙ ሾ𝑟ସ(𝑡) − 𝑐 ∙ 𝑟ହ(𝑡) − 𝑢ସ(𝑡)ሿ + 𝑏ସ ∙ ሾ𝑟ሶସ(𝑡) − 𝑐 ∙ 𝑟ሶହ(𝑡) − 𝑢ሶ ସ(𝑡)ሿ     = −𝑔2 ∙ ቀ𝑚ଵ 𝑎𝑠 + 𝑚ଷቁ + 𝑘ସ ∙ ሾ𝑟ସ(𝑡) − 𝑐 ∙ 𝑟ହ(𝑡) − 𝑢ସ(𝑡)ሿ + 𝑏ସ ∙ ሾ𝑟ሶସ(𝑡) − 𝑐 ∙ 𝑟ሶହ(𝑡) − 𝑢ሶ ସ(𝑡)ሿ, 𝐹௜௡௧,଼(𝑡) = −𝐺଼ + 𝑘ହ ∙ ሾ𝑟ସ(𝑡) + 𝑐 ∙ 𝑟ହ(𝑡) − 𝑢ହ(𝑡)ሿ + 𝑏ହ ∙ ሾ𝑟ሶସ(𝑡) + 𝑐 ∙ 𝑟ሶହ(𝑡) − 𝑢ሶ ହ(𝑡)ሿ     = −𝑔2 ∙ ቀ𝑚ଵ 𝑎𝑠 + 𝑚ଷቁ + 𝑘ହ ∙ ሾ𝑟ସ(𝑡) + 𝑐 ∙ 𝑟ହ(𝑡) − 𝑢ହ(𝑡)ሿ + 𝑏ହ ∙ ሾ𝑟ሶସ(𝑡) + 𝑐 ∙ 𝑟ሶହ(𝑡) − 𝑢ሶ ହ(𝑡)ሿ. 
(10)

In the above equations 𝑘, 𝑏, 𝑚 are stiffness, damping and mass characteristics of the vehicle 
model and 𝐺  is the gravity force. The dot about the symbol marks derivative with respect to  
time 𝑡. 

The computational model of vehicle in ADINA is a discrete computational model. The model 
is consists of beam elements with high bending stiffness and mass points. The mass of the beam 
element is not taken into calculation. The mass of individual parts of the vehicle is concentrated 
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into mass points. The elastic properties of tires and body suspension are modeled by linear spring 
elements. The viscous damping is considered throughout the calculation. 

4. Numerical characteristics of bridge and vehicle model 

In numerical calculations, the following numerical characteristics of the bridge and vehicle 
computational models were applied. 

4.1. Numerical characteristics of bridge computational model 

It is a prestressed concrete bridge made of prefabricated elements I-73 with the following 
parameters. The bridge has two fields. The span of fields is 𝑙ଵ = 𝑙ଶ = 30.0 m. The bridge mass 
intensity 𝜇 = 19 680.0 kg/m. Young’s modulus of elasticity of material 𝐸 = 3.85·1010 N/m2. 
Quadratic moment of the cross-section area 𝐼 =  2.4 m4. Damping circular frequency  𝜔௕ =  0.1 rad/s. Mass of mass points in case of the model with two degrees of freedom  𝑚௕ଵ = 𝜇 · 𝑙ଵ 2⁄ =19680·30/2=295 200 kg, 𝑚௕ଶ = 𝜇 · 𝑙ଶ 2⁄ = 19680·30/2=295 200 kg. Stiffness 
characteristics in case of the model with two degrees of freedom 𝑘ଵଵ = 269866666.6666667 N/m, 𝑘ଵଶ = 𝑘ଶଵ = 105600000.0 N/m, 𝑘ଶଶ = 269866666.6666667 N/m. 

4.2. Numerical characteristics of vehicle computational model 

Parameters of planar discrete computational model of the lorry Tatra 815 (Fig. 2) are as follows: 𝑘ଵ =  287433 N/m; 𝑘ଶ =  1522512 N/m; 𝑘ଷ =  2550600 N/m; 𝑘ସ = 𝑘ହ =  5022720 N/m;  𝑏ଵ =  19228 kg/s; 𝑏ଶ =  260197 kg/s; 𝑏ଷ =  2746 kg/s; 𝑏ସ = 𝑏ହ =  5494 kg/s; 𝑚ଵ =  22950 kg; 𝑚ଶ = 910 kg; 𝑚ଷ = 2140 kg; 𝐼௬ଵ = 62298 kg∙m2; 𝐼௬ଷ = 932 kg∙m2; 𝑎 = 3.135 m; 𝑏 = 1.075 m; 𝑠 = 4.210 m; 𝑐 = 0.660 m. 
Gravity forces at the point of contact of the wheels with the pavement: 𝐺଺ = 66.4152 kN,  𝐺଻ = 𝐺଼ = 94.3224 kN. 

5. Initial conditions 

From a numerical point of view, the task leads to the solution of equations of motion in the 
form of ordinary differential equations. Initial conditions are an integral part of the solution.  

It is assumed that the bridge is at the beginning of the solution at the rest and in the state of 
static equilibrium. Dynamic deflections and vibration velocities are zero. 

The vehicle is supposed to come to the bridge already vibrated. The values of initial deflection 
and initial speeds of vehicle's characteristic points are as follows: 𝑟ଵ(0) =  –0.021 m;  𝑟ሶଵ(0) = 0.0 m/s; 𝑟ଶ(0) = +0.003535 m; 𝑟ሶଶ(0) = 0.0 m/s; 𝑟ଷ(0) = –0.00355 m; 𝑟ሶଷ(0) = 0.0 m/s; 𝑟ସ(0) = –0.00261 m; 𝑟ሶସ(0) = 0.0 m/s; 𝑟ହ(0) = 0.0 m; 𝑟ሶହ(0) = 0.0 m/s. 

6. Numerical simulation 

The bridge is a two-span continuous beam of the total length of 60 meters. The length of 
individual fields is 30 and 30 meters, Fig. 3. It is assumed the road profile with a smooth surface. 
The vehicle moves along the bridge with constant speed during the numerical simulation. In front 
of the bridge an area for acceleration the vehicle and behind the bridge an area for deceleration 
the vehicle is created. The acceleration and deceleration areas are modeled as rigid track.  

For the purpose of comparing the results, a numerical simulation versus experiment, 5 points 
of interest were chosen. vehicle on a two-span bridge. These points are labeled from 1 to 5 in 
Fig. 3. Point (1) represents the middle of the 1st bridge span, point (2) the middle of the 2nd bridge 
span, point (3) the vehicle gravity center, point (4) the vehicle front axle and point (5) the vehicle 
rear axle. 
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Fig. 3. Schematic outline of the modeled area 

The vehicle arrives on the bridge already vibrated. Initial conditions on the vehicle and the 
bridge when the vehicle enters the bridge are given in Chapter 5. 

The bridge model based on classical dynamics was solved in the environment of the program 
system MATLAB [16]. A custom program has been created to solve the task. To solve the 
equations of motion, the procedure od45 was used. It integrates the system of differential equations 𝑦ᇱ = 𝑓(𝑡,𝑦) from 𝑡଴ to 𝑡௙ with initial conditions 𝑦଴. For this reason, second-order equations of 
motion must be transformed into first-order equations by appropriate substitution. Ode45 is based 
on explicit Runge-Kutta Eqs. (4, 5), the Dormand-Prince pair. It is a one-step solver – in 
computing 𝑦(𝑡௡), it needs only the solution at the immediately preceding time point, 𝑦(𝑡௡ିଵ). The 
output of the solution is done with a time step of 0.001 s. 

The bridge model based on the finite element method was solved in the environment of the 
program system ADINA [13]. The Newmark’s method is used for the solution of equations of 
motion. The Newmark's method is an implicit method and is based on the integration of the 
differential equation after certain time steps ∆𝑡 at the time interval 𝑡, 𝑡௠௔௫. Time discretization is 
increasing for geometric discretization, and our unknowns are functional values at certain 
geometric and time points. Based on this, we can easily apply the procedures and algorithms used 
in static analysis of FEM. Basic relationships are based on the following assumptions: ሼ𝑤ሶ ௧ା∆௧ሽ = ሼ𝑤ሶ ௧ሽ + ሾ(1 − 𝛽){𝑤ሷ ௧ሽ + 𝛽{𝑤ሷ ௧ା∆௧}].∆𝑡 , {𝑤௧ା∆௧} = {𝑤௧} + {𝑤ሶ ௧∆𝑡} + ൤൬12 − 𝛼൰ {𝑤ሷ ௧} + 𝛼{𝑤ሷ ௧ା∆௧}൨ ∆𝑡ଶ. (11)

Parameters 𝛼 and 𝛽 has an influence on the stability of the solution. The method of linear 
acceleration is obtained by these coefficients with values 𝛼 = 1/2 and 𝛽 = 1/6. Then we express 
the vectors and substitute equation at time 𝑡 + Δ𝑡: ሾ𝑀]{𝑢ሷ ௧ା∆௧} + ሾ𝐶]{𝑢ሶ ௧ା∆௧} + ሾ𝐾]{𝑢௧ା∆௧} = {𝐹௧ା∆௧} , (12)

and then: ൣ𝐾෡൧. {𝑢௧ା∆௧} = ൛𝐹෠௧ା∆௧ൟ, (13)

where [𝐾෡] is a matrix of modified stiffness and ൛𝐹෠௧ା∆௧ൟ is a vector of the modified load. From this, 
we can determine the displacements at nodal points at time 𝑡 + ∆𝑡. The output of the solution is 
done with a time step of 0.001 s. 

7. Results of numerical simulation 

7.1. Influence of speed of vehicle motion 

Put simply, the dynamics is about the mutual relationship between natural and excitation 
frequencies in a given dynamic system. The values of natural and excitation frequencies are 
influenced by many different factors – system parameters. Of all these factors, the impact of 
vehicle speed has a specific position, since it is meaningful to talk about the effect of all other 
parameters only in relation to specific vehicle speed. We are interested in the dynamic deflections 
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of the bridge depending on the speed of the vehicle. The dependence of the maximum dynamic 
displacement in the middle of the bridge span 𝑣௠௔௫ on the vehicle speed 𝑉 is not a smooth curve. 
It contains a large number of local maxima and spikes. The character of function 𝑣௠௔௫(𝑉) is 
closely related to the discontinuous course of function 𝑥(𝑉) indicating, depending on the speed of 
the vehicle, the position of the vehicle on the bridge when the maximum deflection 𝑣௠௔௫ occurs. 
The position of the spikes in the 𝑣௠௔௫(𝑉) function corresponds to the discontinuity points (jumps) 
of the 𝑥(𝑉)  function. The nature of the functional dependence 𝑣௠௔௫(𝑉)  depends on the 
relationship between the basic natural frequency of the vehicle and the bridge. It has a rising 
tendency for real cases [6].  

Use the symbols 𝑣௠௔௫,ଵ,ଵ and 𝑤௠௔௫,ଵ,ଵ for maximum dynamic displacements in the middle of 
the 1st bridge span at the moments when the vehicle moves along the 1st span at classical and 
FEM computational models respectively. For the computational model of the bridge based on 
classical dynamics the values 𝑣௠௔௫,ଵ,ଵ were calculated in the interval of speed 5-130 km/h with 
the step 1 km/h. For the computational model of the bridge based on the finite element method, 
the values 𝑤௠௔௫,ଵ,ଵ were calculated in the interval of speed 5-130 km/h with the step 5 km/h. The 
mutual comparison of calculated values 𝑣௠௔௫,ଵ,ଵ and 𝑤௠௔௫,ଵ,ଵ as the functions of the vehicle speed 
are shown in Fig. 4. 

Dimensionless position of vehicle gravity center 𝑥ீ஼ 𝑙ଵ⁄ , when the maximum deflection 𝑣௠௔௫,ଵ,ଵ occurs, as a function of the vehicle speed, is shown in Fig. 5. 

 
Fig. 4. Maximal deflections 𝑣௠௔௫,ଵ,ଵ and 𝑤௠௔௫,ଵ,ଵ versus vehicle speed  

for classical and FEM bridge model 

  
Fig. 5. Dimensionless position of vehicle gravity center versus vehicle speed 

Comparing the maximum dynamic displacements, Fig. 4, it can be seen that both 
computational models of the bridge give comparable results. The differences in the dynamic 
displacements calculated for both bridge computational models are shown in Fig. 6. It can be seen 
in Fig. 6 that at the speed range of 1-80 km/h, the FEM model gives smaller displacement values 
than the classical model. Conversely, at the speed range of 80-130 km/h, the FEM computational 
model gives greater values of displacements than the classical model. The maximum negative 
difference of –0.0305 mm is at the speed of 75 km/h, the maximum positive difference of +0.0124 
is at the speed of 110 km/h. At the speed 50 km/h, the difference is zero. 
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Fig. 6. Differences of dynamic displacements, 2DF CM minus FEM CM, versus vehicle speed 

Given the nature of the 𝑣௠௔௫,ଵ,ଵ(𝑉)  and 𝑤௠௔௫,ଵ,ଵ(𝑉)  curves, it would be appropriate to 
approximate the values of the maximal dynamic displacements by some envelope curve. In this 
case, it is preferable to work with dimensionless quantities. Let us define the value of the dynamic 
coefficient 𝛿  as the ratio of the maximum dynamic bridge deflection 𝑤௠௔௫,ଵ,ଵ  and the static 
deflection 𝑤௦: 𝛿ଵ,ଵ = 𝑤௠௔௫,ଵ,ଵ𝑤௦ . (14)

The envelope curve equation of the dynamic coefficients may, for example, have the form: 𝛿௘௡௩ = 11 − 0.65 ∙ 𝛼. (15)

The dimensionless coefficient 𝛼, expressing the influence of the vehicle speed, is given by the 
relation: ∝= 𝑇(ଵ)2𝑇௣ , (16)

where 𝑇(ଵ) is the period of bridge vibration in the first natural mode and 𝑇௣ is the time of crossing 
the bridge field [20]. The approximation of the dynamic coefficients 𝛿 by the envelope curve 𝛿௘௡௩ 
for the FEM computational model is shown in Fig. 7. 

 
Fig. 7. Approximation of dynamic coefficient by the envelope curve 

7.2. Bridge and vehicle response at vehicle speed 70 km/h 

The subject of the numerical simulation is the movement of a vehicle on a two-span bridge. 
The results of the numerical simulation are analyzed in five points. These points are labeled from 
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1 to 5 in Fig. 3. Point (1) represents the middle of the 1st bridge span, point (2) the middle of the 
2nd bridge span, point (3) the vehicle gravity center, point (4) the vehicle front axle and point 
(5) the vehicle rear axle. The obtained results in these 5 points of interest are presented in 
Figs. 8-12 as the vertical deflections corresponding to a vehicle speed of 70 km/h for both classical 
and FEM computational models. This passage speed was chosen because it is the normal average 
speed at which heavy vehicles ride along road and bridge objects. 

Dimensionless position of vehicle gravity center 𝑥ீ஼ 𝑙ଵ⁄ , when the maximum deflection 𝑣௠௔௫,ଵ,ଵ occurs, as a function of the vehicle speed, is shown in Fig. 5. 

 
Fig. 8. Vertical deflection in the middle of the 1st bridge span, point nr. 1 

 
Fig. 9. Vertical deflection in the middle of the 2nd bridge span, point nr. 2 

 
Fig. 10. Vertical deflection of the vehicle center of gravity, point nr. 3 

 
Fig. 11. Vertical deflection of the vehicle front axle, point nr. 4 
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Fig. 12. Vertical deflection of the vehicle rear axle, point nr. 5 

Comparison of maximal values of vertical deflections for classical and FEM calculation 
models are put into Table 1. The differences FEM model minus the classical model are put into 
Table 2. 

Table 1. Comparison of maximal vertical dynamic deflections of characteristic points of bridge and vehicle 
 Classical model FEM model 

Deflection [mm] Time [s] Deflection [mm] Time [s] 
–𝑣ଵ, –𝑤ଵ –1.144642 0.967704 –1.123450 0.960000 
+𝑣ଵ, +𝑤ଵ +0.462120 2.464058 +0.479965 2.420000 
+𝑣ଶ, +𝑤ଶ +0.483276 0.955000 +0.474085 0.960000 
–𝑣ଶ, –𝑤ଶ –1.142974 2.428046 –1.103050 2.440000 𝑣ீ஼, 𝑤ீ஼ +4.588611 0.452968 +3.772000 0.400000 𝑣ி஺, 𝑤ி஺ +1.660963 0.367578 +1.080999 0.250000 𝑣ோ஺, 𝑤ோ஺ +0.619245 0.207143 +0.940000 0.280000 

Table 2. Differences FEM minus classical model of maximal vertical  
dynamic deflections of characteristic points of bridge and vehicle 

 Differences FEM minus classical model 
Deflection [mm] Deflection in % FEM Time [s] Time in % FEM 

–𝑣ଵ, –𝑤ଵ –0.021192 –1.8863 –0.007704 –0.8025 
+𝑣ଵ, +𝑤ଵ +0.017845 +3.7180 –0.044058 –1.8206 
+𝑣ଶ, +𝑤ଶ –0.009191 –1.9387 +0.005000 +0.5208 
–𝑣ଶ, –𝑤ଶ –0.039924 –3.6194 +0.011954 +0.4899 𝑣ீ஼, 𝑤ீ஼ –0.816611 –21.6493 –0.052968 –13.2420 𝑣ி஺, 𝑤ி஺ –0.579964 –53.6507 –0.117578 –47.0312 𝑣ோ஺, 𝑤ோ஺ +0.320755 +34.1229 +0.072857 +26.0204 

8. Experimental validation 

To verify the rightness of assumptions adopted in the design of the bridge model in the spirit 
of classical dynamics, the model experimental tests in laboratory conditions were carried out. The 
bridge model was designed as a steel two-span continuous beam with a constant cross-section [21]. 
The spans are 𝑙ଵ = 𝑙ଶ =  1.45 m and the cross-section dimensions are 12×18 mm. Special 
equipment providing the movement of the load was developed, Fig. 13. In front of the beam the 
speeding-up path and behind the beam the braking path was built up. 

Vertical deflections in the middle of the spans were measured by an inductive sensor IVR 
99427, Fig. 14. Border and intermediate supports are illustrated in Fig. 14. The accelerometer BK 
4508 was fitted at the beginning of the beam and at the beginning of the braking path. 

By comparing the records of these accelerometers, it is possible to determine the load passing 
time along the beam, Fig. 15. Load passing time 𝑡௣ is determined as the difference between the 
end time 𝑡௘ and the start time 𝑡௦ of the passage, 𝑡௣ = 𝑡௘– 𝑡௦. The average speed of the movable 
load is determined as the ratio of the beam length and the passage time, 𝑒̅ = 𝑙௕/𝑡௣. 
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Fig. 13. Towing unit with moving load and speeding-up path 

   
Fig. 14. Inductive sensor IVR 99427 – border support and accelerometer BK 4508 – intermediate support 

 
Fig. 15. Records of accelerometers for determining the load passing time 

The mass of the moving load was 𝑚௩ = 220 g. Vertical deflections in the middle of the span 
were measured at different speeds of the moving load. The same processes were simulated 
numerically in MATLAB. Comparison of experimentally and numerically obtained records, at the 
speed of the moving load 𝑒̅ = 0.70731 m/s, is in Fig. 16. 

 
Fig. 16. Comparison of experimentally and numerically obtained results 

9. Conclusions 

Moving load effect on bridges is an important task solving in many workplaces in the world. 
The task can be solved numerically and experimentally. In the present time, numerical modeling 
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of the problems of moving load effect on bridges is an effective tool for the solution of real tasks 
of engineering practice. To solve this problem it is possible to create various computational  
models. Models can be planar or spatial. They can be created in the spirit of classical dynamics or 
in the spirit of the finite element method. The models can be discrete with finite degrees of  
freedom, or the model parameters can be continually distributed. Discrete computational models 
are more advantageous from the point of view of the mathematical solution because the equations 
of motion have the form of ordinary differential equations. 

The innovative contribution in solving vehicle-bridge interaction is modeling of the vehicles 
in combination with mass objects, damping and stiffness elements, which can better describe the 
real vehicle and its movement over the bridge construction.  

The results of numerical studies show that even simple bridge models can give good results in 
certain areas. For example, the computational model of a bridge as a continuous beam with 
2 degrees of freedom gives comparable results to the FEM model. The differences in deflections 
in the middle of individual fields range from 1 % to 4 %. 

In engineering practice, the need for numerical modeling is very important. A large amount of 
data can be obtained using a properly functioning numerical model. This data is very important 
because in the past, it was possible to obtain this data only by means of a dynamic load test. These 
experimental in situ measurements are time-consuming and very expensive. 

The quality of the input data determines the quality of the output results. Today, the level of 
computing technology is such high that all tasks can be solved in real-time. In practice, the 
engineer is interested in how the change of individual vehicle and bridge parameters influences 
the overall result of the solution. The results obtained by numerical analysis can be used  
differently. The primary interest is the optimal design of the bridge with regard to its durability 
and reliability [20]. 

A physical model in labo was created to verify the results obtained from numerical modeling. 
The results obtained in experimental measurements proved the correctness of the principle of the 
numerical model. The experiment is important in mechanics as it is the only way to verify 
numerically obtained results. Using the experiment, it is possible to verify the correctness of 
assumptions received in the creation of the computational model and also the numerical accuracy. 
For example, the results presented in Chapter 8 confirm that the assumptions used to create a 
discrete computational model in the spirit of classical dynamics were correct. 
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