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Abstract. This paper presents a theoretical and experimental analysis of a coupled lateral and 
torsional vibrations of two identical rotors interconnected by a flexible Hooke’s joint and modelled 
as a multibody system with a small misalignment angle. Using energy principle and a Lagrangian 
transformation, the governing equation of the propeller shaft system is established by considering 
a nonlinear elastic shaft time-dependent perturbation. To study the sensitivity of the crack for a 
rotating shaft, the model is enriched by considering the periodical feature of the time-varying 
stiffness deriving from the crack breathing model. The nonstationary response of a cracked rotor 
system in the presence of unbalance has been evaluated using orbit patterns and Fast Fourier 
Transform. The highly oscillated feature of the rotors system is theoretically obtained and 
experimentally analysed. The analysis demonstrated that the crack parameters in the input shaft 
tend to inhibit the occurrence of unstable oscillations in lateral deflection, orbit and frequency 
spectrum of the secondary response. It is also found that the passage of the cracked primary shaft 
near to an integral multiple of the critical speed leads to the phenomenon of sup-harmonic 
resonance. Subsequently, the experimental analysis conducted equally indicated that the 
quantitative relation between the faults and the performance of the transmission is impacted by 
the time-varying stiffness and is the main cause of the frequency-modulated feature in the Cardan 
shaft system. Finally, the experimental results were informative for the transient response 
exploration and comparable to the theoretical findings for validating the proposed twin-rotor 
model. 
Keywords: cardan shaft, crack, Hooke’s coupling, lateral-torsional vibration, nonlinear,  
rotor-kit 4, transient stiffness. 

1. Introduction 

The universal joint system, as one of the critical components of mechanical components, is 
often used in rotating mechanical equipment, such as the automobile industry. The universal joint 
or Hooke’s joint is used for the power transmission when the input shaft is misaligned with the 
output shaft; it is one of the main components of the transmission system. The performance of the 
universal transmission system can be often impacted by the presence of faults and needs to be 
considered during the design process. After unbalance, coupling misalignment is the most 
common fault present in rotating machines [1]. Various research has been conducted to study the 
dynamic stability of the shaft interconnected through a joint. However, In the case of the rotating 
shafts interconnected with joint parametric instability in a rotating shaft system may be a result of 
the asymmetric shaft, anisotropic bearing, cracked shaft, the applied a periodic variation of 
velocity ratio and the angular misalignment [2]. The steady-state response, resonance and dynamic 
instability were investigated in a rotating Timoshenko shaft with rigid unsymmetrical disc 
subjected to a periodic axial force as a parametrically excited system using Finite Element Method 
[3]. It was found that the dynamic instability of the system and the fluctuating part of the axial 
force has caused the regions of the dynamic instability with increasing amplitude of the  
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fluctuation. It was reported early in [4] that the existence of this instability can cause noticeable 
noise, severe mechanical shakes and premature fatigue failures in shafts, gear teeth etc. Sekhar 
and Prabhu [5] investigated the effects of flexible-coupling misalignment on the vibrations of a 
rotor-bearing system. A linear system was analysed and a solution obtained by assuming the 
resulting vibration response to comprise of 1× and 2× components. Using this approach, it was 
demonstrated that the location of the coupling, with respect to the bending mode shape, has a 
strong influence on the vibrations. 

Furthermore, a similar problem was investigated under linear and non-linear conditions [6]. 
Results showed that parametric instabilities that occurred depended on the input shaft speeds and 
the Hooke’s joint angle. The existence of parametric resonance, quasi-periodic and chaotic 
motions were shown under the non-linear governing equation. A model for analysing partial 
vibration of a two-shaft cracked propeller system coupled with a Hooke’s joint has been discussed 
in [7].  

The model was derived from the equations of vehicle dynamics and vibration theory. The 
resultant governing system of equation was numerically solved and explored by nonstationary 
signal processing based on Wavelet Transform techniques. A few recent studies with major 
assumptions were made in respect to rotor motions and have shown some promise, in respect of 
the rotor motions to ensure that the results would be correlated with expected form [8-10]. It is 
clear from the literature that the relationship between shaft coupling and machinery vibration is 
still not fully understood. The fundamentals of a realistic model interconnected shafts through 
joint might be best followed by recoursing to a few complex mathematical models comprising the 
rotordynamic elements present in real rotor systems. Based on this conception, the present study 
aims to explore the influence of faults on the performance of the universal transmission joint and 
its effects by enhancing the previous research presented in [9, 10] for an unbalanced and cracked 
twin-rotor system. The analysis is performed theoretically and experimentally on a complex 
nonlinear rotordynamic model subjected to Hooke’s joint coupling effects to investigate the 
resulting system motions and transmission performance. This work is, therefore structured as 
follows. Section 1 briefly summarised the research work done so far on different modelling 
techniques, the system behaviour and fault. Section 2 introduces the coupled twin-rotors model 
and develop the perturbation parameter during torque transmission using a Hooke’s joint. The 
model is enriched by considering, the effect of the crack on the input shaft and the transmission 
of the movement to the second shaft under the impact of the speed and crack in Section 3. The 
governed equation of the system is established in Section 4. The simulation of the proposed model 
on the transmission performance for the faults such as unbalance associated with the Hooke’s  
joint, and breathing crack are analysed in Section 5. The model is validated experimentally on a 
modified rotor-kit 4 Bently Nevada laboratory rotordynamic system in Section 6, following at the 
end by the conclusions in Section 7. 

2. Mathematical model of the study 

The modelling of the twin-rotor systems will presume the adoption of an “elastic body” that 
can involve rotation as well as deflection; thus, the dynamic properties are more complex. This 
section is devoted deriving a basic mathematical model of coupled twin-rotor which can be used 
to study the vibration response of unbalanced and cracked rotor systems. The model is based on a 
simple Jeffcott’s approach aiming at an intuitive and straightforward interpretation of the system 
excitation-response relationships. Fig. 1(a) represents the modelled twin-rotor system. Its essential 
elements are the primary and secondary shafts, bearings, and a Hooke’s coupling. The twin-rotor 
system considered comprises two symmetric elastic shafts each carrying a massive rigid disc; 
which are characterised by the system’s kinetic energy. The two discs are of masses 𝑀  and 𝑀 . 
and carry eccentric unbalanced lumps of masses, 𝑚  and 𝑚  respectively.  

The following assumptions and considerations have been made: 1) The two shafts are flexible 
to assure lateral and torsional vibration. 2) The gyroscopic effects due to discs’ spinning are 
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neglected. 3) The shafts flexural stiffness are considered to be relatively small compared to the 
bearings’ stiffness. 4) The linear viscous damping effects of the bearings has been considered. 
5) Gyroscopic effects due to the spinning disks are negligible. 6) Self-aligning bearings are 
assumed, to ensure that the bearing takes up the bending mode shape of the shafts at the supports. 
7) The power spends to overcome the torsional vibration is nil, and the damping force is 
independent of the reactions at the Hooke’s joint. This assumption provides for the inclusion of 
the Rayleigh dissipation function in the Lagrangian equation. Therefore, The system’s d.o.f.s are 
lumped at the centres of the inertias and their net displacements are as follows: the motor mass 
moment of inertia 𝐽  that undergoes elastic-body rotation 𝜃  of the gearbox output inertia 𝐽  
only. 𝐽  – the Net mass moment of inertia of the mass-disc 𝑀  transmitted through the Hooke’s 
joint that undergoes elastic-body rotation 𝜃 , and the angle of intersection of the primary and 
secondary shaft axes 𝛽 . Hooke’s couplings have been modelled by applying the kinematics 
associated with universal-joints. The shafts are only loaded in lateral and torsional deflection, 
transversally balanced, and the magnitude of sufficient lateral stiffness is far more significant than 
torsional stiffness. Finally, the transfer of vibration from the motor gearbox to the input shaft is 
negligibly small in comparison to the torsional vibration of the input shaft system. 
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Fig. 1. a) Sketch of a cracked Cardan shaft, b) assembly in a deformed configuration 
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Fig. 2. a) Deformed configuration of shaft1and disc 1, b) deformed configuration of shaft 2 and disc 2 

2.1. Perturbation function between shaft input and output 

It is well known that in automotive assembly, the difference between input 𝜃  and output 𝜃  
motions of a Cardan shaft is kept low to reduce vibration in the coupling [11]. This is achieved by 
curbing 𝛽 to a low value, usually below 6°. Let the net displacement of 𝐽  being expressed as: 𝜃 = 𝜃 − 𝜇𝜃 , (1)
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where, 𝜇 is a small perturbation parameter that depends on 𝜃. The kinematic relationship between 
the output 𝜃  𝜃  is given by: tan𝜃 = cos𝛽tan𝜃 , (2)

where 𝛽 is the angle of inclination of the secondary shaft. Combining Eqs. (1) and (2), yields: tan 𝜃 − 𝜇𝜃 = 𝛾tan𝜃 , (3)

and allowing for infinitesimal small-angle approximation on 𝜇(𝜃 ) leads to: 

cos𝛽tan(𝜃 ) = tan(𝜃 ) − tan 𝜇(𝜃 )1 + tan(𝜃 )tan 𝜇(𝜃 ) . (4)

For a limited range of 𝜇(𝜃 ), Eq. (4) will be finite and periodically convergent. Making 𝜇(𝜃 ) 
the subject in Eq. (4) gives: 

𝜇(𝜃 ) = (1 − cos𝛽)tan𝜃𝜃 (cos𝛽tan 𝜃 + 1). (5)

The difference between 𝜃  and the output 𝜃  for infinitesimal small-angle approximation gives: 

𝜃 = 𝜃 − tan𝜃 (1 − cos𝛽)cos𝛽tan𝜃 + 1 . (6)

2.2. Mathematical model of the proposed twin-rotor system based on Lagrange methods  

The combined inertial reference frames, 𝑋 , 𝑌 , 𝑍  and 𝑋 , 𝑌 , 𝑍  as shown in Fig. 2(a)-2(b) 
have been adopted for the global representation of the lumped mass system. 𝑋 , 𝑌 , 𝑍  is fixed to 
the gearbox with 𝑍  coincident with the gearbox output shaft axis. Whereas, 𝑋 , 𝑌 , 𝑍  is attached 
to the left bearing of the secondary shaft such that, 𝑍  is coincident with the central axis of the 
bearing as indicated in Fig. 1(a). The vectors 𝑅  and 𝑅  represent the global position of 𝑚  and 𝑚  respectively. The pairs of vectors 𝑅 , 𝜙  and 𝑅 , 𝜙  respectively, represent the centres of 
the rotor masses 𝑀  and 𝑀 .  

2.3. Formulation of the kinetic energy of the rotor system  

Combined lateral and rotational displacements of the system, the system kinetic energy 𝐺 
comprises the kinetic energy of the components of the primary shaft 1 (𝐺 ) and the secondary 
shaft 2 (𝐺 ), and expressed as: 

𝐺 = 12 𝐽 + 𝐽 𝜃 + 12𝑀 𝑋 + 𝑌 + 12𝑚 𝑅 𝑅 , (6a)𝐺 = + 12 𝐽 𝜃 + 12𝑀 𝑋 + 𝑌 + 12𝑚 𝑅 𝑅 , (6b)

which yields to the kinetic energy expressed as: 𝐺 = 12 𝐽 + 𝐽 𝜃 + 12𝑀 𝑋 + 𝑌 + 12 𝐽 𝜃 + 12𝑀 𝑋 + 𝑌 + 12𝑚 𝑅 𝑅+ 12𝑚 𝑅 𝑅 . (7)
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Here 𝑅  and 𝑅  are the velocity vectors of unbalance masses 𝑚  and 𝑚  respectively and 
rotating with the moment of inertia of disc 1 and disc 2. The vectors 𝑅  and 𝑅  can be expressed 
as [12]: 𝑅 = 𝐴(𝜃 ) 𝑒 ,      𝑅 = 𝐴(𝜃 ) 𝑒 . (8)

The matrices rotational transformation, [𝐴(𝜃 )] and [𝐴(𝜃 )] are defined as: [𝐴(𝜃 )] = cos𝜃     − sin𝜃sin𝜃         cos𝜃 , (9a)[𝐴(𝜃 )] = cos𝜃     − sin𝜃sin𝜃          cos𝜃 . (9b)

The matrices have the following significance: [𝐴(𝜃 )] – rotational transformation from the 
motor-gearbox coordinate system 𝑥 , 𝑦  to the inertial reference frame 𝑋 , 𝑌 . [𝐴(𝜃 )] – the 
rotational transformation from the left secondary disc coordinate system 𝑥 , 𝑦  to the reference 
frame 𝑋 , 𝑌 . 

Differentiating 𝑅  and 𝑅  with respect to time gives: 

𝑅 = 𝜃 [𝐴 (𝜃 )]𝑒 ,      𝑅 = 𝑋 − 𝜃𝑒 sin𝜃 − 𝜃𝑒 cos𝜃𝑌 + 𝜃𝑒 cos𝜃 − 𝜃𝑒 sin𝜃 , (10a)

𝑅 = 𝜃 [𝐴 (𝜃 )]𝑒 ,      𝑅 = 𝑋 − 𝜃𝑒 sin𝜃 − 𝜃𝑒 cos𝜃𝑌 + 𝜃𝑒 cos𝜃 − 𝜃𝑒 sin𝜃 , (10b)

where, [𝐴 (𝜃 )] = 𝑑[𝐴(𝜃 ], and [𝐴 (𝜃 )] = 𝑑[𝐴(𝜃 ], 𝑒 = 1,0. . . . .0 and 𝑒 = 0,1. . . . .0  
represent locations of 𝑚  and 𝑚  in their respective disc’s body coordinate systems 𝑥 , 𝑦  and 𝑥 , 𝑦  as indicated in Fig. 2(a) and 2(b). The pairs 𝑒 , 𝑒  and 𝑒 , 𝑒  are components of 𝑒  and 𝑒  in 𝑥 , 𝑦  and 𝑥 , 𝑦  coordinate.  

Differentiating Eq. (7), assigning and performing appropriate substitutions of Eqs. (8a) to  
(10b) leads to the kinetic energy Eq. (11) below: 𝐺 = 12 𝐽 + 𝐽 + 𝐽 (𝜇 − 1) 𝜃 + 12 (𝑀 + 𝑚 ) 𝑋 + 𝑌+ 12 (𝑀 + 𝑚 ) 𝑋 + 𝑌 −𝑚 𝑒 sin2𝜃 𝑋 − cos2𝜃 𝑌 𝜃−𝑚 𝑒(𝜇 − 1) sin2𝜃 𝑋 − cos2𝜃 𝑌 𝜃 . (11)

2.4. Formulation of the potential energy of the rotor system  

The system potential energy comprises the shaft lateral vibration strain energy and the 
torsional strain energy expressed as: 𝑉 = 12𝐾 𝜃 + 12𝐾 𝑋 + 12𝐾 𝑌 + 12𝐾 𝑋 + 12𝐾 𝑌 + 12𝐾 𝜃 , (12)

where, 𝐾 , 𝐾 , 𝐾 , 𝐾 , are the shaft stiffness, 𝐾  and 𝐾  are the torsional stiffness 
coefficients associated with the system degrees of freedom. 

2.5. Formulation of the Rayleigh dissipation function expression 

Taken into account the effect of damping coefficient, and neglecting the exciting external force 
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and the external torque, the Rayleigh’s dissipation function can be expressed as: 𝐷 = 12𝐶 𝜃 + 12𝐶 𝑋 + 12𝐶 𝑌 + 12𝐶 𝑋 + 12𝐶 𝑌 + 12𝐶 𝜃 , (13)

where, 𝐶 , 𝐶 , 𝐶 , 𝐶  are the flexural vibration damping of the respective degree of 
freedom’s damping coefficients, 𝐶  and 𝐶  are the torsional vibration damping of the first and 
second shaft, respectively. 

3. Mechanism and introduction of the breathing crack function  

Considering that the input shaft 1 has a radius 𝑅 with a transverse crack, as shown in Fig. 3, 
the centroidal area moments of inertia of the cracked element about the 𝑋 and 𝑌 axes are 𝐼 (𝑡) 
and 𝐼 (𝑡), respectively. 

 
Fig. 3. Breathing crack cross-section: after the shaft rotates. The dashed area represents the crack segment 

In [13], the time-varying area moments of inertia 𝐼 (𝑡), 𝐼 (𝑡) and 𝐼 (𝑡) about the centroidal 𝑋 and 𝑌 axes during the shaft rotation are given in terms of centroidal area moments of inertias 𝐼 ̅  
and 𝐼  in the rotating �̅� and 𝑦 axes as [14] product of inertia (cross-moment of inertia) are given 
as: 

𝐼 (𝑡) = 𝐼 ̅ + 𝐼2 + 𝐼 ̅ − 𝐼2 cos(2Ω𝑡) + 𝐼 ̅ sin(2Ω𝑡), (14)𝐼 (𝑡) = 𝐼 ̅ + 𝐼2 − 𝐼 ̅ − 𝐼2 cos(2Ω𝑡) − 𝐼 ̅ sin(2Ω𝑡), (15)𝐼 (𝑡) = −𝐼 ̅ − 𝐼2 sin(2Ω𝑡) + 𝐼 ̅ cos(2Ω𝑡), (16)

where 𝐼 ̅ = 𝐼 − 𝐴 𝑒 , 𝐼 = 𝐼 , 𝐼 ̅ and 𝐼  are the area moments of inertia of the cracked element 
cross-section about the rotating 𝑥 and 𝑦 axes, 𝐴  is the area of the cracked element cross-section 
and 𝑒 is its centroid location on the 𝑦-axis. Since 𝑦 is the axis of symmetry of the cracked element 
cross-sectional area during rotation, then 𝐼 ̅ = 0. The quantities 𝐴  and 𝑒 have been derived in 
[14] as: 𝐴 = 𝑅 𝜋 + (1 − 𝛿) 𝛿(2 − 𝛿) − cos (1 − 𝛿) , (17)
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𝑒 = 2𝑅 𝛿(2 − 𝛿) /3𝐴 . (18)

The area moments of inertia 𝐼  and 𝐼  of the cracked element cross-section about the rotating 𝑥- and 𝑦-axes, or the fixed 𝑋 and 𝑌 axes, have also been derived for 0 ≤ 𝛿 ≤ 1 as: 

𝐼 = 𝜋𝑅8 − 𝑅4 (1 − 𝛿)(2𝛿 − 4𝛿 + 1)𝛾 + sin (1 − 𝛿) , (19a)𝐼 = 𝑅12 ((1 − 𝛿)(2𝛿 − 4𝛿 − 3)𝛾 + 3sin (𝛾)), (19b)

where 𝛾 = 𝛿 (2 − 𝛿) and 𝛿 = ℎ/𝑅 is the non-dimensional crack depth and ℎ is the crack depth 
in the radial direction of the shaft. The detailed calculation process can be found in [13, 14]. 
Therefore, the instantaneous area moment of inertia values about the principal centroidal 
directions, 𝐼 (𝑡) and 𝐼 (𝑡), is calculated as: 𝐼 (𝑡) = 𝐼 − 𝑓 (𝑡)(𝐼 + 𝐴 𝑒 ), (20a)𝐼 (𝑡) = 𝐼 + 𝑓 (𝑡)(𝐼 + 𝐴 𝑒 ) − 𝑓 (𝑡) 𝐼 + 𝐼 + 𝐴 𝑒 , (20b)𝐼 (𝑡) = 𝐼 − 𝑓 (𝑡)𝐼 ,   if   𝑓 (𝑡) = 𝑓 (𝑡) = 𝑓(𝑡). (20c)

The functions 𝑓 (𝑡) and 𝑓 (𝑡) in Eq. (14) representing the opening and closing effect can be 
expressed in the Fourier series as: 

𝑓 (𝑡) = 𝑎 + 𝑎 cos(𝑗Ω𝑡),      𝑓 (𝑡) = 𝑏 + 𝑏 cos(𝑗Ω𝑡), (21)

where Ω defines the rotational speed of the rotor. The complete stiffness matrix of the vertical 
cracked rotor in the fixed coordinates is obtained via the transformation matrix of dimension  
2×2 as: 

[𝐾 (𝑡)] = 𝐾 𝐾𝐾 𝐾 = 48𝐸𝐿 𝐼 (𝑡) 𝐼 (𝑡)𝐼 (𝑡) 𝐼 (𝑡) , (22)

where 𝐸 is the modulus of elasticity, 𝐿 is the length of the rotor. Due to the axis of symmetry of 
the cracked element cross-sectional area during rotation yield 𝐼 = 𝐼 = 0. 

4. The governing equations of motion  

Lagrangian equation of a system in each generalised coordinate frame is: 𝑑𝑑𝑡 ∂𝐺∂𝑞 + ∂𝐷∂𝑞 + ∂𝑉∂𝑞 − ∂𝐺∂𝑞 = 𝑇 ,    𝑞 = 𝜃 ,𝑋 ,𝑌 ,𝑋 ,𝑌 , (23)

Upon substitution of Eqs. (11)-(13) and (22) into Eq. (23), performing requisite differentiation 
and manipulation, the system dynamic equation reads: 
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⎣⎢⎢⎢
⎢⎡𝑚 𝑚 𝑚 𝑚 𝑚𝑚 𝑚 0 0 0𝑚 0 𝑚 0 0𝑚 0 0 𝑚 0𝑚 0 0 0 𝑚 ⎦⎥⎥⎥

⎥⎤
⎩⎪⎨
⎪⎧ 𝜃𝑋𝑌𝑋𝑌 ⎭⎪⎬

⎪⎫

+ ⎣⎢⎢⎢
⎢⎡𝑐 0 0 0 00 𝑐 0 0 00 0 𝑐 0 00 0 0 𝑐 00 0 0 0 𝑐 ⎦⎥⎥⎥

⎥⎤
⎩⎪⎨
⎪⎧ 𝜃𝑋𝑌𝑋𝑌 ⎭⎪⎬

⎪⎫

+ ⎣⎢⎢
⎢⎢⎡𝑘 0 0 0 00 𝑘 0 0 00 0 𝑘 0 00 0 0 𝑘 00 0 0 0 𝑘 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧ 𝜃𝑋𝑌𝑋𝑌 ⎭⎪⎬

⎪⎫ = −⎩⎪⎨
⎪⎧𝑁𝐿0000 ⎭⎪⎬

⎪⎫ − ⎩⎪⎨
⎪⎧𝑁0000 ⎭⎪⎬

⎪⎫. 
(24)

The elements of mass, stiffness and damping matrices in their final forms are: 𝑚 = (𝐽 + 𝐽 + 𝑚 𝑒 ) + (𝐽 + 𝑚 𝑒 )(𝜇(𝜃 ) − 1) , 𝑚 = 𝑚 = −𝑚 𝑒sin2𝜃 ,      𝑚 = 𝑚 = 𝑚 𝑒cos2𝜃 , 𝑚 = 𝑚 = 𝑚 𝑒(𝜇(𝜃 ) − 1)sin2𝜃 ,     𝑚 = 𝑚 = 𝑚 𝑒(𝜇(𝜃 ) − 1)cos2𝜃 , 𝑚 = 𝑚 = 𝑀 + 𝑚 ,      𝑚 = 𝑚 = 𝑀 + 𝑚 , 𝑐 = 𝐶 + 𝐶 (𝜇(𝜃) − 1) ,      𝑐 = 𝑐 = 𝐶 ,       𝑐 = 𝑐 = 𝐶 , 𝑘 = 𝑘 + 𝑘 (𝜇(𝜃) − 1) ,      𝑘 = 𝑘 = 𝑘 ,      𝑘 = 𝑘 = 𝑘 , 
(25a)

𝑁𝐿𝜃 = −(𝐽 + 𝑚 𝑒 )(𝜇(𝜃 ) − 1)𝜇(𝜃 )𝜃 + 2𝑚 𝑒cos2𝜃 𝑋 + 2𝑚 𝑒sin2𝜃 𝑌        +𝑚 𝑒 sin2𝜃 − cos2𝜃 𝜃 + 2sin2𝜃 (𝜇(𝜃 ) − 1)𝜃 𝜃 𝜇(𝜃 )𝑌+ 2𝑚 𝑒sin2𝜃 (𝜇(𝜃 ) − 1) 𝜃 𝑌+ 𝑚 𝑒(2cos2𝜃 (𝜇(𝜃 ) − 1) + sin2𝜃 𝜇(𝜃 ) + 2cos2𝜃 (𝜇(𝜃 ) − 1)𝜇(𝜃 )𝜃 )𝜃 𝑋 , 𝑁 = 𝐾 (𝜇(𝜃 ) − 1)𝜇(𝜃 )𝜃 . (25b)

The vectors 𝑁𝐿 , 𝑁  have been analytically obtained by the Lagrangian formalism and are the 
vector of Carioles couple corresponding to the rotor quadratic velocity excited torque and the 
elastic interaction of rotor’s stiffness of the secondary shaft in terms of the perturbation of primary 
shaft assembly through the Hooke‘s joint. Based on Eq. (24), the dynamic responses and transient 
stiffness of the rotor system can be obtained by the Runge-Kutta Fehlberg method. The derived 
system equation is numerically solved and experimentally explored next. 

5. Results and analysis 

The numerical solutions of Eq. (24) of the twin-Cardan shafts are evaluated using the values 
of parameters prescribed in [10]. A numerical simulation was conducted at a variable rotating 
speed, and under the condition without crack, namely only balance effect is considered, as shown 
in Fig. 4 in the lateral direction. 

In the first simulation, the rotor system was operated with zero eccentric mass and was 
therefore considered balanced and is the baseline reference before introducing faults to the system. 
This is to ensure that the fluctuations in the vibration spectra are purely due to the induced defects. 
Fig. 4, illustrates the response of the stable rotor system. The present frequency domain features 
indicating more quickly the critical shaft speed where a natural frequency and excitation frequency 
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coincide at approximatively 27.83 Hz which for both shafts are sufficient for vibration analysis of 
balanced rotating machine. The orbits of the shaft 2 due to the joint angle cease to be an elliptic 
shape with a predominance of eccentric loops, as indicated in Fig. 4(b).  

 
a) The orbit of the balanced shaft 1  

(Stable operation) 
b) The orbit of the balanced shaft 2  

(Stable operation) 

c) FFT of the secondary shaft1 
 

d) FFT of the primary shaft 2 
Fig. 4. Dynamic response of the balanced rotors-system passing near  

to the critical speed as a function of the speed 

To conduct an unbalance fault analysis, an additional mass of pre-determined weight was 
introduced into the system and resulted through orbit and FFT are presented, as shown in Fig. 5. 
The obtained results show that vibration due to combined misalignment and unbalance is 
characterised by two times running speed frequency component at high-level harmonics. 
Moreover, apart from the basic harmonic of 27.83 Hz, a second harmonic frequency spectrum of 
56.64 Hz, as shown in Figs. 5(c) and (d) exists. Simultaneously, the difference between the orbits 
is quite significant. These parametric instabilities that occurred on the frequency depended merely 
on the Hooke’s joint angle and the input shaft speeds. The shafts 1 and 2 have distorted 
elliptic-shaped movements with several disturbing loops on the second shaft. The shafts orbits 
displayed in Figs. 5(a) and (b) are more complex and are not a standard circle any more. 

The numerical simulation of an unbalance vibration system with a transverse crack was carried 
out at the same speed, and the dynamic responses were displays using the displacement shaft 
centre and the frequency spectrum of the response. When a crack occurs in a primary shaft system, 
vibration responses in 𝑋 -direction and 𝑋 -direction of shaft 1 and 2 respectively are distorted 
harmonically with the appearance of multiple tighten peaks as seen in zoomed Figs. 6(a)-6(b). The 
FFT analysis in an interconnected twin-rotor through Hooke’s joint yielded satisfactory results 
when performing online crack fault identification. As in the previous case, only the first harmonics 
have significant effects on the system response, (see Figs. 4(c) and 4(d)). At critical speed, the 1× 
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of the input shaft decrease significantly due to the crack effect while the second shaft critical speed 
increase as the shaft passes through the natural frequency. Examination of the frequency spectrum 
of shaft 1 and 2, cf. Figs. 6(c) and 6(d), shows the presence of multiple harmonics of the critical 
velocity (2 ×, 3 ×, 4 × ...) for the crack system. It is noted as seen for the unbalanced system, a 
transfer of crack features through the connecting joint by the presence of the high super-harmonic 
frequencies 1 ×, 2 ×, 3 × ... which reflects the action of breathing of the crack on the dynamic 
behaviour of the input shaft. The frequency range and magnitude of decrease where the 1× rpm is 
influenced is dependent upon the transient stiffness of the flexible rotor. In this simulation, there 
is a critical speed at approximately 100 Hz. Thus, during the operation of a rotating machine, the 
observation of super-harmonic resonances passing through integer multiples of the critical speed 
and the change of the harmonic shape of the deflection of the shaft can be a good indicator of the 
existence of cracks. 

 
a) The orbit of unbalanced shaft1  

(Unstable operation) 

 
b) The orbit of the unbalanced shaft 2  

(Unstable operation) 

 
c) FFT of the unbalanced shaft 1 

 
d) FFT of the unbalanced shaft 2 

Fig. 5. Dynamic response of unbalanced rotors-system passing near the critical speed  
as a function of the speed of rotation 



THEORETICAL AND EXPERIMENTAL ANALYSIS OF AN UNBALANCED AND CRACKED CARDAN SHAFT IN THE VICINITY OF THE CRITICAL SPEED.  
BERNARD XAVIER TCHOMENI, ALFAYO ALUGONGO 

44 MATHEMATICAL MODELS IN ENGINEERING. MARCH 2020, VOLUME 6, ISSUE 1  

 
a) Time evolution of the cracked shaft 1 

 
b) Time evolution of the cracked shaft 2 

 
c) FFT of the cracked shaft 1 

 
d) FFT of the cracked shaft 2 

Fig. 6. Dynamic response of the unbalanced and cracked rotors-system passing close  
to the critical speed Δ𝑘/𝑘 = 0.45 

6. Experimental correlation to the theoretical results 

The test bench set up for the study of the power transmission between two shafts through the 
Hooke's joint aims at the measurement of the natural frequencies and the determination of 
parameters making it possible to establish a comparative analysis with the adopted numerical 
approach. Here, the theoretical observations are experimentally verified using a modified 
rotordynamic simulator Rotor-Kit 4 of Bently Nevada shown in Fig. 7, which physical parameters 
were previously used in [12]. The length of both shafts is 640 mm and its diameter is 10 mm. The 
rotor system is driven by an electric motor coupled to the input shaft through a flexible coupling. 
The practical interconnected rotor is shown in Fig. 7(a). The experimental device consists of a 
frame, a drive system, and the rotors which comprise each of a lumped mass disc. The driven shaft 
is supported by two self-aligning bearings; the assembly is mounted on a concrete base and 
isolated from the environment by layers of elastomeric material which also serve as vibration 
absorbers. The vertical and horizontal vibration amplitudes data have been collected through four 
perpendicular proximity probes installed on the left side of both shafts, as shown in Fig. 7(d). The 
readings of the proximity sensors in Fig. 7(c) were collected at a sampling frequency of 500 Hz 
by the Bently Nevada data acquisition system recorder. To get the baseline result, the experiments 
were first performed using both balanced discs with at a maximum Hooke’s joint angle of 60. For 
this experimental investigation, the cracked input shaft I has been considered as a value of a 
non-dimensional crack depth 𝛿 = 0.45 is located at midspan of the shaft. Experimental studies 
through a series of tests were therefore performed, the amplitudes of the intact shaft, the 
unbalanced shaft-I and Shaft-II, and the cracked shaft-I are plotted in Fig. 8. 

The first conducted test has permitted the system assessment for a case where no unbalance 
forces are acting on the rotors system. Fig. 8, shows the frequency spectrogram of the rotor axis’ 
orbit of the lateral vibrations of the balanced rotors passing through its first critical speed in time 
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domain under stable conditions at variable speeds. Further, the presence of an eccentric mass on 
a disc, generate a greater eccentric force of both flexible shafts, it will be therefore interesting to 
analyse the influence of the bending through the misaligned shafts.  

 
Fig. 7. Experimental setup is composed of a) a cardan shaft, b) unbalanced mass location set at 0°,  
c) data acquisition control, d) modified rotor kit- 4 components (1): motor, (2): flexible coupling,  

(3): input shaft 1 (4): tachometer (5): disc1, (6): probes, (7): self- aligning bearing,  
(8): disc 2, (9): output shaft 2, (10): hooke’s 

 
a) The orbit of the balanced shaft 1  

(Stable operation) 

 
b) The orbit of the balanced shaft 2  

(Stable operation) 

 
c) FFT of the secondary shaft1 

 
d) FFT of the primary shaft 2 

Fig. 8. Experimental baseline response of the balanced rotors-system passing near to the critical speed  
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The previous experiment is then repeated at the same motor speeds, and the features of the 
rotors system are then extracted. The initial balanced rotors discs were then unbalanced by two 
identical mass of 0.4 g set in the hole at 0° within the crack side to generate an unbalance moment 
of 4 g.mm as shown in Fig. 7(b). The first conducted test has permitted the system assessment for 
a case where no unbalance forces are acting on the rotors system. Fig. 8 shows the frequency 
spectrum of the rotor where, at critical speeds of 1 × rpm, the frequency increase significantly and 
then decrease as the shaft passes through the natural frequency. The orbit of the lateral vibrations 
of the balanced rotors passing through its first critical speed is in stable conditions. Observation 
of the orbit of Figs. 8(a) and 8(b) show simple circular shapes from the evolution of the input shaft 
to output shaft. 

The complexity of the non-linear response is reflected by non-negligible contributions of the 
orders 𝑛 ×, which are characterised by an orbital movement in vary form: circular, leaning, or 
plane orbits. It is therefore clear that the non-linear dynamic response for the entire system can be 
very complex over the entire operating range of the system. Thus, during this experiment, the 
orbits are given for specific rotational speeds, characteristic of the rotor at the critical speed. At 
the passage of critical speeds, the orbits of the rotor find classic circular or elliptical forms with a 
predominance of the order 1 × over the global response, observable at around 1030 rpm. This 
phenomenon of the presence of the 1/2 × orders (Figs. 9(c) and 9(d)) results in the formation of 
external and/or internal loops, as shown in the Figs. 9(a) and 9(b). It is shown clearly that the 
sub-harmonic peaks amplitude levels depend greatly on the unbalance excitation when the input 
shaft is accelerated. From these results faults on both connected shafts, unbalance is considered as 
the most commonly observed disturbance source in twin-rotor systems. 

 
a) The orbit of unbalanced shaft1  

(Unstable operation) 

 
b) The orbit of the unbalanced shaft 2  

(Unstable operation) 

 
c) FFT of the unbalanced shaft 1 

 
d) FFT of the unbalanced shaft 2 

Fig. 9. Experimental response for the unbalanced fault conditions near the critical speed  
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a) Time evolution of the cracked shaft 1 

 
b) Time evolution of the cracked shaft 2 

 
c) FFT of the cracked shaft 1 

 
d) FFT of the cracked shaft 2 

Fig. 10. Experimental response for the unbalanced and crack fault conditions  
near the critical speed Δ𝑘/𝑘 = 0.45 

Interest is now focused on the combined contributions of unbalance and crack, their influence 
on the nonlinear dynamic response in the presence of nonlinear forces. The experiments show that 
the system motion generally contains the multiple harmonic components, and under some special 
conditions, the 1/2 × fractional harmonic components of unbalance effect were observed 
(Fig. 10(c)). Based on these researches, it is not so difficult to judge whether a rotor system has a 
crack or not. Previous studies such as [5, 15, 16] have shown that for a rotor passing through its 
critical speed, a sub-resonance that is smaller in amplitude than the fundamental resonance and 
buried in noise of the transient response can be a good indicator of crack presence. The present 
study confirms these statement by showing the presence of multiple sub-harmonics peaks buried 
in noise as shown in Figs. 10(a) and 10(b) as the rotor passed the critical speed. For this, the 
evolution of the lateral displacement of the cracked tree is discontinuous. 

Moreover, the features of crack can be observed in the frequency spectrum by the appearance 
of sup-harmonic peaks (2 ×, 3 ×, 4 ×…) as shown in Figs. 10(c) and 10(d). Crack features are 
hugely dominant and mask the unbalance excitation features which cannot be easily discernible 
in the transient response of the output shaft. The significant experimental observation is related to 
the Hooke’s joint impact, the higher excitation of the shaft 1 is partially transmitted to the second 
shaft through the Hooke’s joint. To identify the effect of interaction between crack and other faults 
present in the input shaft I, exploration of distinct features of fault in the output shaft II sub-critical 
transient response, can permit to visualise at low amplitude the symptoms of input shaft fault. 

From these results, it can be deduced that the presence of several sup-harmonics in the transient 
response with a noisy background and the multiple gradually decreasing amplitudes peaks at the 
starting motion is considered the distinct crack features. Meanwhile, it can be observed in the 
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vibration transmission that the background noise and relatively equal fault feature amplitudes in 
shaft II are due to the distinct shaft misalignment angle. These results are in good agreement with 
the numerical results. However, when crack and unbalance, and misalignment co-exist, features 
extraction and monitoring of crack fault become more difficult. The Hooke’s joint effect 
dominates the vibration signal and, hence, the crack effects are masked, which can confuse the 
analysis. Therefore, there is a need to use sophisticated and appropriate signal processing 
techniques to extract and distinguish the crack feature from each other faults. 

7. Conclusions 

The main objective of the present study was to model and analyse the vibratory responses of a 
twin-rotor system to distinguish the transmission of fault such as crack and unbalance through a 
Hooke’s joint. To simulate and extract the characteristic features of the studied faults, the 
governing equation of the transient lateral and torsional vibration of the twin-rotor system is 
established based on energy principle. A parametric excitation simulating a breathing crack, 
unbalance and shaft misalignment are introduced into the model and yields a highly nonlinear 
system governing equation. The study has allowed exploring theoretically, the non-linear dynamic 
behaviour of the system due to the crack from the shaft I to the shaft II. This was as well done 
experimentally on a modified Rotor Kit-4 by considering the geometry parameters and constraints 
of the Hooke’s joint. The study made it possible to conclude that the passage of the rotor with 
rotational speeds close to an integral multiple of the critical speed leads to the phenomenon of 
sup-harmonic resonance. This phenomenon, as noted, results in a high vibratory level reached by 
the excited harmonic (harmonic of order 1×) and an orbit formed of several loops intertwined and 
disordered. Subsequently, some qualitative analysis conducted experimentally indicated that the 
time-varying stiffness induced by breathing crack is the main cause of the frequency-modulated 
feature of the connected twin-rotor system. The transmission through Hooke’s joint is also 
influenced by the faults, as the transfer motion from the input shaft to the output is impacted by 
the damage features. In practical for twin-rotor that operate in the super-critical range, the 
presented fault features can be used as useful indicators when unbalance and crack faults are 
suspected rotors system. Finally, the experimental results were informative for the transient 
response exploration and comparable to the theoretical findings for validating the proposed 
twin-rotor model. 
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