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Abstract. The dynamic response of vehicle bridge coupling before and after strengthening with 
post-tensioned carbon fiber reinforced polymer (CFRP) is analyzed. To obtain a better dynamic 
response of vehicle bridge coupling, the theory of vehicle moving load is deduced and 
transformed. To obtain the dynamic response of the vehicle bridge coupling before and after the 
post-tensioned CFRP reinforcement, a numerical model of the vehicle bridge coupling before and 
after the post-tensioned CFRP reinforcement is established, and the vertical acceleration time 
history curve and vertical displacement time history curve of the 1/4, 1/2, and 3/4 sections of the 
side span and the middle span of the bridge before and after post-tensioned CFRP reinforcement 
are obtained under different speeds of heavy vehicles. The results show that with the increase in 
vehicle speed, the vertical displacement of the bridge has almost no change, but the increase in 
the vertical acceleration peak value is obvious, which results in a faster arrival of the vertical 
displacement and the vertical acceleration peak value and also causes the amplitude of the vertical 
acceleration of the bridge to increase greatly, and the vertical acceleration increase in the side span 
is significantly larger than that in the middle span. Post-tensioned CFRP can effectively reduce 
the vertical displacement and acceleration of the bridge, but there are some deficiencies in 
reducing the vertical displacement of the bridge. With the increase in speed, the effect of the 
post-tensioned method is better. 
Keywords: post-tensioned prestressed CFRP, box bridge, vehicle-bridge interaction, dynamic 
response. 

1. Introduction 

Because of the complex environment of the current transportation industry, the overloading of 
large trucks has become a common phenomenon. The movements of these large vehicles cause 
large vibrations and shocks on bridges, leading to large deflection and stress that seriously impact 
the safety of the bridge. Therefore, it is necessary to analyze the vehicle-bridge coupled dynamic 
response before and after reinforcement with prestressed CFRP, and much progress has been 
achieved in the study of bridge reinforcement. 

Scholars, such as Ai et al. [1], have derived the quantitative relationship between the natural 
frequencies of pretension and the damage of RC beams theoretically. Omar [2] studied the shear 
fatigue behavior of reinforced concrete (RC) T-beams strengthened with carbon fiber reinforced 
polymer (CFRP) composite materials and obtained the effectiveness of a CFRP strengthening 
system for prolonging the fatigue life of structures via experiments. Yang et al. [3] used the Hertz 
elastic contact model to calculate the dynamic equation of the moving wheel-track-bridge 
coupling element that considers track irregularity. Lu et al. [4] tested the dynamic characteristics 
of intact RC beams strengthened with prestressed CFRP. Zhao and Chen [5] conducted a reliability 
performance test along with theoretical and finite element analysis of the anchorage system to 
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study the reliability and effectiveness of a prestressed CFRP plate anchoring system. Guo and 
Wang [6] conducted precision analysis regarding the technical difficulties of CFRP carbon fiber 
plate tension and prestressed damage based on long-term monitoring. Zhang et al. [7] analyzed 
the beam deflection and stress in fibers to determine the working condition of a prestressed 
CFRP/GFRP fiber reinforced structure. Khelifa et al. [8] tested and analyzed the bending behavior 
of finger-jointed timber (spruce) beams reinforced with CFRP material. Baikaiyi [9] participated 
in analyzing CFRP alms plus special prestressed tensioning equipment research and development 
with prestressed CFRP cloth in concrete bridge reinforcement technology as the main research 
object and proposed the construction technology, construction procedure and key construction 
technology of a prestressed CFRP reinforced concrete bridge. Li [10] studied the properties of 
FRP materials and prestress application methods and conducted a prestressed CFRP reinforced 
concrete beam bending test; based on the results, the mechanical characteristics of beam 
reinforcement were discussed. Davood et al. [11] studied the influence of the EBRIG method and 
EBR method on the shear strengthening of structural members under different installation 
techniques of CFRP plates via experiments. Wang and Zhao [12] used train-bridge coupling 
vibration relationships to establish a single-beam vehicle differential equation of bridge motion, 
through the deformation coordination and interaction force coordination, realized the coupling 
relation between vehicles and bridges. 

In the research of vehicle-bridge coupling model, Nguyen et al. [13] proposed the 
wind-vehicle-bridge interaction model, the vehicle is modeled as a multi-body system. Through 
the interaction between the moving contact and the bridge, the road irregularity is also simulated. 
A general user element is proposed and implemented by a general finite element software. Li et 
al. [14] thought that a single software is not enough for vehicle bridge coupling analysis, so they 
proposed an interactive analysis method combining commercial finite element software ANSYS 
and multi-body system software SIMPACK. Yao et al. [15] gave an idea of building road 
roughness model in vehicle bridge interaction (VBI) system, which is equivalent to two external 
forces acting on vehicle bridge subsystem. Miguel et al. [16] gave a new method to apply TMD 
and MTMD robust design optimization method to vehicle-bridge coupled vibration problem. 

In summary, the existing literature has provided a considerable amount of theoretical analysis 
and experimental data regarding the dynamic response of vehicle-bridge coupling and prestressed 
CFRP reinforced beams and bridge piers. Nevertheless, at present, the prestressed CFRP 
reinforcement test is mainly applied using small-size beams and columns, especially for 
prestressed reinforcement technology; regarding the pre-tensioning method or post-tensioning 
method, research on long-span bridges and large-size piers is lacking. The study of the dynamic 
response under a vehicle moving load after bridge reinforcement of vehicle-bridge coupling is 
also very rare. Therefore, in this paper, the dynamic response of vehicle-bridge coupling of a 
prestressed concrete box bridge before and after reinforcement is analyzed. By using finite element 
software in combination with the data of an actual bridge, a numerical vehicle-bridge coupled 
model before and after reinforcement with CFRP is established, and the influence of different 
speeds of heavy vehicles on the dynamic response of vehicle-bridge vibration coupling before and 
after reinforcement with post-tensioned prestressed CFRP is studied. 

2. Vehicle moving loads 

2.1. Theory of moving constant force  

Under the action of a moving load, the stress and strain of the bridge structure produces a 
corresponding dynamic response; thus, in the process of bridge reinforcement, the moving load of 
the vehicle should also be considered. Bridge dynamic load action includes the function of moving 
at a constant speed constant force [17], moving at a constant speed harmonic force, the action of 
uniform quality of rolling, etc., according to the actual situation of the box bridge; the method of 
moving constant force is used to apply the dynamic load because this method is relatively simple 
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and is easier to achieve in the FEM. Taking a simply supported beam as an example, the function 
of moving constant force is shown in Fig. 1, where 𝐹 is the constant force that moves at a constant 
velocity v to the right, ignoring the mass of moving load in the process of analysis. The vibration 
equation is given as follows: 

𝐸𝐼 𝜕 𝑦 𝑥, 𝑡𝜕𝑥 𝑚 𝜕 𝑦 𝑥, 𝑡𝜕𝑥 𝐹 𝑥, 𝑡 , (1)

𝑦 𝑥, 𝑡 𝐴 𝑡 Φ 𝑥 , (2)

where 𝐹 𝑥, 𝑡  is the moving load, y is the series of the vibration mode, 𝐸𝐼 is the flexural rigidity, 𝑚 is the mass, and 𝑦 𝑥, 𝑡  is the displacement of the forced vibration. 

 
Fig. 1. Constant force through a simple beam 

The forced vibration equation is obtained by substituting Eq. (2) into Eq. (1). After using the 
orthogonality of vibration mode, the decoupled forced vibration Eq. (3) is obtained: 

𝐴 𝑡 𝜔 𝐴 𝑡 𝐵 𝑡 , (3)

where: 

𝜔 𝐸𝐼 𝑑 Φ 𝑥𝑑𝑥 𝑑𝑥𝑚 Φ 𝑥 𝑑𝑥 ,        𝐵 𝑡 𝐹 𝑥, 𝑡 Φ 𝑥 𝑑𝑥𝑚 Φ 𝑥 𝑑𝑥 . 
In a simply supported beam, 𝜙 sin , for a constant force 𝐹 moving at a constant speed, 

and the generalized excitation force is given in Eq. (4): 

𝐵 𝑡 𝐹𝛿 𝑥 − 𝑣𝑡 Φ 𝑥 𝑑𝑥𝑚 Φ 𝑥 𝑑𝑥 2𝐹𝑚𝑙 sin𝑛𝜋𝑣𝑡𝑙 ,      𝑛 1,2,⋯ ,𝑁 , (4)

where 𝛿 𝜂  is the Dirac function, which is defined as:
 
𝛿 𝜂 1, 𝜂 0,0, 𝜂 0, so Eq. (4) can be 

written as Eq. (5): 𝐴 𝜔 𝐴 2𝐹𝑚𝑙 sin𝑛𝜋𝑣𝑡𝑙 ,      𝑛 1,2,⋯ ,𝑁 . (5)

When the initial condition is static, solve Eq. (5) and input the result into Eq. (5); the dynamic 
response expressions are given in Eq. (6): 
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𝑦 𝑥, 𝑡 = 2𝐹𝑚𝑙 1𝜔 − Ω sinΩ 𝑡 − Ω𝜔 sin𝜔 𝑡 sin𝑛𝜋𝑥𝑙 , (6)

where Ω =  is the generalized perturbation frequency of a moving constant force,  𝜔 = ( )  is the natural frequency of the prestressed box bridge, sinΩ 𝑡 in the brackets 

represents the forced vibration, and sin𝜔 𝑡 represents the free vibration [18]. 

2.2. Transformation of vehicle moving load 

The load in FEM is divided into boundary excitation and external forces, which include the 
structure self-gravity, the two-period constant load, the prestressing stress and the vehicle live 
load. For the lateral arrangement of the vehicle's live load, considering the contact area of the 
wheel and the bridge surface, the load of the wheel is applied to the unit of the living load position 
[19]. The bridge is designed as a dual-lane bridge. The specific parameters of the overloaded 
vehicle load are given in Table 1. 

Table 1. Specific parameters of the vehicle load 

Project Unit Numerical 
value Project Unit Numerical 

value 
Vehicle 
gravity kN 600 Distance between the wheels m 1.8 

Front axle 
gravity kN 40 Width and length of the front 

wheel landing m 0.3×0.2 

Axial gravity kN 2×120 Middle, rear wheel landing  
width and length m 0.6×0.2 

Rear axle 
Gravity kN 2×160 Vehicle dimensions  

(length and width) m 15×2.5 

Wheel base m 3+1.4+7+1.4    

For this bridge, to better simulate the process of a vehicle entering the beam to the tail leaving 
the bridge (Fig. 2), the vehicle can be simulated as a dynamic load. Dynamic loads can be divided 
into 65 load steps because the bridge has two-way lanes. Assuming two cars move at a certain 
speed relative to one another at the same time through the bridge, in the process of choosing which 
side of the lane uses FEM to analyze the dynamic response of the bridge, the mobile vehicle is 
simplified by a constant force moving at a constant speed. Thus, with the more accurate simulation 
of the vehicle driving conditions, according to an analysis of the good properties of the bridge, it 
is concluded that the structure is in line with the actual situation [20]. 

The vehicle load is distributed on the entire bridge structure according to the principle of 
equivalent uniform distribution. Each time forward can be regarded as the overall advance from 
the last unit to the next unit and is simplified according to the principle of constant moving 
constant force. The whole process of the operation is shown in Fig. 2 as the vehicle moves from 
the beginning of the bridge to the end. 

The dynamic coupling of the bridge over the overloaded vehicle is influenced by various 
factors, and the analysis is quite complicated. This paper only considers the influence of speed on 
the dynamic response of the bridge and selects a speed of 60 km/h and a speed limit of 90 km/h. 
In this section, with an overloaded vehicle moving at a speed of 60 km/h, the dynamic performance 
of the bridge is studied, and the dynamic response of the bridge before and after the reinforcement 
is determined. 
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Fig. 2. Constant force through the side lane of a simple beam 

3. Finite element analysis model 

3.1. Pre-reinforcement model 

According to the existing data, the superstructure of the main bridge has a single box with two 
sections, where the span arrangement is 25 m + 30 m + 30 m + 25 m and the lower structure 
consists of five 15-m-tall rectangular bridge piers. The box bridge is cast with 40-MPa concrete, 
and the pier adopts 30-MPa concrete pouring with a prestressed reinforcement strength value of 𝑓 = 1860 MPa. Through observation of the bridge, it is found that some of the concrete cracked 
because of the long period of service and traffic due to an overload of vehicles; this cracking 
affects the continuous use of the bridge, with the bridge being in urgent need of reinforcement 
repair. 

To ensure the accuracy of the numerical calculation of the whole bridge reinforced by CFRP, 
in this paper, FEM is used to establish the reinforced bridge model and the normal reinforcement 
in the box bridge; moreover, the overall layout simulation is applied uniformly in the unit, and the 
pier can reflect the actual reinforcement situation. The concrete unit uses the Solid65 unit, the 
prestressed reinforcement uses the Link8 space unit, and the carbon fiber cloth thickness is very 
small. Therefore, the model must use the anti-curved ability unit, and the carbon fiber cloth is 
simulated by shell unit Shell41. In this paper, the solid model element uses the regular hexahedral 
form. The box bridges are simplified as a whole; the former box bridge after meshing is shown in 
Fig. 3. Using the link unit to simulate prestressed reinforcement, the cooling method is used in 
this paper to apply the prestressed reinforcement; the prestressed reinforcement arrangement is 
shown in Fig. 4. 

 
Fig. 3. Box bridge model before reinforcement 

 
Fig. 4. Prestressed reinforcement arrangement 

3.2. Post-tensioned reinforcement model 

The carbon fiber was prestressed by post-tensioning and then anchored to the bottom of the 
box bridge. The prestressed carbon fiber cloth was anchored with a height of 2.5 m from the 
bottom of the pier. The carbon fiber cloth parameters are shown in Table 2. 
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Table 2. Parameters of the carbon fiber cloth 
Carbon fiber cloth per 

unit weight /(g/m2) 
Design 

thickness /mm 
Tensile 

strength /MPa 
Modulus of 

elasticity /MPa 
Width 
/mm 

Spacing 
/mm 

300 0.167 3400 2.45 150 200 

Carbon fiber cloth uses the post-tensioned prestressing method because the cooling simulation 
in the process of tensioning structure will have a corresponding change; thus, a cooling simulation 
process does not well simulate the actual effect of the post-tensioning method, and the cooling 
iteration method must be used. In the post-tensioning process, the slip and anchor deformation 
between the CFRP and the anchor causes the prestress loss. According to the existing test and 
theoretical calculation results, the prestress loss takes up 15 % of the initial prestress; the 
arrangement of the CFRP is shown in Fig. 5. 

 
Fig. 5. Arrangement of the prestressed CFRP 

4. Dynamic response of the vehicle-bridge coupling system 

4.1. Dynamic response of the overloaded 60-km/h vehicle-bridge coupling system 

4.1.1. Coupling dynamic response of the box bridge before reinforcement 

(1) The side span. 
Considering one overload vehicle speed of 60 km/h, based on the FEM calculation, the 

displacement time-history curves of the wing plate on the top section across the 1/4, 1/2, and 3/4 
sections of the bridge are obtained. The curve of vertical displacement change for each section 
over time is shown in Fig. 6. 
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Fig. 6. Vertical displacement time-history curves at the side spans 

According to Fig. 6, under moving load, the vertical displacement at the 1/4 section on the side 
span first comes to a peak, with subsequent peaks occurring in a sequence. The vertical 
displacement peak of the cross section reaches a maximum peak of 0.030 m and then gradually 
decreases before finally ending near 7 s, which indicates that the vehicle leaves the bridge at 
approximately 7 s. The peak of the vertical displacement in the 1/4 section is 0.023 m, and the 
vertical displacement peak of the 3/4 section is 0.026 m; thus, the vertical displacement of each 
section is stable at 0-0.003 m and finally ends. 

The acceleration time-history curves for the 1/4, 1/2, and 3/4 sections are shown in Fig. 7. 
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Fig. 7. Vertical acceleration time-history curves at the side span 

Fig. 7 shows that under the effect of vehicle moving load, the peak vertical acceleration at the 
1/4 side span section reaches 4.3 m/s2 at approximately 2 s, the peak vertical acceleration at the 
1/2 section reaches 3.5 m/s2 at approximately 1 s, and the peak vertical acceleration of 4 m/s2 at 
the 3/4 section appears at approximately 1 s. The results show that, under moving load, the peak 
acceleration is smaller and closer to the cross section. 

(2) The middle span. 
Considering that the overload vehicle is moving at a speed of 60 km/h, based on the FEM 

calculation, the displacement time-history curves of the wing plate on the top section across the 
bridge at the 1/4, 1/2 and 3/4 sections are determined. The vertical displacement curve of each 
section across the bridge as the vehicle moves across with the change in time is shown in Fig. 8. 
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Fig. 8. Vertical displacement time-history curves at the middle span 

According to Fig. 8, under the moving load, the vertical displacement of the 1/4 section on the 
middle span first reaches a peak, and then subsequent peaks occur in sequence. The vertical 
displacement peak of the cross section reaches a maximum peak of 0.037 m and then gradually 
decreases towards both ends. The peak of the vertical displacement in the 1/4 section is 0.031 m, 
and the vertical displacement peak of the 3/4 section is 0.028 m. After the vertical displacement 
of each section reaches a peak, the trend shows large fluctuation, and the maximum vertical 
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displacement reaches 0.010 m. 
The acceleration time-history curves at the 1/4, 1/2, and 3/4 cross sections of the middle span 

are shown in Fig. 9. 
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Fig. 9. Vertical acceleration time-history curves at the middle span 

Fig. 9 shows that under the effect of vehicle moving load, the vertical acceleration of the cross 
section reaches a peak: the peak vertical acceleration at the 1/4 section reaches 4.0 m/s2 at 
approximately 2 s, the peak vertical acceleration at the 1/2 section reaches 2.3 m/s2 at 
approximately 2.5 s, and the peak vertical acceleration at the 3/4 section reaches 2.6 m/s2 at 
approximately 3 s. In addition, the trends of the vertical acceleration time-history curves at the 1/4, 
1/2 and 3/4 sections are approximately the same. 

4.1.2. Coupling dynamic response of the post-tensioning box bridge after reinforcement  

(1) The side span. 
After reinforcement using the post-tensioning method, considering the overload vehicle 

moving at a speed of 60 km/h, based on the FEM calculation, the displacement time-history curves 
of the wing plate on the top section across the bridge of the 1/4, 1/2, and 3/4 sections are 
determined. The curve of vertical displacement change for each section over time is shown in 
Fig. 10. 
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Fig. 10. Vertical displacement time-history curves at the side span 
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According to Fig. 10, under a moving load, the vertical displacement at the 1/4 section on the 
side span first reaches a peak, and then the subsequent peaks occur in sequence. The vertical 
displacement peak of the cross section reaches a maximum peak of 0.017 m. The peak of the 
vertical displacement in the 1/4 section is 0.012 m, and the vertical displacement peak of the 3/4 
section is 0.014 m.  

The acceleration time-history curves at the cross sections of 1/4, 1/2, and 3/4 are shown in 
Fig. 11. 
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Fig. 11. Vertical acceleration time-history curves at the middle span 

Fig. 11 shows that under the effect of a vehicle moving load, the peak vertical acceleration at 
the 1/4 section reaches 2.2 m/s2 at approximately 2 s, the peak vertical acceleration at the 1/2 
section reaches 2.0 m/s2 at approximately 1 s, and the peak vertical acceleration at the 3/4 section 
reaches 2.3 m/s2 at approximately 1 s.  

(2) The middle span. 
After reinforcement using the post-tensioning method, considering the overload vehicle 

moving at a speed of 60 km/h, based on the FEM calculation, the displacement time-history curves 
of the wing plate on the top section cross the bridge at the 1/4, 1/2, and 3/4 sections are determined. 
The vertical displacement curve of each section across the bridge when the vehicle moves across 
with the change in time is shown in Fig. 12. 
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Fig. 12. Vertical displacement time-history curves at the middle span 



VEHICLE-BRIDGE COUPLING DYNAMIC RESPONSE OF A BOX BRIDGE AFTER REINFORCEMENT WITH PRESTRESSED CFRP.  
XUANSHENG CHENG, XIANGDONG CAI, BO LIU, WENTING ZHANG 

1724 JOURNAL OF VIBROENGINEERING. NOVEMBER 2020, VOLUME 22, ISSUE 7  

Fig. 12 shows that under a moving load, the vertical displacement at the 1/4 section on the side 
span first reaches a peak, and then the subsequent peaks arrive in sequence. The vertical 
displacement peak of the cross section reaches a maximum peak of 0.023 m. The peak of the 
vertical displacement in the 1/4 section is 0.017 m, the vertical displacement peak of the 3/4 
section is 0.015 m, and the vertical displacement of each section is stable at 0-0.002 m. 

The acceleration time-history curves at the 1/4, 1/2, and 3/4 cross sections of the middle span 
are shown in Fig. 13. 
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Fig. 13. Vertical acceleration time-history curves at the middle span 

Fig. 13 shows that under the effect of a vehicle moving load, the vertical acceleration of the 
cross section reaches a peak: the peak vertical acceleration at the 1/4 section reaches 2.0 m/s2 at 
approximately 2 s, the peak vertical acceleration at the 1/2 section reaches 1.3 m/s2 at 
approximately 2.5 s, and the peak vertical acceleration at the 3/4 section reaches 1.4 m/s2 at 
approximately 3 s. 

4.2. Dynamic response of the overload 90-km/h vehicle-bridge coupling system 

4.2.1. Coupled dynamic response of the box bridge before reinforcement 

(1) The side span. 
Considering the overload vehicle at a speed of 90 km/h, based on the FEM calculation, the 

displacement time-history curves of the wing plate on the top section across the bridge of the 1/4, 
1/2, and 3/4 sections are obtained. The curve of the vertical displacement change of each section 
over time is shown in Fig. 14. 

According to Fig. 14, under a moving load, the vertical displacement peak of the cross section 
reaches a maximum peak of 0.030 m and then gradually decreases forwards both ends. The peak 
of the vertical displacement in the 1/4 section is 0.023 m, the vertical displacement peak of the 3/4 
section is 0.027 m, and the vertical displacement of each section is stable at 0-0.002 m. 
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Fig. 14. Vertical displacement time-history curves at the middle span 

The acceleration time-history curves at the 1/4, 1/2, and 3/4 sections are shown in Fig. 15. 
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Fig. 15. Vertical acceleration time-history curves at the middle span 

Fig. 15 shows that under the effect of a vehicle moving load, the peak vertical acceleration at 
the 1/4 section reaches 9.5 m/s2 at approximately 0.5 s, the peak vertical acceleration at the 1/2 
section reaches 7 m/s2 at approximately 0.5 s, and the peak vertical acceleration at the 3/4 section 
reaches 9 m/s2 at approximately 1 s. 

(2) The middle span. 
Considering the overload vehicle at a speed of 90 km/h, based on the FEM calculation, the 

displacement time-history curves of the wing plate on the top section across the bridge at the 1/4, 
1/2, and 3/4 sections are obtained. The vertical displacement curve of each section across the 
bridge when the vehicle moves across with the change in time is shown in Fig. 16. 

Fig. 16 shows that under a moving load, the vertical displacement peak of the cross section 
reaches the maximum peak of 0.037 m and gradually decreases forwards at both ends. The peak 
of the vertical displacement in the 1/4 section is 0.032 m, and the vertical displacement peak of 
the 3/4 section is 0.027 m. 

The acceleration time-history curves at the 1/4, 1/2, and 3/4 cross sections of the middle span 
are shown in Fig. 17. 
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Fig. 16. Vertical displacement time-history curves at the middle span 
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Fig. 17. Vertical acceleration time-history curves at the middle span 

Fig. 17 shows that under the effect of a vehicle moving load, the peak vertical acceleration at 
the 1/4 section reaches 6.2 m/s2 at approximately 1.5 s, the peak vertical acceleration at the 1/2 
section reaches 6.5 m/s2 at approximately 2 s, and the peak vertical acceleration at the 3/4 section 
reaches 6.8 m/s2 at approximately 2 s. 

4.2.2. Coupling dynamic response of the post-tensioning box bridge after reinforcement  

(1) The side span. 
After the reinforcement of the post-tensioning method and the overloading of vehicles at a 

speed of 90 km/h and based on the FEM calculation, the curves of the side span at the 1/4, 1/2, 
and 3/4 sections on the top section of the wing plate displacement are obtained; the curve of each 
section in the vehicle bridge vertical displacement variation with time is shown in Fig. 18. 

Fig. 18 shows that under a vehicle moving load, the vertical displacement peak at the cross 
section reaches 0.017 m and gradually decreases to both ends, where the vertical displacement of 
the 1/4 section is 0.013 m, and the peak vertical displacement of the 3/4 section is 0.015 m. 
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Fig. 18. Vertical displacement time-history curves at the side span 

The acceleration time-history curves at the cross sections of 1/4, 1/2, and 3/4 are shown in 
Fig. 19. 
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Fig. 19. Vertical acceleration time-history curves at the side span 

Fig. 19 shows that under the effect of a vehicle moving load, the peak vertical acceleration of 
the cross section at the edge of the 1/4 section reaches 5 m/s2 at approximately 0.5 s, the peak 
vertical acceleration at the 1/2 section reaches 3.6 m/s2 at approximately 0.5 s, and the vertical 
acceleration peak reaches 4.2 m/s2 at the 3/4 section at approximately 1 s. 

(2) The middle span. 
After the reinforcement of the post-tensioning method, according to the FEM curves of the 1/4, 

1/2, and 3/4 sections, at the cross section of the top wing plate displacement, the vertical sections 
in the vehicle bridge displacement time curves are calculated, as shown in Fig. 20. 

According to Fig. 20, under the moving vehicle load, the mid-span cross section vertical 
displacement peak value is achieved at 0.022 m and gradually decreases to both sides; in the 1/4 
section, the vertical displacement peak value is 0.017 m, and in the 3/4 section, the vertical 
displacement peak value is 0.015 m. 
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Fig. 20. Vertical displacement time-history curves at the middle span 

The acceleration time history curves at the 1/4, 1/2, and 3/4 cross sections of the middle span 
are selected, as shown in Fig. 21. 
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Fig. 21. Vertical acceleration time-history curves at the middle span 

Fig. 21. shows that, under the effect of a vehicle moving load, the peak vertical acceleration is 
2.9 m/s2 in the 1/4 cross section at approximately 1.5 s, the peak vertical acceleration of the 1/2 
section is 3.1 m/s2 at approximately 2 s, and the vertical acceleration peak value appeared in the 
3/4 section is 3.5 m/s2 at approximately 2 s. 

5. Conclusions 

With the increase in vehicle speed, the vertical displacement of the bridge has almost no 
change, but the increase in the peak value of vertical acceleration is obvious, which results in a 
faster arrival of the vertical displacement and the vertical acceleration peak value and also causes 
the amplitude of the vertical acceleration of the bridge to increase greatly. Through comparative 
analysis, it is found that the vertical acceleration increase in the side span is significantly larger 
than that in the middle span. 

Through the comparative analysis of the dynamic response of a bridge under the same moving 
load before and after reinforcement, it is found that the post-tensioned CFRP reinforcement 
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method can effectively reduce the vertical displacement and acceleration of the bridge, but the 
vertical displacement increment of the post-tensioned CFRP reinforcement method is almost the 
same with different vehicle speeds, and the vertical acceleration increment of the bridge decreases 
with speed. The increase shows that the post-tensioned prestressed CFRP reinforcement has some 
shortcomings in reducing the vertical displacement of the bridge. 

From the point of view of the amplitude of the acceleration time history analysis curves, with 
the increase in velocity, the amplitude increment of vertical acceleration of the middle span is 
significantly smaller than that of the side span. With the increase in speed, the effect of the 
post-tensioned method is better. 

As the carbon fiber cloth is exposed to the outside for a long time, it is easy to be damaged, 
but this paper does not mention the treatment of carbon fiber cloth fire-proof and anti-corrosion, 
so it is necessary to further study the fire-proof and anti-corrosion of carbon fiber cloth. At the 
same time, the effect of the number and spacing of CFRP sheets on post-tensioned reinforcement 
is not considered in this reinforcement project, which also needs to be studied. 
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