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Abstract. The aim of this paper is to create a mathematical model of the motion of robot inspector 
on electrical transmission lines conductors when the towers are not in one level i.e. when the 
tension through the conductor is not constant. In this model, we consider the electrical line as a 
thread with two supports at the ends with different elevations and the robot considered as a moving 
object on the thread. The obtained equation of motion has been solved by using the separating 
variables method. As the result, dangerous oscillations have been seen although the motion of the 
inspection robot on the line is steady. These vibrations may cause parametric vibration in the 
perpendicular plane of motion and can cause inertial load on the construction of the robot. To 
study this affect we consider the robot as a pendulum with movable suspension base. This article 
shows the possibility of a kind of parametric resonance. 
Keywords: robot inspector, electrical lines, mathematical model, unequal height supports, 
saw-tooth vibration, parametric oscillation. 

1. Introduction 

Power companies around the world utilize different method for inspection of electrical 
transmission lines to ensure consistency of energy supply to end users. According to budget and 
region regulation, the way of inspection will be defined. The most general way for inspection of 
overhead power lines is by human force utilizing vehicles or helicopters. In some countries have 
been used cable climbing robots for precise inspection [1, 2]. These type of robots with the help 
of all required instruments (sensors, cameras, etc.) can perform precise inspections. 

The main aim of robotic inspection is to ensure the safety of personnel meanwhile having the 
precise inspection results to decrease the cost of unexpected accidents. 

Design and construction of a fully smart robot for the task of inspecting is a challenge for 
engineers. There exist some factors that may affect the operation of such devices. Therefor it is 
needed to take them into in account in the first step of designing. Factors like; passing the obstacles 
(line equipment, tower mast, etc.), bad climates, etc. 

Because of the variety of overhead power lines, different type of robot inspectors were 
designed and constructed [3-9]. One of the proposed designs for inspection of electrical lines is 
shown in Fig. 1. As shown in [10-14] extensive oscillations may be revealed even the motion of 
robot inspector on the line was steady. As shown in abovementioned works, these types of 
vibrations are dangerous and may have effect on the performance of the robots (as an example: 
the blurry image which affect the system of navigation of the robot inspector). According to 
abovementioned reasons, study of motion of robot inspector along the conductor and creating a 
mathematical model is required. 

The main idea of this paper is to create a mathematical model to investigate the motion of the 
robot inspector along the conductor of electrical line transmission line when the tension in conductor 
is not constant. In this work, the conductor is considered as a thread while the robot is an object 
moving on it. The supports of the conductor (electrical towers) are assumed that are in different 
elevations. Mathematical modeling of the motion of the robot inspector on the electrical line is a 
great tool to study the stability during the operation of inspection robot on the electrical line. 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2019.21097&domain=pdf&date_stamp=2020-04-02
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Fig. 1. Scheme of the electrical transmission robot inspector traveling on an electrical line [13] 

2. Conductor as a thread 

In [10-14] the electrical line is considered as a stretched string where supports are located in 
one level of elevation. This assumption is true, as proved in [10] since the tension in the conductor 
line in the whole length of the line is constant. But in these works that the supports (electrical 
towers) are in different elevation, we cannot consider the electrical line as a stretched string, since 
the tension varies during the length of the line and it depends on the sag as well. 

Sag is the difference in level between the levels of support and the lowest level on the 
conductor. Calculating the sag and study its effect on the vibration of the electrical line are on the 
beyond of this article. 

In this article, the conductor is considered as a thread when supports are at unequal heights 
and the robot inspector is considered as a moving object as shown in Fig. 2(b). In this section, a 
mathematical model for the thread when supports are at unequal heights has been created. Then 
mechanical tension in power line has been found. The thread only resists stretching (unlike a string 
with resistance to bending and torsion). The equations of mechanics of thread are presented, in 
[15-18]. We use the method explained in [10, 15]. 

The configuration of the thread is determined by 𝐫 𝜉  the radius vector of the point on the 
material (Lagrangian) coordinate; before deformation 𝐫 𝜉  (Fig. 2). The values in the initial state 
(before deformation) are indicated by zero. 

 
Fig. 2. Conductor as a thread 

The material coordinate of the particle is preserved in 𝜉 ∈ 0 𝐿 . Usually considered as the arc 
coordinate in the initial state; then �́�  is the unit vector of the tangent (prime means differentiation 
with respect to 𝑥). Elongation is determined by the simplest formula 𝜀 |�́�| 1. The tension 
force 𝑇 𝑇 𝑏𝜀, where 𝑇  is the force in the initial state, 𝑏 is the tensile stiffness. 

Since the wire only stretches from the load, we can assume that the initial state is unstressed 𝑇  0. If the load is such that it can cause a shortening, then the initial state should be extended. 
Given the equation of the balance of forces (with distributed load 𝑞 𝜉 ), we have the following 

system [15]: 
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𝑇 𝑞,𝑇 𝑇𝑟|𝑟 | , ⟹𝑟 𝑇 𝑏 |𝑇| . (1)

With boundary conditions 𝑥 0 𝑦 0 0 , 𝑥 𝐿 𝑥 , 𝑦 𝐿 𝑦  where 𝐿  is the initial 
length of the conductor. 

The nonlinear boundary problem posed for the ODE system is solved in Mathcad. ODE is 
presented in matrix form: 𝑌 𝑇 𝑇 𝑥 𝑦 , 𝑌 𝐹 𝜉,𝑌 𝑞 𝜉 𝑞 𝜉 𝑌 𝐺 𝑌 𝑌 𝐺 𝑌 , 𝐺 𝑌 𝑏 𝑌 𝑌𝑏 𝑌 𝑌 . (2)

The calculations were carried out for an aluminum wire of radius 𝑅  2.5 cm and  𝐸  7e10 N/m2 (𝐸 is the Young’s modulus). The length and the coordinates of the fixed ends  𝐿  100 m, 𝑥  100 m, 𝑦  30m, 𝑦  50 m. Distributed loads are: 𝑞 0, 𝑞 𝜌𝑔 (linear 
weight). Tensile stiffness is 𝑏 𝐸𝜋𝑅 . The calculated wire configuration is shown in Fig. 3(a). 

The tension force is 𝑇 𝜉 𝑇 𝑇 . The graph of this function is shown in Fig. 3(b). 

 
Fig. 3. Conductor a) configuration and b) tension 

3. Vibration of electrical transmission lines while robot inspector moves on it 

The deflection equation of the electrical line, 𝑢 𝑥, 𝑡 , is given from [11]: 𝑇 𝑥 𝑢 𝑓 𝑥, 𝑡 𝜌𝑢, (3)

where 𝑇 is designated to the string tension force, 𝑓 denotes to the linear load (per unit length), 𝜌 
is the density. Differentiation relative to the coordinate 𝑥 and time 𝑡 showed by prime and dot. 
The boundary and initial conditions are 𝑢 0, 𝑡 𝑢 𝐿, 𝑡 0, 𝑢 𝑥, 0 𝑢 𝑥, 0 0. 

The force concentrated at a point 𝑥 𝜉  using delta function will be 𝑓 𝑥, 𝑡 𝐹 𝑡 𝛿 𝑥𝜉 𝑡 , where 𝜉 𝑡  determines how concentrated force 𝑓 𝑡  can move with the condition of  𝑡 0 𝑡 𝑡 , 𝜉 0 0, 𝜉 𝑡 𝐿. 
The solution of Eq. (3) can be constructed by the method of separating variables as [10]. 

Approximate deflection of the conductor is 𝑢 𝑥, 𝑡 𝑞 𝑡 𝜑 𝑥 , 𝜑 𝑥 sin 𝑖𝜋𝑥 𝐿⁄ , where 𝑞  
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(𝑖  1,…, 𝑛) is generalized coordinates of the system. 

Defining delta function as 𝛿 𝜑 𝑥 𝜑 𝑥 𝑑𝑥 0, 𝑖 𝑗,1, 𝑖 𝑗, one can write the expression 

for generalized coordinates of the system 𝑞  (𝑖  1,…, 𝑛): 

𝑞 𝑢 𝑥, 𝑡 𝜑 𝑥 𝑑𝑥. (4)

Rewriting the concentrated force as 𝑓 𝑡 sin  where 𝐹 𝑡 𝑚𝑔  and 𝜉 𝑣𝑡 
multiplying both sides of Eq. (3) by 𝜑  and integrating, we obtain ordinary differential equations 
(ODE) for 𝑞 : 

𝑞 𝑘 𝜋𝐿 𝑞 𝑓 𝑡 , (5)

where 𝑘 𝑇 𝜌⁄ . 
These ODEs are solved by the Duhamel integral under zero initial conditions we obtain the 

solution of Eq. (5): 

𝑞 𝐹𝐿𝑛𝜋 𝑣 𝑘 2𝑇𝜌𝐿 𝑣 sin 𝑖𝜋𝐿 𝑘𝑡 𝑘 sin 𝑖𝜋𝐿 𝑣𝑡 . (6)

Fig. 4(a) and 4(b) show the deflection and acceleration of the conductor using 𝑇 from previous 
section and using 𝐹 1 kN, 𝑣 2 m/s and 𝜌  5 kg/m for length and the coordinates of the fixed 
ends as in previous section. Although the motion of the robot inspector along the line is steady, 
but as shown in Fig. 4(a) vibrations appear in the vertical plane. Acceleration illustrated in  
Fig. 4(b) might cause inertial load on the robot structure. 

 
Fig. 4. Conductor a) deflection (m) and b) acceleration (m/s2) vs time (sec.) 

4. Parametric oscillations of pendulum with movable suspension base 

The consequence of these vibrations may also be parametric oscillations of the robot as a 
pendulum with movable suspension base (Fig. 5) [12]. 

Here, the equation of a pendulum has been used: 𝐽𝜃 𝑔 𝑎 𝑡 𝑅𝜃 0, (7)
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where 𝜃 𝑡  is the angle of deflection as shown in Fig. 5, 𝐽 is the moment of inertia about the axis 
of rotation, 𝑅 is the distance from the center of mass to the base point. According to the definition, 
with the time varying 𝑎 𝑡 , parametric resonance may appear. The parametric oscillations are 
more dangerous than the other type of oscillations. 

 
Fig. 5. Pendulum with a movable suspension base 

In this article since the excitation is not periodic, then we can say it is not the classical 
parametric resonance, but dangerous vibrations with increasing amplitude is feasible. This 
character can be investigated by mathematical modeling using Eq. (7) with initial conditions: 𝜃 0 0.1 and 𝜃 0 0. 𝑎 𝑡  is acceleration as shown in Fig. 4(b). Results of the numerical 
solution of Eq. (7) are obtained and shown in Fig. 6. 

Fig. 6 shows the increase of oscillations which are limited only by the time of the process. 
Here, we chose the parameters of pendulum specifically in order to see this increase. This example 
shows that a kind of parametric resonance may occur. 

 
Fig. 6. Parametric oscillations of the pendulum 

5. Conclusions 

The goal of this paper is to investigate the motion of robot inspector on electrical transmission 
lines conductors when the tension in conductor is not constant, i.e. the towers height are unequal. 
The movement of robot inspector on the line has been modeled. In this model, the electrical line 
is considered as a thread when tension is not constant (with two unequal height supports at the 
ends) and the robot considered as a moving load on the thread. The obtained equation of motion 
has been solved by using the separating variables method. As the result, observed that oscillations 
occur even the motion of the robot on the electrical line is steady and may cause the parametric 
oscillation in the perpendicular plane of the motion. We investigated this effect by considering the 
robot as a pendulum with movable suspension base. Result shows the increase of oscillations. This 
example helps design engineers at early stage of design to prevent unwanted situations (e.g. 
parametric oscillations) by choosing the parameters of robot inspector. 
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