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Abstract. The aim of this study is to investigate free vibration characteristics of arch-frames
which consist of two columns and an arch. Firstly, an exact formulation of the problem is presented
using the Dynamic Stiffness Method (DSM). The end forces and displacements of column
elements are obtained analytically using Timoshenko beam theory (TBT). These are then
combined with the end forces and displacements of the semi-circular arch, which is modeled with
exact curved beam elements that consider axial and shear deformations and rotational inertia. By
employing standard assembly and bisection based root finding procedures, exact free vibration
analysis of the whole vibrating system is carried out. Then, in an effort to simplify the
formulations, an approach based on approximating the arch as assembly of linear straight beam
segments is presented. The calculated natural frequencies using DSM for both exact and
approximate results are then tabulated for comparison purposes. The mode shapes are also
compared. The results show that the proposed model simplification is effective and produces
accurate mode frequency and shape estimations.
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1. Introduction

The dynamic behaviour of arch-frames is of direct relevance for structural bridge engineering
applications. Natural vibration frequencies and mode shapes of these structures govern their
response to dynamic excitations (due to moving traffic loads, wind and earthquakes). In the
literature, studies concerning vibrations of curved beams are limited when compared to literature
on dynamic behaviour of straight beams. The simplest curved beam formulations [1-3] ignore
shear deformations, rotational inertia and axial extensibility of the curved beam. However, these
assumptions result in an overestimation of natural frequencies. A limited number of analytical
studies consider the aforementioned aspects [4-7]. More specifically, these studies carry out free
vibration analysis of circular beams having various boundary conditions using the DSM
[4,6,8,9].

This study derives exact and simplified DSM formulation of a single-span semi-circular
arch-frame in Section 2. This is achieved by modeling columns as Timoshenko beams and
modeling the arch as a curved beam considering axial and shear deformations and rotational
inertia. To simplify this complex formulation, an approximate approach is then proposed, where
the arch is modelled with equal length straight Timoshenko beam segments. The adequacy of this
simplified model is then evaluated by comparing mode frequencies and shapes from this model to
the exact model in Sections 2 and 3. The results are evaluated in Section 4. The main novelty of
this study is based on combining the dynamic stiffness approach and segmentation of the arch into
straight Timoshenko beam segments for free vibration analysis of arch-frames.

2. Model and formulations
The arch-frame having 4 joints where each joint has horizontal displacement, vertical
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displacement and rotation presented in Fig. 1 is considered where L, is the span length, X and Y
are global coordinate axes, H, and H. are height of the arch and height of the columns,
respectively, b, and h, are the rectangular cross-sectional dimensions of the arch, b, and h, are
the rectangular cross-sectional dimensions of the columns. The following assumptions are made:
i) The behaviour of frame members is linear elastic, ii) the material of frame members is isotropic,
iii) the cross-sections of frame members are uniform, and iv) the effects of damping are neglected.
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Fig. 1. The arch-frame model consisting of two fixed supported columns and a curved beam

In the following, only the equations of motion of the curved beam are presented. Straight
Timoshenko beam formulations used here (which will be used later to describe the columns and
arch segments) can be found in the literature [10]. The equation of motion of a curved beam
considering axial and shear deformation and rotational inertia is written as follows [6]:
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where A is cross-sectional area, E is modulus of elasticity, R is radius of curvature (equal to L, /2
for the semi-circular arches considered in this study), k is shear correction factor (which equals
1.2 for rectangular cross-sections), G is shear modulus, p is density, I is relevant moment of
inertia, y(6,t) is radial displacement function, u(6,t) is tangential displacement function,
Y(0,t) is cross-section rotation due to bending, 6 and t are angular coordinate and time,
respectively. Eq. (1) can be arranged as:
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where & = 0/®, ® is total angle of embrace of the arch (equal to 7 for a semi-circular arch), and:
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The system has a harmonic solution. Therefore, Eq.(2) can be re-arranged by using

u(é,t) = u(@el®t, y(&,t) = y(&)e!®t and Y(&,t) = P(&)e't as
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where B = Tw?, ¥ = zw? and w is natural circular frequency. After achieving the solution of
coupled Eq. (3) by usual manner, y(&), u(¢) and (&) can be obtained. The axial force N (§),
shear force Q (&) and bending moment M (§) with y (&), u(&) and y(§) functions are presented in
Table 1, where ¢; are unknown constants, s; are characteristic roots obtained from solution of
sixth order coupled Eq. (3) and:
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Table 1. Symbolic definitions of displacement and force functions
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3. Application of DSM

The dynamic stiffness matrix of the arch is constructed by using analytically obtained end
forces and displacements. The local end displacement vector of the arch and the coefficient vector
can be written as Egs. (4-5), respectively:

§=[up Yo %o w y1 Pil”, “4)
c=[6 ¢ ¢ ¢ s G, Q)

where u0=u(€=0)9 y0=y(f=0)a Il}O:lp(E:O)? u1=u(§=1)a }’1=}’(5=1),
Y =9 =1).
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The end force vector of the arch (F) is given in Eq. (6) as:
F=[Ny, Q My, Ny Ml]T: (6)

where No = N(§=10), Q=0 =0), My=M(E=0), Ny=NE=1), ¢, =0¢ =1,
M, =M =1).
The sign convention in Eq. (7) is valid for end force relations:

No=—=N;, Qo=-0Qy, My=M,. (N

The relations of § = Ac and F = k¢ are obtained by using Egs. (4-7) and Table 1 where A and
K represent coefficient matrices constructed using Eqgs. (4) and (6), respectively.

The dynamic stiffness matrix of curved beam is obtained using the relation between § and F
as: F = k(A)™16, K* = k(A)™?, where K* represents local dynamic stiffness matrix the curved
beam. The global dynamic stiffness matrix of the curved beam is obtained by using the angular
transformation matrix. The angular transformation matrix and global dynamic stiffness matrix of
the arch are given in Egs. (8-9), respectively:

cos(a) sin(a) O 0 0 0
—sin(a) cos(a) O 0 0 0
0 0 1 0 0 0
ATM = 0 0 0 cos(a) -sin(a) OF ®)
0 0 0 sin(a) cos(a) OJ
0 0 0 0 0 1
K* = (ATM)™*K*(ATM), )

where a represents the angle between local axes at the ends of arch and global axes of the frame
structure.

The same procedure is repeated for straight Timoshenko element frame members. The global
dynamic stiffness matrix of the arch-frame structure is constructed by assembling these matrices.
The natural frequencies are then obtained by equating the determinant of the global dynamic
stiffness matrix of the arch-frame structure to zero. A root finding algorithm (based on an iterative
bisection approach) is used for obtaining natural frequencies. The mode shapes can then be
calculated and plotted.

4. Numerical analysis and discussions

The following geometric and material properties are considered: L, = 8 m, H, = 4 m,
H. = 4 m, embrace angle of the arch = 180°, radius of curvature of the arch =4 m, unit weight of
frame members: 2500 kg/m3, modulus of elasticity of frame members: 3x107 kN/m?, Poisson’s
ratio of frame members = 0.3, b, = 1.00 m, h, = 0.50 m, b, = 1.00 m.

In the first part of numerical case study, the free vibration analysis of the arch-frame model is
performed using exact curved beam formulations. The first five exact natural frequencies of the
arch-frame are presented in Table 2 for various arch cross-sections. According to Table 2, an
augmentation of arch thickness increases all natural frequencies. Fig. 2 which is plotted using the
data in Table 2, represents the natural frequency increment by taking h, = 0.40 m and
hq = 0.50 m, respectively. It can be observed that the first vibration mode frequency, which is
dominated by column sway, is not affected significantly by changes in arch cross-section.
However, as shown in Fig. 2, thicker arches have increased natural frequencies (up to 40 %) for
2nd to 5th modes.

The same arch is also described with a simpler model, where it is divided into equal length
straight Timoshenko beams. Three different segmentations are considered. The lengths of straight
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beam segments are 2.4721 m, 1.2515 mand 0.8362 m forn = 5, n = 10, and n = 15, respectively.
It should be noted that the local degrees of freedom of the straight segments need to be rotated to
global degrees of freedom during assembly (see Eq. (8)). The values of transformation angles are
different for n = 5, n = 10, and n = 15 but these values are not presented to improve the clarity
of paper. The first five natural frequencies of the arch-frame using the segmented curved beam
approach can be observed from Table 3 for h, = 0.30 m, h, = 0.40 m and h, = 0.50 m. Table 3
shows that proposed approach converges fast. The relative errors between exactly calculated
natural frequencies and the results those obtained from 15 segmented arch model are presented in
Table 4.

Table 2. First five exact natural frequencies of arch-frame model
Mode Ist 2nd 3rd 4th Sth
hg =030 (m) | 35.3824 | 79.5071 | 146.1644 | 229.4268 | 327.6091
hg =0.40 (m) | 35.7264 | 94.3525 | 179.1044 | 274.9525 | 380.7456
hg =0.50 (m) | 36.9646 | 107.7696 | 204.2849 | 308.1668 | 425.1134
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Fig. 2. Increment of natural frequencies taking h, = 0.40 m and h, = 0.50 m

Natural frequency Increment (%)

According to Table 4, the maximum relative error of proposed approach taking n = 15 is
0.65 %. The segmented arch model can also be effectively used to plot mode shapes. The
schematic representation of segmented arch where n is total segment number and the first five
mode shapes of the arch-frame model using n = 15 are presented in Fig. 3. These are near-
identical to exact results (not shown for clarity).

Table 3. First five natural frequencies obtained by segmentation approach (rads!

h, (m) | Mode Ist 2nd 3rd 4th 5th

n=>5 | 36.6765 | 83.2312 | 151.4298 | 235.7451 | 335.5829

03 n =10 | 357016 | 80.4054 | 147.4979 | 231.3296 | 330.9019
' n =15 | 35.5258 | 79.9083 | 146.7663 | 230.2983 | 329.1135
Exact | 35.3824 | 79.5071 | 146.1644 | 229.4268 | 327.6091

n=35 |37.1930 | 98.5466 | 184.4356 | 282.5921 | 395.9358

04 n =10 | 36.0844 | 95.3759 | 180.4978 | 277.2384 | 385.2963
' n =15 | 35.8866 | 94.8105 | 179.7369 | 275.9985 | 382.8086
Exact | 35.7264 | 94.3525 | 179.1044 | 274.9525 | 380.7456

n=35 | 385939 | 111.8972 | 209.1147 | 318.0469 | 447.5858

0.5 n =10 | 37.3619 | 108.7902 | 205.5938 | 311.0617 | 431.1867
' n=15| 37.1421 | 108.2281 | 204.8830 | 309.4885 | 427.8523
Exact | 36.9646 | 107.7696 | 204.2849 | 308.1668 | 425.1134

Table 4. Relative errors between 15 segmented arch model and exact results (%)

h, (m) | 1stmode | 2nd mode | 3rd mode | 4th mode | 5th mode
0.30 0.41 0.50 0.41 0.38 0.46
0.40 0.55 0.60 0.42 0.45 0.65
0.50 0.48 0.43 0.29 0.43 0.64
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Fig. 3. a) Schematic representation of segmented arch where n is total segment number, b) first five mode
shapes of arch-frame plotted using 15 segmented arch model (h,; = 0.50 m)

5. Conclusions

Exact natural frequencies of an arch-frame structure having straight columns and a curved
beam (considering axial and shear deformations and rotary inertia effects) are obtained. Standard
DSM approaches are used for this purpose. In order to simplify the formulations, an approximate
model based on segmenting the arch into straight Timoshenko beams is then considered. The free
vibration analysis of both approximate and exact systems demonstrated that segmenting the arch
with linear elastic elements is effective; with only a few straight segments, natural frequency and
vibration mode shapes of the curved arch are accurately estimated.

Although the formulations of exact curved beams are complicated, the exact free vibration
results can only be obtained using these formulations. Another advantage of using the exact end
forces and displacements of the curved beam is the small size of global dynamic stiffness matrix
of whole vibrating system. In contrast, while straight beam formulations are simple, segmenting
the arch into straight beams increases the size of the global dynamic stiffness matrix of the system.
This increases the computation time for the root finding algorithm. While this increase in
computation time may be prohibitive for very large and complex systems, this is unlikely to be a
problem for determining single and multi-span arch frames encountered in engineering
applications.
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