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Abstract. The aim of this study is to investigate free vibration characteristics of arch-frames 
which consist of two columns and an arch. Firstly, an exact formulation of the problem is presented 
using the Dynamic Stiffness Method (DSM). The end forces and displacements of column 
elements are obtained analytically using Timoshenko beam theory (TBT). These are then 
combined with the end forces and displacements of the semi-circular arch, which is modeled with 
exact curved beam elements that consider axial and shear deformations and rotational inertia. By 
employing standard assembly and bisection based root finding procedures, exact free vibration 
analysis of the whole vibrating system is carried out. Then, in an effort to simplify the 
formulations, an approach based on approximating the arch as assembly of linear straight beam 
segments is presented. The calculated natural frequencies using DSM for both exact and 
approximate results are then tabulated for comparison purposes. The mode shapes are also 
compared. The results show that the proposed model simplification is effective and produces 
accurate mode frequency and shape estimations. 
Keywords: arch, dynamic stiffness method, frame, free vibration, Timoshenko beam theory. 

1. Introduction 

The dynamic behaviour of arch-frames is of direct relevance for structural bridge engineering 
applications. Natural vibration frequencies and mode shapes of these structures govern their 
response to dynamic excitations (due to moving traffic loads, wind and earthquakes). In the 
literature, studies concerning vibrations of curved beams are limited when compared to literature 
on dynamic behaviour of straight beams. The simplest curved beam formulations [1-3] ignore 
shear deformations, rotational inertia and axial extensibility of the curved beam. However, these 
assumptions result in an overestimation of natural frequencies. A limited number of analytical 
studies consider the aforementioned aspects [4-7]. More specifically, these studies carry out free 
vibration analysis of circular beams having various boundary conditions using the DSM 
[4, 6, 8, 9]. 

This study derives exact and simplified DSM formulation of a single-span semi-circular 
arch-frame in Section 2. This is achieved by modeling columns as Timoshenko beams and 
modeling the arch as a curved beam considering axial and shear deformations and rotational 
inertia. To simplify this complex formulation, an approximate approach is then proposed, where 
the arch is modelled with equal length straight Timoshenko beam segments. The adequacy of this 
simplified model is then evaluated by comparing mode frequencies and shapes from this model to 
the exact model in Sections 2 and 3. The results are evaluated in Section 4. The main novelty of 
this study is based on combining the dynamic stiffness approach and segmentation of the arch into 
straight Timoshenko beam segments for free vibration analysis of arch-frames. 

2. Model and formulations 

The arch-frame having 4 joints where each joint has horizontal displacement, vertical 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2020.21291&domain=pdf&date_stamp=2020-04-02


FREE VIBRATION ANALYSIS OF ARCH-FRAMES USING THE DYNAMIC STIFFNESS APPROACH.  
BARAN BOZYIGIT, YUSUF YESILCE, SINAN ACIKGOZ 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 73 

displacement and rotation presented in Fig. 1 is considered where 𝐿  is the span length, 𝑋 and 𝑌 
are global coordinate axes, 𝐻  and 𝐻  are height of the arch and height of the columns, 
respectively, 𝑏  and ℎ  are the rectangular cross-sectional dimensions of the arch, 𝑏  and ℎ  are 
the rectangular cross-sectional dimensions of the columns. The following assumptions are made: 
i) The behaviour of frame members is linear elastic, ii) the material of frame members is isotropic, 
iii) the cross-sections of frame members are uniform, and iv) the effects of damping are neglected. 

 
Fig. 1. The arch-frame model consisting of two fixed supported columns and a curved beam 

In the following, only the equations of motion of the curved beam are presented. Straight 
Timoshenko beam formulations used here (which will be used later to describe the columns and 
arch segments) can be found in the literature [10]. The equation of motion of a curved beam 
considering axial and shear deformation and rotational inertia is written as follows [6]: 𝐴𝐸𝑅 ∂ 𝑢 𝜃, 𝑡∂𝜃 − 𝐴𝐺𝑘𝑅 𝑢 𝜃, 𝑡 𝐴𝐸𝑅 𝐴𝐺𝑘𝑅 ∂𝑦 𝜃, 𝑡∂𝜃 − 𝐴𝐺𝑘 𝜓 𝜃, 𝑡 𝜌𝐴𝑅 ∂ 𝑢 𝜃, 𝑡∂𝑡 ,𝐴𝐺𝑘𝑅 ∂ 𝑦 𝜃, 𝑡∂𝜃 − 𝐴𝐸𝑅 𝑦 𝜃, 𝑡 − 𝐴𝐸𝑅 𝐴𝐺𝑘𝑅 ∂𝑢 𝜃, 𝑡∂𝜃 − 𝐴𝐺𝑘 ∂𝜓 𝜃, 𝑡∂𝜃 𝜌𝐴𝑅 ∂ 𝑦 𝜃, 𝑡∂𝑡 ,𝐸𝐼𝑅 ∂ 𝜓 𝜃, 𝑡∂𝜃 𝐴𝐺𝑘𝑅 ∂𝑦 𝜃, 𝑡∂𝜃 − 𝐴𝐺𝑘𝑅 𝑢 𝜃, 𝑡 − 𝐴𝐺𝑘 𝜓 𝜃, 𝑡 𝜌𝐼 ∂ 𝜓 𝜃, 𝑡∂𝑡 ,  (1)

where 𝐴 is cross-sectional area, 𝐸 is modulus of elasticity, 𝑅 is radius of curvature (equal to 𝐿 2⁄  
for the semi-circular arches considered in this study), 𝑘 is shear correction factor (which equals 
1.2 for rectangular cross-sections), 𝐺  is shear modulus, 𝜌  is density, 𝐼  is relevant moment of 
inertia, 𝑦 𝜃, 𝑡  is radial displacement function, 𝑢 𝜃, 𝑡  is tangential displacement function, 𝜓 𝜃, 𝑡  is cross-section rotation due to bending, 𝜃  and 𝑡  are angular coordinate and time, 
respectively. Eq. (1) can be arranged as: 

𝑎 ∂ 𝑢 𝜉, 𝑡∂𝜉 − 𝑏𝑢 𝜉, 𝑡 𝑐 ∂𝑦 𝜉, 𝑡∂𝜉 − 𝑑𝜓 𝜉, 𝑡 − Γ∂ 𝑢 𝜉, 𝑡∂𝑡 0,𝑓 ∂ 𝑦 𝜉, 𝑡∂𝜉 − 𝑔𝑦 𝜉, 𝑡 − 𝑐 ∂𝑢 𝜉, 𝑡∂𝜉 − ℎ ∂𝜓 𝜉, 𝑡∂𝜉 − Γ∂ 𝑦 𝜉, 𝑡∂𝑡 0,𝑝 ∂ 𝜓 𝜉, 𝑡∂𝜉 𝑟 ∂𝑦 𝜉, 𝑡∂𝜉 − 𝑏𝑢 𝜉, 𝑡 − 𝑑𝜓 𝜉, 𝑡 − 𝑧 ∂ 𝜓 𝜉, 𝑡∂𝑡 0,
 (2)

where 𝜉 𝜃 Φ⁄ , Φ is total angle of embrace of the arch (equal to 𝜋 for a semi-circular arch), and: 
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𝑎 = 𝐴𝐸𝑅𝑅Φ ,     𝑏 = 𝐴𝐺𝑘𝑅 ,       𝑐 = 𝐴𝐸𝑅Φ + 𝐴𝐺𝑘𝑅Φ ,      𝑑 = 𝐴𝐺𝑘 ,   Γ = 𝜌𝐴𝑅,   𝑓 = 𝐴𝐺𝑅𝑘 𝑅Φ , 𝑔 = 𝐴𝐸𝑅 ,      ℎ = 𝐴𝐺𝑅𝑘𝑅Φ ,      𝑝 = 𝐸𝐼𝑅Φ ,      𝑟 = 𝐴𝐺𝑘𝑅Φ ,      𝑧 = 𝜌𝐼. 
The system has a harmonic solution. Therefore, Eq. (2) can be re-arranged by using  𝑢 𝜉, 𝑡 = 𝑢 𝜉 𝑒 , 𝑦 𝜉, 𝑡 = 𝑦 𝜉 𝑒  and 𝜓 𝜉, 𝑡 = 𝜓 𝜉 𝑒  as: 

𝑎 𝑑 𝑢𝑑𝜉 − 𝑏𝑢 𝜉 + 𝑐 𝑑𝑦𝑑𝜉 − 𝑑𝜓 𝜉 + 𝛽𝑢 𝜉 = 0,𝑓 𝑑 𝑦𝑑𝜉 − 𝑔𝑦 𝜉 − 𝑐 𝑑𝑢𝑑𝜉 − ℎ 𝑑𝜓𝑑𝜉 + 𝛽𝑦 𝜉 = 0,𝑝 𝑑 𝜓𝑑𝜉 + 𝑟 𝑑𝑦𝑑𝜉 − 𝑏𝑢 𝜉 − 𝑑𝜓 𝜉 + 𝛾𝜓 𝜉 = 0,
 (3)

where 𝛽 = Γ𝜔 , 𝛾 = 𝑧𝜔  and 𝜔 is natural circular frequency. After achieving the solution of 
coupled Eq. (3) by usual manner, 𝑦 𝜉 , 𝑢 𝜉  and 𝜓 𝜉  can be obtained. The axial force 𝑁 𝜉 , 
shear force 𝑄 𝜉  and bending moment 𝑀 𝜉  with 𝑦 𝜉 , 𝑢 𝜉  and 𝜓 𝜉  functions are presented in 
Table 1, where 𝑐  are unknown constants, 𝑠  are characteristic roots obtained from solution of 
sixth order coupled Eq. (3) and: 

𝜆𝑗 = 𝛽 − 𝑓𝑠𝑗2 − 𝑔 − ℎ𝑟𝑠𝑗2𝛾 − 𝑝𝑠𝑗2 − 𝑑𝑐𝑖𝑠 + ℎ𝑖𝑏𝑠𝑗𝛾 − 𝑝𝑠𝑗2 − 𝑑 , 
𝜇𝑗 = 𝑏 𝛽 − 𝑓𝑠𝑗2 − 𝑔 − ℎ𝑟𝑠𝑗2𝛾 − 𝑝𝑠𝑗2 − 𝑑𝑐𝑖𝑠 + ℎ𝑖𝑏𝑠𝑗𝛾 − 𝑝𝑠𝑗2 − 𝑑 𝛾 − 𝑝𝑠𝑗2 − 𝑑 − 𝑟𝑖𝑠𝑗𝛾 − 𝑝𝑠𝑗2 − 𝑑. 

Table 1. Symbolic definitions of displacement and force functions 𝑦 𝜉 = 𝑒 𝑐̅  𝑢 𝜉 = 𝜆 𝑒 𝑐̅  𝜓 𝜉 = 𝜇 𝑒 𝑐̅  𝑁 𝜉  = 𝐴𝐸𝑅 𝑖𝑠 𝜆 + 1 𝑒 𝑐̅  𝑄 𝜉  = 𝑟𝑖𝑠 − 𝑑𝜇 − 𝑏𝜆 𝑒 𝑐̅  𝑀 𝜉  = 𝐸𝐼𝑅Φ 𝑖𝑠 𝜇 𝑒 𝑐̅  
3. Application of DSM 

The dynamic stiffness matrix of the arch is constructed by using analytically obtained end 
forces and displacements. The local end displacement vector of the arch and the coefficient vector 
can be written as Eqs. (4-5), respectively: 𝛿 = 𝑢 𝑦 𝜓 𝑢 𝑦 𝜓 , (4)𝑐̅ = 𝑐̅ 𝑐̅ 𝑐̅ 𝑐̅ 𝑐̅ 𝑐̅ , (5)

where 𝑢 = 𝑢 𝜉 = 0 ,  𝑦 = 𝑦 𝜉 = 0 ,  𝜓 = 𝜓 𝜉 = 0 ,  𝑢 = 𝑢 𝜉 = 1 ,  𝑦 = 𝑦 𝜉 = 1 ,  𝜓 = 𝜓 𝜉 = 1 . 
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The end force vector of the arch (𝐹) is given in Eq. (6) as: 𝐹 = 𝑁 𝑄 𝑀 𝑁 𝑄 𝑀 , (6)

where 𝑁 = 𝑁 𝜉 = 0 ,  𝑄 = 𝑄 𝜉 = 0 ,  𝑀 = 𝑀 𝜉 = 0 ,  𝑁 = 𝑁 𝜉 = 1 ,  𝑄 = 𝑄 𝜉 = 1 , 𝑀 = 𝑀 𝜉 = 1 . 
The sign convention in Eq. (7) is valid for end force relations: 𝑁 = −𝑁 ,     𝑄 = −𝑄 ,     𝑀 = 𝑀 . (7)

The relations of 𝛿 = Δ𝑐̅ and 𝐹 = 𝜅𝑐̅ are obtained by using Eqs. (4-7) and Table 1 where Δ and 𝜅 represent coefficient matrices constructed using Eqs. (4) and (6), respectively. 
The dynamic stiffness matrix of curved beam is obtained using the relation between 𝛿 and 𝐹 

as: 𝐹 = 𝜅 Δ 𝛿, 𝐾∗ = 𝜅 Δ , where 𝐾∗ represents local dynamic stiffness matrix the curved 
beam. The global dynamic stiffness matrix of the curved beam is obtained by using the angular 
transformation matrix. The angular transformation matrix and global dynamic stiffness matrix of 
the arch are given in Eqs. (8-9), respectively: 

𝐴𝑇𝑀 =
⎣⎢⎢
⎢⎢⎡ cos 𝛼 sin 𝛼 0 0 0 0−sin 𝛼 cos 𝛼 0 0 0 00 0 1 0 0 00 0 0 cos 𝛼 −sin 𝛼 00 0 0 sin 𝛼 cos 𝛼 00 0 0 0 0 1⎦⎥⎥

⎥⎥⎤, (8)

𝐾∗ = 𝐴𝑇𝑀 𝐾∗ 𝐴𝑇𝑀 , (9)

where 𝛼 represents the angle between local axes at the ends of arch and global axes of the frame 
structure. 

The same procedure is repeated for straight Timoshenko element frame members. The global 
dynamic stiffness matrix of the arch-frame structure is constructed by assembling these matrices. 
The natural frequencies are then obtained by equating the determinant of the global dynamic 
stiffness matrix of the arch-frame structure to zero. A root finding algorithm (based on an iterative 
bisection approach) is used for obtaining natural frequencies. The mode shapes can then be 
calculated and plotted. 

4. Numerical analysis and discussions 

The following geometric and material properties are considered: 𝐿 =  8 m, 𝐻 =  4 m,  𝐻 = 4 m, embrace angle of the arch = 180°, radius of curvature of the arch = 4 m, unit weight of 
frame members: 2500 kg/m3, modulus of elasticity of frame members: 3×107 kN/m2, Poisson’s 
ratio of frame members = 0.3, 𝑏 = 1.00 m, ℎ = 0.50 m, 𝑏 = 1.00 m. 

In the first part of numerical case study, the free vibration analysis of the arch-frame model is 
performed using exact curved beam formulations. The first five exact natural frequencies of the 
arch-frame are presented in Table 2 for various arch cross-sections. According to Table 2, an 
augmentation of arch thickness increases all natural frequencies. Fig. 2 which is plotted using the 
data in Table 2, represents the natural frequency increment by taking ℎ =  0.40 m and  ℎ = 0.50 m, respectively. It can be observed that the first vibration mode frequency, which is 
dominated by column sway, is not affected significantly by changes in arch cross-section. 
However, as shown in Fig. 2, thicker arches have increased natural frequencies (up to 40 %) for 
2nd to 5th modes. 

The same arch is also described with a simpler model, where it is divided into equal length 
straight Timoshenko beams. Three different segmentations are considered. The lengths of straight 
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beam segments are 2.4721 m, 1.2515 m and 0.8362 m for 𝑛 = 5, 𝑛 = 10, and 𝑛 = 15, respectively. 
It should be noted that the local degrees of freedom of the straight segments need to be rotated to 
global degrees of freedom during assembly (see Eq. (8)). The values of transformation angles are 
different for 𝑛 = 5, 𝑛 = 10, and 𝑛 = 15 but these values are not presented to improve the clarity 
of paper. The first five natural frequencies of the arch-frame using the segmented curved beam 
approach can be observed from Table 3 for ℎ = 0.30 m, ℎ = 0.40 m and ℎ = 0.50 m. Table 3 
shows that proposed approach converges fast. The relative errors between exactly calculated 
natural frequencies and the results those obtained from 15 segmented arch model are presented in 
Table 4. 

Table 2. First five exact natural frequencies of arch-frame model 
Mode 1st  2nd 3rd 4th 5th  ℎ = 0.30 (m) 35.3824 79.5071 146.1644 229.4268 327.6091 ℎ = 0.40 (m) 35.7264 94.3525 179.1044 274.9525 380.7456 ℎ = 0.50 (m) 36.9646 107.7696 204.2849 308.1668 425.1134 

 
Fig. 2. Increment of natural frequencies taking ℎ = 0.40 m and ℎ = 0.50 m 

According to Table 4, the maximum relative error of proposed approach taking 𝑛 = 15 is 
0.65 %. The segmented arch model can also be effectively used to plot mode shapes. The 
schematic representation of segmented arch where 𝑛 is total segment number and the first five 
mode shapes of the arch-frame model using 𝑛 = 15 are presented in Fig. 3. These are near-
identical to exact results (not shown for clarity). 

Table 3. First five natural frequencies obtained by segmentation approach (rads-1) ℎ  (m) Mode 1st  2nd 3rd 4th 5th  

0.3 

𝑛 = 5 36.6765 83.2312 151.4298 235.7451 335.5829 𝑛 = 10 35.7016 80.4054 147.4979 231.3296 330.9019 𝑛 = 15 35.5258 79.9083 146.7663 230.2983 329.1135 
Exact 35.3824 79.5071 146.1644 229.4268 327.6091 

0.4 

𝑛 = 5 37.1930 98.5466 184.4356 282.5921 395.9358 𝑛 = 10 36.0844 95.3759 180.4978 277.2384 385.2963 𝑛 = 15 35.8866 94.8105 179.7369 275.9985 382.8086 
Exact 35.7264 94.3525 179.1044 274.9525 380.7456 

0.5 

𝑛 = 5 38.5939 111.8972 209.1147 318.0469 447.5858 𝑛 = 10 37.3619 108.7902 205.5938 311.0617 431.1867 𝑛 = 15 37.1421 108.2281 204.8830 309.4885 427.8523 
Exact 36.9646 107.7696 204.2849 308.1668 425.1134 

Table 4. Relative errors between 15 segmented arch model and exact results (%)  ℎ  (m) 1st mode 2nd mode 3rd mode  4th mode  5th mode 
0.30 0.41 0.50 0.41 0.38 0.46 
0.40 0.55 0.60 0.42 0.45 0.65 
0.50 0.48 0.43 0.29 0.43 0.64 
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a) 

 
b) 

Fig. 3. a) Schematic representation of segmented arch where 𝑛 is total segment number, b) first five mode 
shapes of arch-frame plotted using 15 segmented arch model (ℎ = 0.50 m) 

5. Conclusions 

Exact natural frequencies of an arch-frame structure having straight columns and a curved 
beam (considering axial and shear deformations and rotary inertia effects) are obtained. Standard 
DSM approaches are used for this purpose. In order to simplify the formulations, an approximate 
model based on segmenting the arch into straight Timoshenko beams is then considered. The free 
vibration analysis of both approximate and exact systems demonstrated that segmenting the arch 
with linear elastic elements is effective; with only a few straight segments, natural frequency and 
vibration mode shapes of the curved arch are accurately estimated.  

Although the formulations of exact curved beams are complicated, the exact free vibration 
results can only be obtained using these formulations. Another advantage of using the exact end 
forces and displacements of the curved beam is the small size of global dynamic stiffness matrix 
of whole vibrating system. In contrast, while straight beam formulations are simple, segmenting 
the arch into straight beams increases the size of the global dynamic stiffness matrix of the system. 
This increases the computation time for the root finding algorithm. While this increase in 
computation time may be prohibitive for very large and complex systems, this is unlikely to be a 
problem for determining single and multi-span arch frames encountered in engineering 
applications.  
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