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Abstract. Aiming at estimating the road surface condition with improvement of the accuracy in 
spatial, this paper proposes a new method to classify road surface condition by considering 
identification interval based on vehicle system responses. First, the response signals in different 
vehicle speeds are decomposed by using both Wavelet Transform (WT) and Empirical Mode 
Decomposition (EMD) techniques. Then characteristics of the signals in both the time and 
decomposed frequency domain are subsequently extracted. An Improved Distance Evaluation 
Technique (IDET) is used to select superior features from the characteristics. Finally, a Support 
Vector Machine (SVM) classifier is applied to determine the road classification. The influences 
of identification intervals in spatial accuracy are discussed, and an adaptive classification interval 
was proposed to improve accuracy. The algorithm is validated by using both simulation and 
experimental results. 
Keywords: road excitation classification, wavelet transform, empirical mode decomposition, 
system response, spatial accuracy. 

1. Introduction 

Road roughness is used to describe roadway serviceability and has been one of the widely 
accepted criteria for road conditions assessment to guide maintenance planning. Quality of road 
roughness will dramatically affect vehicle wear, ride quality, and transportation safety. The large 
dynamic axle loading from roughness accelerates pavement deterioration, so pavement engineers 
have to maintenance the road in relatively good level all the time [1]. However, analysis and 
measurement of road roughness is a difficult problem that pavement engineers have been facing 
for many years, especially the road which heavy vehicles such as truck often make lots of 
stop-and-go trips [1]. Detection and maintenance of the condition of a road profile is important 
for many reasons, such as safety and economic savings. In this case, road roughness detection and 
maintenance become one of the most concerns of road engineers.  

Current road estimation methods can be divided into three categories [2], namely, direct 
measurements [3, 4], non-contact measurements [5] and system response based estimation [6-12]. 
Among these three categories, the first two require specific instruments designs, which restrict 
their practical applications. Depending on sensors that were originally designed for system  
control, the last method is often used to estimate road excitation. The use of vehicle system 
response to estimate road condition have been investigated some years, and the applications take 
advantage of the technique to control vehicle height [13], change suspension parameters [14, 15] 
and guide maintenance planning of road engineers. 

The aim of this paper is to develop a new method of estimating the general conditions of road 
by using the response signals of vehicle, with experimental validation. Appropriate and 
measurable signals are firstly sampled. A combined Wavelet Transform (WT) [16, 17] and 
Empirical Mode Decomposition (EMD) [18] analysis is then performed to the sampled signals 
and the candidate decomposed signals are obtained. Four statistical measures, namely: Variance 
(Var); Square Root of Amplitude (SRA); Root Mean Square (RMS); and Maximum value (Max.), 
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are used to characterize the candidate signals. Dimensionality issues are avoided by selecting the 
most dominant characteristics using an Improved Distance Evaluation Technique (IDET). Finally, 
a Support Vector Machine (SVM) classifier is applied to the output to classify the road.  

The novel contributions of this research are as follows: 
– Novel combination of signals processing method.  
From the requirement of minimizing the effects of measurement noise, this paper developed a 

combined WT and EMD method to process the measured signals. It takes full advantage of both 
the WT and EMD techniques and improves the estimation accuracy. 

– Investigation of speed influence. 
Different traffic conditions may lead to various vehicle speeds. As such vehicle speed is an 

important factor that should be taken into consideration. Vehicle speed is determined to be an 
important feature in successful classification.  

– Investigation of identification interval. 
Shorter identification intervals come with shorter road length identification intervals and 

higher accuracy of the road surface analysis, but it’s hard to obtain sufficient information on low 
frequency components signal if interval is too short. Thus, the interval is constrained by a 
compromise between analysis accuracy and sufficient information to enable identification. 
Considering the variation in vehicle speed, the adaptive interval with variation speed is first 
proposed to improve road surface analysis accuracy in spatial. 

The structure of the paper is as follows: in Section 2, the vehicle and road models are 
introduced; then in Section 3, the definition of superior features in both the time and frequency 
domain are provided; Section 4 introduces the structure of the proposed method, including signal 
pre-processing, feature reduction and classification with SVM; the results of the simulations and 
experiments used for validation are discussed in Section 5 and Section 6 respectively; finally, 
conclusions are drawn in Section 7.  

2. System models 

2.1. Vehicle model 

A thirteen Degree of Freedom (DOF) truck model which considers the heave-pitch-roll 
motions of various sections is introduced, as shown in Fig. 1. 

 
Fig. 1. Full-scale truck model 

The dynamic equations of the model are given by Eq. (1): 
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𝐌𝐗 + 𝐂𝐗 + 𝐊𝐗 = 𝐅𝐗 , (1)

where 𝐌, 𝐂, 𝐊 and 𝐅 are the mass matrix, damping matrix, stiffness matrix and coefficient matrix 
of the road input respectively, (see Appendix). 𝐗  is road input of six wheel (more details in 
Section 1.2). Define the state vector 𝐗 as: 𝐗 = 𝑧 𝑧 𝑧 𝑧 𝜃 𝜃 𝑧 𝜃 𝜃 𝑧 𝑧 𝜃 𝜃 , 
where 𝑧 , 𝑧 , 𝑧 , 𝑧 , 𝑧 , 𝑧  and 𝑧  are the left front unsprung mass displacement, right front 
unsprung mass displacement left rear unsprung mass displacement, right rear unsprung mass 
displacement, frame mass displacement and compartment mass displacement, respectively. 
Similarly 𝜃 , 𝜃 , 𝜃 , 𝜃 , 𝜃  and 𝜃  are the roll angle of the left rear unsprung mass, roll 
angle of the right rear unsprung mass, roll angle of the frame, pitch angle of the frame, roll angle 
of the compartment and pitch of the compartment, respectively. 

2.2. Road model 

2.2.1. Road irregularities 

The distance between the road surface and base plate is typically defined as the function of 
road irregularities 𝑞 𝐼 . Often, the road profile is assumed to be homogeneous and with a Gaussian 
random process. As such its statistical characteristics can be described by a Power Spectral 
Density (PSD) [5]. This paper establishes the road surface model in accordance to the international 
standard ISO 8608 [19], and the PSD of the road roughness can be approximated by Eq. (2): 

𝐺 𝑛 = 𝐺 𝑛 𝑛𝑛 , (2)

where, 𝑛 is the spatial frequency in m-1, indicates the number of wavelength in per meter, and 𝑛  
is the reference spatial frequency with the value of 0.1 m-1. 𝐺 𝑛  is the PSD in the reference 
spatial frequency in m3 and 𝑊 is called the waviness, which reflects the approximate frequency 
structure for a certain range of road profile. Reference [7] reveals that the value of 𝑊 varies from 
1.6-2.4 with mean value of 2, to 1.5-3.5 with mean value of 2.5, recorded over the past 30 years. 
It is assumed that 𝑊 = 2 in this paper. 

When a vehicle is driving with a velocity 𝑣 , the spatial frequency 𝑛  in Eq. (2) can be 
transformed into a time frequency 𝑓 according to Eq. (3): 𝑓 = 𝑣𝑛, (3)

where 𝑓 is the time frequency in Hz. 
In order to ensure the accuracy of the road estimation and comprehensiveness of vehicle 

system response, the range of wavelengths needed to be defined carefully. According to ISO8608, 
the spatial frequency range is commonly assumed to be 0.011 m-1-2.83 m-1 for in-road vehicles. 
This ensures that under the commonly used vehicle speed of 36-108 km/h, the range of time 
frequency covers 0.33 Hz-28.3 Hz. The pitch natural frequency of 0.5-1 Hz, the sprung mass 
natural frequency of 1-2 Hz and the unsprung mass natural frequency of 10-15 Hz are included in 
this range, so that the vehicle dynamic response can be reflected accordingly. 

2.2.2. Road characteristics in the transverse direction 

The correlations in the excitations of the left and right path are described by the coherence of 
the excitations [8, 9, 20-22]: 
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𝛾 𝜌,𝑛 = 𝐺 𝑛𝐺 𝑛 𝐺 𝑛 , (4)

where the indices 𝑙 and 𝑟 denote the left and right path of the vehicle respectively and 𝜌 is the 
track width. 

2.2.3. Road high profile modeling 

Two different approaches are widely discussed in the literature for modeling road irregularities: 
– Synthesis using harmonic functions and randomly distributed phases [10]. 
– Synthesis based on noise-excited linear dynamic systems [11]. 
A road excitation process with waviness 𝑤 = 2 can be generated by means of a simple 

first-order filter: 

𝜉 + 𝜔𝜉 = 𝑣𝐺 𝑛 𝑧,       𝑧 = 𝑧 𝑘Δ𝑡 = 12Δ𝑡 𝑍 ,     𝑘 = 0,1,2, . . ., (5)

where 𝑍  is a random number sequence in the range of [–0.5, 0.5], which is called up in 
sufficiently small time intervals ∆𝑡 . The road excitation 𝜉  approximates the desired target 
spectrum for frequencies above 𝑓 > 𝑤 2𝑝⁄  with intensity 𝐺  and waviness 𝑊 = 2. 

2.2.4. Two-track excitations 

Two-track road excitations, with coherence characteristics close to reality, are generated 
through a straightforward mixing function. Two independent excitations 𝜉  and 𝜉  are used as 
input signals which have already been adjusted to the desired longitudinal direction spectrum. 
From these signals, two coupling signals 𝜂  and 𝜂  are generated through first-order filters: 𝜂 + 𝑛𝜂 = 𝑛𝜉 ,     𝜂 + 𝑛𝜂 = 𝑛𝜉 . (6)

Thereby, with the original excitations 𝜉 , 𝜉  the desired road excitations 𝑞 𝐼 , 𝑞 𝐼  are 
generated [21]: 

𝑞 𝐼 = 𝜉 − 1 − √22 𝜂 + √22 𝜂 ,     𝑞 𝐼 = 𝜉 − 1 − √22 𝜂 + √22 𝜂 , (7)

where 𝑞 𝐼 , 𝑞 𝐼  are left track and right track of wheels, respectively. Assuming that vehicle is 
running straight line, road inputs of six wheels are obtained: 𝐗 = 𝑞 𝐼 𝑞 𝐼 𝑞 𝐼 + 𝑙 𝑞 𝐼 + 𝑙 𝑞 𝐼 + 𝑙 𝑞 𝐼 + 𝑙 , (8)

where, 𝑙  is displacement of front-wheels and middle-wheels, 𝑙  is displacement of front-wheels 
and rear-wheels, respectively. 

3. Feature definition 

Qin et al. [2] has proposed, in total, 11 different features for salient selection. Their results 
reveal that features related to signal energy perform much better than other categories. In this 
paper, Var, SRA, RMS and Max. of the signals are chosen as basic statistical features. For a signal 𝑥 𝑛  of length 𝑁, the definitions of the above four features are as follows: 
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𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ 𝑥 𝑛 − �̅�𝑁 − 1 ，𝑆𝑅𝐴 = ∑ |𝑥 𝑛 |𝑁 , 
𝑅𝑀𝑆 = ∑ 𝑥 𝑛𝑁 ，𝑀𝑎𝑥 = max|𝑥 𝑛 |, (9)

where �̅� is the mean value of 𝑥 𝑛 . 
Since the road excitation frequency is related to vehicle velocity, it has a relatively small 

amplitude in low velocity systems and a large amplitude in high velocity systems. The generated 
responses of each of these systems are quite different and so the system response of different 
frequency ranges should be fully investigated. Qin [23] proposed an effective method to 
decompose vehicle system responses by using wavelet analysis, taking advantage of its strong 
ability of processing noisy signals. However, wavelet transform performance is largely depended 
on the wavelet basis functions and signal processing results are different using different wavelet 
basis. To avoid this, a combined treatment method of wavelet analysis and Empirical Mode 
Decomposition (EMD) is utilized to process the vehicle signals. EMD is a method for 
decomposing nonlinear, multicomponent signals. The components resulting from EMD, called 
Intrinsic Mode Functions (IMF), each admit an unambiguous definition of instantaneous 
frequency and amplitude. However, EMD can be subject to aliasing effects when the signal 
changes rapidly. The method used in this paper can be described as: using the wavelet transforms 
to decompose the signal into narrow-banded signals, then using EMD to decompose these 
narrow-banded signals. The structure of the decomposition is shown in Fig. 2. 

 
Fig. 2. Structure of the combined WT and EMD decomposition technique 

Including both time and frequency information, 64 features are calculated in total based on the 
four statistical metrics in Eq. (9). These features are stated as follows: 

– 4 measured signal features: the four basic statistical quantities of the measured signal. 
– 60 decomposed signal features: five different frequency range signals are generated by the 

wavelet transform, corresponding to the range 0.8-31.3 Hz; then 15 IMF signals are obtained by 
getting first three IMF of one frequency range signal using the EMD technique. Then 60 features 
are calculated based on the four statistical quantities of each IMF. 
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4. Classification algorithm 

4.1. Signal sampling and pre-processing 

In order to correctly extract features from the measured signals and improve the accuracy of 
the classification, some pre-processing is firstly performed. The pre-processing includes three 
steps, namely: low pass filtering; framing; and windowing.  

– Low-pass filtering.  
To avoid signal aliasing, a low pass filter with a cut-off frequency of 50 Hz is firstly applied, 

as the sampling rate and the upper frequency bound are set to be 100 Hz and 31.3 Hz respectively.  
– Framing. 
The classification interval is assumed to be fixed 1 second. Larger intervals may deteriorate 

its performance by data redundancy and it is hard to achieve high resolution for low frequency 
components if a smaller interval is chosen. 

– Windowing. 
To prevent spectral leakage at the beginning and end of a frame, a Hamming window of the 

following form is applied: 

𝑊 𝑘 = 0.54 − 0.46cos 2𝜋 𝑘𝑁 − 1 ,     𝑘 = 0,1, . . .𝑁 − 1, (10)

where 𝑁 = 200 is the number of points of each frame. Assuming 𝑥 𝑡  to be the signal in a frame, 
the output signal, 𝑦 𝑡 , after windowing can be expressed as: 𝑦 𝑡 = 𝑥 𝑡 × 𝑤 𝑡 . (11)

It should be noted that this pre-processing procedure is indispensable for both classifier 
training and the validation process. 

4.2. Feature reduction 

After feature fusion, 64 features are obtained in total. It is possible to use all of these features 
to perform the classifier; however, two restrictions may deteriorate its performance: 

– Dimensionality. 
Since the complexity of the SVM classifier is largely depending on the dimensions of the input 

variables, the large number of input variables in this case may lead to a significant incense in 
computation time. 

– Data redundancy. 
Combining all individual good features may not always result in superior classification 

performance. The truth is under the premise of accuracy, if fewer features are used, the method is 
better. In this situation, the method to select features with minimal redundancy is required. 

To solve the aforementioned problems, a suitable method to select superior features is needed. 
Here, an Improved Distance Evaluation Technique (IDET) was applied to select the maximal 
relevance features [23, 24]. The improved distance evaluation procedure is described as follows: 

Suppose a road feature set with 𝐶  levels and 𝐽 features can be described as: 𝑞 , , ,𝑚 = 1,2,⋯𝑀 , 𝑗 = 1,2,⋯𝐽, 𝑐 = 1,2,⋯𝐶 , , (12)

where 𝑞 , ,  is the 𝑚th sample of the 𝑗th feature belonging to the 𝑐th level. 𝑀  and 𝐽 are the total 
number of samples and features, respectively. The distance evaluation procedure can be depicted 
in Table 1. 

Features with higher 𝛼  can be interpreted as the sample distance of all levels which are more 
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obvious than others. They can be applied to improve separation among different levels. Some 
features are then collected to form a set of superior features and can be further used in the 
formulation of the classifier. The value of 𝑀 , 𝐽, 𝐶  and the superior feature set are defined as 
follows: 𝑀 = 100 for each level in the classifier training process, corresponding to the training 
and testing samples; the number of features 𝐽 = 64; and the number of road excitation levels  𝐶 = 32. 

Table 1. The improved distance evaluation procedure 
a) Calculate the sample variance factor: 𝑣  𝑣 = ,, , where 𝑑 , = ×∑ , , , ,, × , 𝑘, 𝑙 = 1,2,⋯𝑀 , 𝑘 𝑙. 
b) Calculate the level variance factor: 𝑣  𝑣 = , ,, , , where 𝑢 , = ∑ , , . 
c) Calculate the overall distance factor 𝛼 : 𝛼 = 𝜆 , where 𝜆 = ; 

𝑑 = ∑ , ; 𝑑 = ×∑ , ,,× , 𝑝, 𝑞 = 1,2,⋯𝐶 , 𝑝 𝑞. 
d) Normalize and obtain the final distance evaluation criterion 𝛼 : 𝛼 = . a 

4.3. Classifier (SVM) 

Based on statistical learning theory, Vapnik et al. [25] put forward an alternative optimum 
criterion for linear classifiers. Its principle is using detachable principle extending to inseparable 
linear or nonlinear problems and functions. This classifier is known as support vector machine 
(SVM). 

SVM is the way of mapping the sample space into a high-dimensional or infinite dimensional 
feature space, by using a nonlinear mapping technique. Then the nonlinear separable problem in 
the original sample is converted into a linear separable problem in feature space. The nonlinear 
problems that cannot be solved in low dimensional sample space can thus be linearized in high 
dimensional feature space. In general, increasing the dimension always leads to a more 
complicated calculation, but SVM solves this problem ingeniously by using the kernel function 
expansion theorem. Though the problem was established in high dimensional feature space, there 
is a minimal increase in computing complexity compared to the common linear model. To some 
extent the “dimension disaster” is actually avoided. The schematic of the SVM is shown in  
Fig. 3 [26]. 

 
Fig. 3. The structure of SVM schematic 
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4.4. Classification algorithm 

The structure of this process is shown in the Fig. 4, which can be divided into four stages, i.e. 
signal sampling and pre-processing, feature fusion, feature reduction and classification. 

 
Fig. 4. Flow chart of the classification algorithm 

5. Simulations 

To value the performance of the proposed algorithm, simulations about classification with 
different speeds and identification intervals are reported in this section. The influence of 
classification interval was researched and an adaptive interval algorithm for classification was 
proposed, and simulation results proved that the novel adaptive interval is performance better than 
fixed interval. 

5.1. Classification with different speeds 

Under the assumption that the vehicle is traveling along the road with 4 standard levels of 
velocity (20 km/h, 40 km/h, 60 km/h, 80 km/h) and 8 standard levels of road profiles (ISO level A, 
ISO level B, ISO level C, ISO level D, ISO level E, ISO level F, ISO level G, ISO level H), there 
are total 32 kinds of road excitation obtained. 32 kinds of 10 seconds long road excitation 
condition are generated by using road model method in Section 1.2, then 32 kinds of 10 seconds 
long truck system responses are obtained. These known road class responses are applied to 
perform the superior features selection and train the SVM classifier.  

To validate the proposed method, a new 120 seconds road excitation was generated, which is 
composed of 6 conditions: A class road with 80 km/h vehicle speed; B class road with 60 km/h 
vehicle speed; D class road with 20 km/h vehicle speed; C class road with 40 km/h vehicle speed; 
A class road with 20 km/h vehicle speed; and a C class road with 60 km/h vehicle speed. Each 
condition remains unchanged for 20 seconds and assumes that the translation time of two 
conditions is neglected. Fig. 5 shows the classification result. 

It is seen in Fig. 5 that there was only one error in the 120 identification cycles. The result 
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implies that the classification accuracy of this new-generated road is more than 99 %. It can also 
be seen that even though vehicles are driven on A class road in time frame 0-20 sec and 80-100 sec 
with speed 80 km/h and 20 km/h respectively, the classifier can identify that the road class is same 
(A). Similarly, in the time frames 60-80 sec and 100-120 sec when the vehicle is driven on a C 
class road with speed 40 km/h and 60 km/h respectively, the classifier also can identify the road 
class avoiding the speed influence. 

 
Fig. 5. Classification results for generated profile 

5.2. Influence of identification interval 

Considering that under a constant vehicle speed, a shorter identification time interval comes 
with a shorter road class identification spatial interval. A more accurate road surface analysis is 
achieved and so, the classifier needs a short identification time interval. However, it is hard to 
obtain sufficient information for the low frequency components of a signal to classify the road 
when interval is too short. This is particularly true when the vehicle is driven at low speeds where 
a short interval may lead to serious identification error.  

To discuss the influence of interval size in spatial, a 200 meters road was generated. This is 
composed of A, B and C class road levels in 9 frames: 30 meters A class road; 20 meters B class 
road; 25 meters A class road; 20 meters D class road; 20 meters A class road; 20 meters C class 
road; and 20 meters A class road; and 20 meters B class road; and 25 meters A class road, in 
successive order. It is assumed that the vehicles drive on the road surface at 20 km/h, 40 km/h, 
60 km/h and 80 km/h respectively and the identification intervals are 0.5 sec, 1 sec, 1.5 sec and 
2 sec. The actual road surface and the classification of the roads results, for different intervals, are 
shown in Fig. 6. The varying length lines in Fig. 6 represent the length of one road class in reality 
or classified. When the vehicle speed is 80 km/h, the classification results for shorter spatial 
intervals show more accuracy than the result in a longer interval. This is because vehicles travel 
more than 40 meters in 2 sec, thus it is too long to determine the information of the road-class 
changes covered. When the interval is 0.5 sec, the vehicle identified the road class about per 
11 meters, resulting in a relative high spatial accuracy. When vehicle speed is 20 km/h, the spatial 
classification results of a 0.5 sec interval was the worst. This is due to the fact that a vehicle only 
travels circa 5 meters in a 0.5 sec interval, which is too short for the classifier to obtain enough 
effective road information to make an accurate classification. 

In order to evaluate the performances of different classification intervals, a quantitative index 
is utilized to assess the road surface classification accuracy. This index is: 𝑃 = 𝐿𝐿 × 100 %, (13)

where 𝐿  is the portion of the classified road (in meters) which is the same as the real road class 
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and 𝐿 is the total generated road length (𝐿 = 200 m). The index values for different interval 
durations and vehicle speeds are shown in Table 2. It can be seen that when the vehicle speed is 
80 km/h, the spatial accuracy of the road surface identification is reduced with an increase in the 
time interval. The converse is true when the vehicle speed is 20 km/h. When the speed is 60 km/h, 
the best interval is 1 second, and when the speed is 40 km/h the best interval is 1.5 second. If 
considering a more realistic variable vehicle speed, an adaptive length identification interval can 
be adopted to improve road surface analysis accuracy. That is, a shorter interval for high vehicle 
speeds and a longer interval for low vehicle speeds. 

 
Fig. 6. Classification results of different intervals in for the generated road surface: a) vehicle speed is 

20 km/h, b) vehicle speed is 40 km/h, c) vehicle speed is 60 km/h, d) vehicle speed is 80 km/h 

Table 2. Index of different classification interval (%) 
Interval 0.5 sec 1 sec 1.5 sec 2 sec 
20 km/h 73.1 75.4 78.5 87.6 
40 km/h 75.4 79.9 84.9 73.6 
60 km/h 78.5 84.1 75.1 57.8 
80 km/h 87.4 81.6 64.9 55.8 

5.3. Adaptive interval 

On the basis of Table 2, a large interval was need for enough information for classification 
accuracy when vehicle run in low speed, but a small interval is enough to maintain information of 
classification and improve the accuracy in spatial when vehicle run in high speed. Actually, the driver 
always changes vehicle speed based on different road during the course of ride. Driver may increase 
the speed when the road is good, and driver often maintain vehicle in low speed when the road is 
bad. Generally, the fixed classification interval is a compromise of enough information for accurate 
classification and accuracy in spatial. Thus, an adaptive interval should be employed for obtaining 
enough information for accurate classification and enough identification accuracy in spatial for road 
maintenance department. The adaptive interval is that a relatively long interval was used if vehicle 
run in low speed, and a relatively short interval was used if vehicle speed is high.  
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Assumption: 
1. Assume that vehicle speed is 80 km/h on A level road, vehicle speed is 60 km/h on B level 

road, vehicle speed is 40 km/h on C level road and vehicle speed is 20 km/h on D level road. 
2. The translation time of two different road levels and two speed levels are neglected. 
The Fig. 7 shows the simulation results of a vehicle run on the generated 200 meters road in 

different speed, and the interval is 0.5 second, 1 second, 1.5 second, 2 second and adaptive  
interval. It can be seen that the brown lines (with adaptive interval) are very proximate with the 
black lines (actual road). To value the specific performance of different interval, index proposed 
in Section 4.2 was used, and the index results are shown in Table 3. It can be seen that the adaptive 
interval is great improving classification accuracy in spatial. 

 
Fig. 7. Classification results of different fixed intervals and adaptive interval 

Table 3. Index of different fixed intervals and adaptive interval (%) 
Interval 0.5 sec 1 sec 1.5 sec 2 sec Adaptive  
Index 81.6 83.3 75.3 60.1 92.1 

6. Experimental tests 

An experimental system was also developed to verify the proposed method, as depicted in 
Fig. 8. The system includes: a 13 degree-of-freedom truck with accelerate velocity sensor on; a 
MTS hydraulic shaker controlled by a PC to provide the road excitation; a collection device for 
collecting acceleration signals; and a computer for processing the collected signals and classifying 
the road. The 32 kinds of 10 seconds long road excitation condition was imported into the MTS 
shaker control system, and the truck system responses were obtained. Then these responses, with 
known road classes, were applied to perform the superior features selection and train the SVM 
classifier. In this process, low-frequency parts of the features was not enough to train an accurate 
classifier, so 100 times truck responses of every kind road conditions were conducted. 

The performance of the proposed method of classifying the road was examined by using the 
truck responses in experimental. The generated road in Section 4.1 were imported in the MTS 
shaker control system, and the truck system responses were collected. The tuck system responses 
are shown in Fig. 9. It can be seen that the first part is close to the second part and the third part is 
close to the last part, but they are not the same road condition responses. Then we used the 
proposed classifier to estimate the road levels, and the classification results were contrasted with 
the real road conditions and simulation results in Fig. 10. It can be seen clearly that the method is 
very effective, though the results were not accuracy as simulation. The classification accuracy of 
experimental is as high as 96.7 % (116/120). It can also be seen that even though vehicles are 
driven on A class road in time frame 0-20 sec and 80-100 sec with speed 80 km/h and 20 km/h 
respectively, the classifier can identify the road class accurately. Similarly, in the time frames 
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60-80 sec and 100-120 sec when the vehicle is driven on a C class road with speed 40 km/h and 
60 km/h respectively, the classifier also can identify the road class effective. These results indicate 
that the classifier of this method is superior to others in ability of avoiding the influence of vehicle 
speed. 

  
Fig. 8. Schematic diagram of experimental setup 

 
Fig. 9. Truck system responses 

  
Fig. 10. Experimental classification results 

Providing the generated road in 4.3 to the hydraulic shaker, then the performance of the fixed 
and adaptive interval of classification was examined. Table 4 show the accuracy index of 
simulation and experimental, and the experimental results approximate with the simulations 
results. It can be seen clearly that if the vehicle is driving in the generated road with adaptive speed 
depending on road class condition, the smaller identify interval can obtain the higher accuracy 
results in spatial, as the classification accuracy in spatial is influenced by the vehicle speed. The 
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classification accuracy in spatial with the proposed adaptive interval greatly enhanced the ability 
of avoiding vehicle speed effect. The simulation results and the experimental results proved that 
the method is effective. 

Table 4. Index of simulation and experimental results (%) 
Interval  0.5 sec 1 sec 1.5 sec 2 sec Adaptive 

Simulation 81.6 83.3 75.3 60.1 92.1 
Experimental 80.1 84.6 73.4 61.2 90.3 

7. Conclusions 

In this paper, an effective method of estimating the road surface condition was presented and 
an adaptive identification interval was proposed for improving the accuracy in spatial. A new 
signal processing technique, integrating the Wavelet Transform and Empirical Mode 
Decomposition, is developed and considers vehicle speed as a parameter of paramount importance 
in the process. Computer simulations of a full-scale truck model have been carried out to analyses 
the influence of the classification interval. A special index was proposed to evaluate the algorithm 
classification accuracy in spatial, and a synthesized 200 m special road classification shows that 
using a short duration interval in high vehicle speeds and long duration interval in low vehicle 
speeds is a good way to improve the spatial road classification accuracy. Then an adaptive 
classification interval was proposed for improving the classification accuracy. Both the simulation 
results and experimental results verified that the proposed algorithm for estimating the road 
condition is effective and the classification accuracy in spatial is greatly improved by using 
adaptive interval. 
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