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Abstract. The combination of feature extraction and pattern recognition can make it possible to 
realize wind turbine gearboxes based on vibration signals. However, these methods need to be 
constantly adjusted parameters and spend time training when processing different vibration 
signals, which is time-consuming. Aiming at reducing the number of parameters that need to be 
adjusted and training time, this paper proposes a variational mode decomposition (VMD) based 
on atomic search optimization (ASO) and neural random forest (NRF) fault diagnosis model. The 
parameters of the VMD are adaptively adjusted by the ASO, which has the advantages of less 
adjustment parameters. After ASO-VMD decomposition, signals will be used as the input of NRF. 
We evaluate our method on simulation gearbox model which is established by Solidworks and 
Adams. Experimental results show that our method has faster training speed and higher 
recognition accuracy without set many parameters manually. 
Keywords: wind turbine, fault diagnosis, atomic search optimization, variational mode 
decomposition, neural random forest. 

1. Introduction 

In recent years, resource shortages and environmental degradation have prompted countries to 
focus on the development of clean energy [1]. With the development of technology, wind power 
generation has developed rapidly, and the installed capacity of global wind turbines has increased 
year by year [2]. The speed-increasing gearbox is the important rotating component in the wind 
turbine drive system. If damage to gears is not found in time when it occurs, it will cause huge 
damage to the wind turbine equipment [3, 4]. 

Time-frequency analysis has been applied to fault diagnosis successfully. Through feature 
extraction of gearbox vibration signal, the fault information of the gearbox will be extracted. In 
the field of gearbox vibration signal diagnosis, there are several commonly methods including 
continuous wavelet transform (CWT) [5, 6], Hilbert-Huang transform (HHT) [7, 8], empirical 
mode decomposition (EMD) [9] and local mode decomposition (LMD) [10]. However, CWT 
depend on the selection of wavelet basis function. When analyze different signal, we need to select 
different wavelet basis function. In the decomposition process of EMD and LMD, mode mixing 
and endpoint effect affect the result [11]. Variational mode decomposition (VMD) [12] is a fault 
adaptive processing method proposed by Dragomireskiy et al. Due to its good anti-noise ability, 
VMD has been widely used in the field of fault diagnosis [13-16]. Although VMD has good signal 
decomposition capability, VMD needs to set more parameters during use. If the parameter settings 
are unreasonable, the signal decomposition result will be poor. A common solution is to use the 
parameter optimization method to select the optimal parameters of the VMD. Lv et al. [17] 
decomposes the fault signal through VMD, it uses the support vector machine (SVM) based on 
genetic algorithm to identify the fault and improve the generalization ability of the model; Yi et 
al. [18] use particle swarm optimization (PSO) to find the optimal parameters of VMD to realize 
Bearing fault diagnosis; Wang et al. [19] use PSO to minimize the average envelope entropy 
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method to optimize the parameters of VMD; J Zhu [20] uses the artificial fish algorithm (AFSA) 
to find the optimal parameters of VMD to realize the fault diagnosis of rolling bearings; Wang 
[21] et al. used symbol dynamic entropy and power spectral entropy as fitness functions, and used 
multi-objective particle swarm optimization (MOPSO) to find the optimal parameters of VMD; 
Miao et al. [22] used the kurtosis of the indicator set as the objective function. Use the locust 
optimization algorithm (GOA) to optimize the objective function and select the best VMD 
parameters. Although the parameter optimization method is used to select the optimal parameters 
of the VMD, the optimization method itself still needs to set more parameters, and the parameters 
have a greater impact on the results, which leads to a large number of experiments to determine 
the optimal parameter range, increasing the difficulty of the experiment. The Atomic Search 
Optimization Algorithm (ASO) [23] requires fewer parameters to be set and guarantees 
optimization. At present, ASO is rarely used in the field of mechanical fault diagnosis. 

After the signal is decomposed by the VMD, it still contains a variety of vibration information 
during the operation of the device. Therefore, a suitable pattern recognition method is needed to 
further determine the type of the fault. Common pattern recognition methods such as support 
vector machine [24, 25], artificial neural network [26-28] etc., are widely used in mechanical 
equipment fault diagnosis, and have achieved remarkable results. Li et al. [29] use a deep belief 
networks (DBN) to classify the gearbox failure; Chen et al. [30] extracted signals features and use 
CNN to determine the state of the gearbox. Verma et al. [31] use the extraction of time and 
frequency features as input for a spare auto-encoder (SAE). Shao et al. [32] use optimize DBN 
and time-domain features to diagnose faults of bearings. Janssens et al. [33] explored that CNN 
used the original frequency data to diagnose the bearing seat. The vibration data of the bearing 
box is pre-processed by Fast Fourier Transform (FFT) and input into CNN to detect faults. 
However, the above pattern recognition methods all have slow training speeds and are prone to 
over-fitting problems. Neural random forest (NRF) [34] is a pattern recognition method proposed 
by Biau et al. in 2016, and NRF is a hybrid method that converts random forest (RF) into a neural 
network (NN). Compared with RF and NN, NRF requires fewer parameters than standard 
networks, and there are fewer restrictions on decision geometry than RF. 

Aiming at the difficulty of VMD parameter optimization and time-consuming training in fault 
diagnosis model, this paper proposes a fault diagnosis model based on ASO-VMD and NRF. The 
ASO is used to select the optimal decomposition parameter of the VMD, under which the original 
fault signal is decomposed using VMD. The principal component analysis (PCA) is used to 
perform dimensional compression on the decomposed signal, and finally NRF is used for 
classification and identification to realize fault diagnosis of the gearbox. Compared with the above 
method, our proposed method only needs to set two parameters in the process of optimizing VMD. 
At the same time, in the final fault identification effect, the recognition accuracy of the method 
reaches 100 %, which can meet the actual fault diagnosis requirements. 

2. Fault diagnosis model 

2.1. Model workflow 

Aiming at the gear failure in wind turbine gearbox, this paper proposes an intelligent fault 
diagnosis model based on ASO-VMD and NRF. The training and working process of the model 
is shown in Fig. 1. 

In this paper, the fault signal of the wind turbine is obtained by Solidworks and Adams 
simulation [35]. The model built in the simulation is the gearbox of a 1.5 MW wind turbine. Its 
structure is a set of planetary wheels and two sets of parallel wheels. The collected original 
simulation signals are divided into several signals. Each segment of the signal is decomposed by 
ASO-VMD and the total signal fitness is obtained. In this process ASO will optimize the 
parameters of VMD according to fitness function, which will be described in Section 2.3. The 
signal decomposed by ASO-VMD has higher dimensions. Before using NRF to classify the signal, 
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we use PCA to reduce the dimensions. Finally, the NRF can accurately identify the gearbox fault 
status and use other test data to verify the model effect after training. 

 
Fig. 1. Model workflow 

2.2. Basic principles of VMD 

VMD is a new type of adaptive decomposition method for nonlinear non-stationary signals 
developed in recent years. VMD can decompose the signal 𝑓(𝑡)  into multiple eigenmode 
functions (IMF), and the IMF is defined as shown in Eq. (1): 𝑢௞(𝑡) = 𝐴௞(𝑡) cos(𝜑௞(𝑡)). (1)

In the VMD decomposition, the signal 𝑓(𝑡) updates the IMF center frequency and bandwidth 
by iteration. Assuming that each eigenmode function 𝑢௞(𝑡) is the finite bandwidth of the center 
frequency, this variational problem can be transformed into a constrained variational problem that 
seeks 𝑘 eigenmode function IMFs. The constrained variational model is described as Eqs. (2-3): 

𝑚𝑖𝑛{௨ೖ},{ఠೖ} ቊ෍ ฯ𝜕௧ ൤൬𝜎(𝑡) + 𝑗𝜋𝑡൰ 𝑢௞(𝑡)൨ 𝑒ି௝ఠೖ௧ฯ௞ ଶ
ଶቋ, (2)𝑠. 𝑡.෍ 𝑢௞ = 𝑓௞ . (3)

In order to find the optimal solution of the above constrained variational problem, the 
augmented Lagrange function can be constructed by introducing the quadratic penalty factor 𝛼 
and the Lagrange multiplication operator 𝜆(𝑡) . The Lagrange function is time-frequency 
transformed, and corresponding solutions are obtained to obtain expressions of the modal function 
components 𝑢௞ and 𝜔௞, respectively. Then use the alternating direction multiplier algorithm to 
find the optimal solution of the constrained variational model, and then decompose the original 
signal into multiple IMFs. 
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2.3. ASO-based VMD 

Inspired by molecular dynamics, ASO achieves the optimal solution of the parameter 
optimization problem by mathematically simulating the motion of atoms in nature. The ASO 
initially randomly generates the position of each atom, and the atom updates their position and 
velocity in each iteration until the best position of the atom is found, which is the optimal solution 
of the objective function. The acceleration of an atom is determined by two factors: the mutual 
interaction between atoms and the binding force caused by the bond length potential. The optimal 
atomic position is taken as the optimal solution for parameter optimization after the end of the 
iteration. In the ASO algorithm, the position and velocity of each atom are randomly generated 
first, and the atomic fitness is initialized. Determine the 𝐾  neighborhood of each atom, and 
determine the 𝐾 neighborhood as defined by Eq. (4): 

𝐾(𝑡) = 𝑁 − (𝑁 − 2) × ඨ𝑡𝑇, (4)

where 𝑡  is the number of iterations, 𝑁  is the number of atoms, and 𝑇  is the total number of 
iterations. Through the 𝐾 neighborhood, the amount of calculation can be effectively reduced, and 
the iteration speed can be improved. In each of the original neighborhoods, calculate the force and 
binding force between them and other atoms, wherein the force calculation formula is as shown 
in Eqs. (5-6): 𝐹௜ௗ(𝑡) = ෍ 𝑟𝑎𝑛𝑑௝𝐹௜௝ௗ(𝑡)௝∈௄௕௘௦௧ , (5)

𝐹௜௝ = −∇𝑈൫𝑟௜௝൯ = 24𝜀𝜎ଶ ൥2ቆ 𝜎𝑟௜௝ቇଵସ − ቆ 𝜎𝑟௜௝ቇ଼൩ 𝑟௜௝ , (6)

where 𝑟௜௝  represents the spatial position between two atoms, 𝜀  represents the strength of the 
interaction, and 𝜎 represents the length scale of the collision diameter. The formula for calculating 
the binding force is as shown in Eqs. (7-8): 𝐺௜ௗ(𝑡) = −𝜆(𝑡)∇𝜃௜ௗ(𝑡) = −2𝜆(𝑡) ቀ𝑥௜ௗ(𝑡) − 𝑥௕௘௦௧ௗ (𝑡)ቁ, (7)𝜃௜(𝑡) = ൣ|𝑥௜(𝑡) − 𝑥௕௘௦௧(𝑡)|ଶ − 𝑏௜,௕௘௦௧ଶ ൧, (8)

where 𝜆(𝑡) is the Lagrangian multiplication, 𝑥௜(𝑡) is the optimal atomic position in each iteration, 
and 𝑏 is the fixed length between the 𝑖th atom and the best atom. 

The force of each atom is iterated to calculate the acceleration of each atom, and the position 
of each atom is updated by the acceleration. After each iteration is completed, the fitness value 𝐹௜௧ 
is calculated. After the end of the iteration, the minimum fitness value is selected as the optimal 
solution, and the atomic position and variables at the optimal time are calculated. 

When using VMD decomposition, parameters need to be set according to prior experience, but 
the signal in the gearbox is complex, and setting parameters according to experience cannot ensure 
that the VMD can accurately identify the fault features. Therefore, an atomic optimization 
algorithm is used to select the optimal parameters. The parameters to be selected in the VMD are 
the penalty factor 𝛼 and the number 𝐾 of narrowband modal components. Each group of signals 
is decomposed by VMD to obtain 𝐾 IMFs, and the information difference coefficient 𝐴 between 
the IMFs is calculated, as in Eqs. (9-10) shown: 𝐴 = (𝑆ଵ − 𝑆)ଶ + (𝑆ଶ − 𝑆)ଶ + ⋯+ (𝑆௄ − 𝑆)ଶ, (9)
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𝑆 = ෍ 𝑆௜𝐾௄௜ , (10)

where 𝑆௜ represents the information entropy of each IMF. The error coefficient e of the initial 
signal and the reconstructed signal is defined as shown in Eq. (11): 𝑒 = sumሾabs(𝑓 − 𝑥ଵ − 𝑥ଶ −⋯𝑥௄)ሿ, (11)

where 𝑓  denotes the initial signal, and 𝑥௄  indicates the decomposed signal. The VMD 
decomposition fitness is expressed as shown in Eq. (12): 𝜌 = 𝑒𝐴. (12)

The larger the 𝐴 value, the greater the amount of information contained in each IMF. The 
larger the 𝐴 value, the more information the IMF contains. The smaller the 𝑒 value, the more 
similar the reconstructed signal is to the original signal. Since the fault information contained in 
each group of signals in the data set is inconsistent, the fitness of the gearbox in each state is added, 
as shown in Eq. (13): 

𝑃 = ෍ 𝜌௜ூ௜ . (13)

𝑃 is the total fitness of the signal, and 𝐼 is the total number of signals. Taking this as the 
objective function of the atomic optimization algorithm, the minimum value of 𝑃 and the 𝐾 and 𝛼 at this time are obtained through multiple iterations. 

2.4. PCA 

Gearbox fault signals still have a high dimension after VMD decomposition, which is not 
conducive to subsequent signal characteristic analysis. Therefore, PCA is used to compress 
high-dimensional data and retain feature points that have a large impact on the results. The 
principle of PCA is to transform the original data in high-dimensional space to obtain the 
transformation direction with the largest variance, so as to achieve dimensional compression. 
Before using PCA, the time domain signals in each state are composed into a matrix 𝑋: 

𝑋 = ൥𝑥ଵଵ ⋯ 𝑥ଵ௠⋮ ⋱ ⋮𝑥௡ଵ ⋯ 𝑥௡௠൩, (14)

where 𝑛 is the number of samples and 𝑚 is the number of features. Normalize each feature point 
in the sample and calculate the correlation coefficient matrix, as Eqs. (15-16) shown: 

𝑥௜,௝ = 𝑥௜௝ − min 𝑥௝max𝑥௝ − min 𝑥௝ , (15)

𝑅 = ൥𝑟ଵଵ ⋯ 𝑟ଵ௠⋮ ⋱ ⋮𝑟௡ଵ ⋯ 𝑟௡௠൩. (16)

Finally calculate the special diagnosis vector of the correlation coefficient matrix, as in  
Eq. (17) shown: |𝜆𝐼 − 𝑅| = 0. (17)
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After the feature vector is obtained, the first 1024 features of the cumulative variance 
contribution rate are selected as the main indicators for subsequent analysis. 

2.5. Basic principles of NRF 

Based on the decision tree algorithm, the random forest combines multiple decision trees at 
the same time, and combines the results of multiple decision trees with the least empirical error 
method to obtain the optimal results. The literature [34] pointed out that the decision tree can be 
seen as a two-layer neural network model. For each layer of the neural network, its activation 
function is shown in Eq. (18): 𝜏൫ℎ௞(𝑥)൯ = 𝜏൫𝑥(௝ೖ) − 𝛼௝ೖ൯, (18)

where 𝜏(𝑢) = 21𝑢 ൒ 001 is the threshold activation function. The weight and paranoia of each 
layer are related to the decision tree model. The final output of the neural network is shown in 
Eq. (19): 

𝑡௡(𝑥) = ෍ 𝑤௞ᇲ𝑣௞ᇲ(𝑥) + 𝑏௢௨௧௄௞ᇲୀଵ . (19)

The conversion relationship between decision tree and neural network is shown in Fig. 2. 
In a random forest, the results of all decision trees will be aggregated to form a forest 

assessment, as shown in Eq. (20): 

𝑡(𝑥;𝜃ଵ, … ,𝜃௠,𝐷௡) = 1𝑀෍ 𝑡(𝑥;𝜃௠,𝐷௡)ெ
௠ୀଵ . (20)

After replacing the decision tree with a neural network, all the results are summarized by a 
random forest method, and finally a neural random forest model is formed. 

 
Fig. 2. Stochastic neural network [34] 
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3. Wind turbine gearbox modeling 

In order to verify the effectiveness of the ASO-VMD and NRF fault diagnosis models. We 
establish the wind turbine gearbox simulation model and collect the vibration signal of the gearbox 
during operation. 

3.1. Gearbox modeling 

Large wind turbine gearboxes are generally composed of planetary gear trains and parallel 
gear trains. In 1.5 MW wind turbine gearboxes, the common structure is composed of a set planet 
gears and two sets parallel gears, which can reduce the risk of gearbox failure. According to 
references [36], the input speed of the wind turbine gearbox is generally 10-30 r/min, and the 
output speed is generally 1500 r/min. Based on the above situation, the total gear ratio of our 
simulated gearbox is 100.8, and the parallel gears consist of helical gears. The gear parameters of 
each stage are shown in Table 1. 

Table 1. Gearbox parameters 
 Planetary train Parallel gear train 1 Parallel gear train 2 

 Sun gear Planetary 
wheel Ring gear Large 

gear 
Small 
gear 

Large 
gear 

Small 
gear 

Modulus 22 22 22 14 14 10 10 
Number of teeth 26 55 136 92 21 63 17 

Index circle 
diameter 572 mm 1210 mm 2992 mm 1288 mm 294 mm 630 mm 170 mm 

The gearbox model is established by Solidworks. In order to simplify the calculation of the 
simulation, the part between the transmission shaft and the gear transmission is omitted in the 
model. The modeling result of the gearbox is shown in Fig. 3. 

 
Fig. 3. 3D model of the gearbox 

3.2. Fault simulation 

The fault types of the gears in the wind turbine gearbox generally include broken teeth, pitting, 
and cracks. Among them, gear cracks and broken teeth cause more damage to the gearbox. If it 
cannot be found in time, it will have a huge impact on the normal operation of the wind turbine. 
In order to find the vibration characteristics of the gearbox when gear cracks or broken teeth, 
dynamic simulation of the gearbox is required. The gearbox 3D model is imported into Adams, 
and the basic constraints and flexibility settings are made for each gear. 

A contact force is set between the respective gears, and the input speed of the gearbox is set to 
0.66 π/s, a resistance of 6000 N⋅m is set at the output end. In the Adams simulation setup, the 
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simulation time is set to 5 s, the number of simulation steps is 20,000 steps, and the damping factor 
of the flexible body is set to 50. The meshing frequency of each gear can be calculated by 
combining the above simulation conditions. The results are shown in Table 2. 

Table 2. Gear meshing frequency of each stage 
 Planetary train Parallel gear train 1 Parallel gear train 2 

 Sun gear Planetary 
wheel Ring gear Large 

gear 
Small 
gear 

Large 
gear 

Small 
gear 

Rotating speed °/s 740 175 0 740 3241 3241 12010 
Meshing frequency 

/ Hz 53 26.73 0 189 567 

Firstly, we verify the gears ratio of the gearbox. The output speed is shown in Fig. 4. It can be 
seen from the figure that the system enters a steady state after about 0.2 s. The average angular 
velocity is 12000 °/s and the range of fluctuation of the speed is less than 100 °/s, which satisfies 
the characteristics of the periodic meshing impact of the gear and conforms to the display. 

 
Fig. 4. Output speed 

In order to reduce the interference of other vibration source, the vibration sensor is generally 
placed at the input and output ends of the gearbox in the actual working environment [37, 38]. 
Therefore, the vibration signal of the output gear is collected in the Adams simulation  
environment, and the acceleration time domain signal and the frequency domain signal are shown 
in Fig. 5. 

 
Fig. 5. Output frequency vibration signal frequency domain diagram 
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It can be seen from the frequency domain diagram that frequency corresponding to amplitude 
is very close to the theoretical gear frequency, thus verifying the validity of the model. 

In order to verify that the model can simulate the vibration characteristics of the gearbox  
failure, the normal gears in the model are replaced with gears of different fault types. In the test, 
the large gears in the sun gear and the parallel gears train 2 are replaced by broken gears. The 
models of the fault gears are shown in Fig. 6. The crack is set to have a split width of 2.5 mm and 
a depth of 3 mm. 

 
a) Tooth root crack 

 
b) Broken tooth 

Fig. 6. Gear failure model 

In the Adams model, the normal gear is replaced by the faulty gear, the model simulation time 
is set to 5 s, and the number of simulation steps is 20,000 steps. The time-frequency domain signals 
of the output terminals under different faults are shown in Fig. 7. 

 
Fig. 7. Frequency domain diagram of parallel gear train 2 large gear broken teeth 

Fig. 7 shows the time-frequency domain diagram of the 2 large gears of the parallel gear train 
in the state of broken teeth. Compared with the normal state, the time domain diagram under the 
broken tooth state has obvious periodic impact. The time interval between two adjacent impacts 
is 0.121, and the corresponding frequency is 8.3 Hz. This is close as the parallel gear train 2 which 
the gear rotation frequency is 9 Hz. In the frequency domain signal, the meshing frequency of the 
parallel gear train 2 basically matches the signal amplitude in the frequency domain diagram. At 
the same time, compared with the frequency domain diagram under normal conditions, the 
amplitude at the meshing frequency has increased significantly. This can further verify the 
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accuracy of the simulation model. On this basis, the vibration signals of the gear box body and the 
output end in other fault states are collected separately as the input of the fault diagnosis model. 
The data amount in the state of each gear box will be described in detail in Section 4.1. 

4. Experiment analysis 

4.1. Fault diagnosis model establishment 

The workflow of the wind turbine gearbox fault diagnosis model has been described in detail 
in the previous section. The detailed parameters of each part in the model are described below. 

(1) The simulation time of the gearbox is 5 s, and the number of sampling points is 20,000. 
There are two sets of vibration data in the same state: ring gear vibration data and output vibration 
data. The data will be divided into several groups by sliding method, the length of each group is 
4096. Each set of data has a size of 2×4096. The data set includes the normal state of the gearbox, 
the single gear broken teeth, and the crack fault state. Multiple gears have multiple fault conditions 
at the same time. The total number of samples divided into total is 575 groups. The data set is 
divided as shown in Fig. 8. 

 
Fig. 8. Data set partitioning (sliding method example) 

(2) The number of atoms in the ASO is set to 10, the maximum number of iterations is set to 
50, the search range of 𝐾 is [2, 10], and the search range of 𝛼 [100, 6000] s. 

(3) Select the optimal parameters obtained by the optimization algorithm, and decompose the 
samples with VMD. After each group of data is decomposed, a feature matrix of (𝑚, 2𝐾 × 4096) 
is obtained, where m is the number of samples. The feature matrix is dimensionally compressed 
by PCA, and the effective features are extracted. The dimension of the feature matrix after 
compression by principal component analysis is (𝑚, 1024). 

(4) Put the special diagnosis matrix into the nerve random forest for training. 50 % of the data 
in each state of the data set is used as the training set, 25 % is used as the verification set, and 25 % 
is used as the test set. The number of data sets in each state is shown in Table 3. 

Table 3. Number of data sets 
 Number of 

training sets 
Number of 

verification sets 
Number of test 

sets 
Total 

amount 
Gearbox is normal 31 16 16 63 
Sun wheel crack 37 18 18 73 

Parallel wheel crack 41 21 21 83 
Sun gear broken teeth 113 57 57 227 

Parallel wheel breaking 32 16 16 64 
Multi-gear broken teeth 33 16 16 65 

In the NRF, a total of 30 class decision trees are set. The neural network has two hidden layers, 
of which the first layer contains 20 nodes and the second layer contains 10 nodes. The maximum 
number of iterations of the model is 100. 
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4.2. ASO-VMD decomposition result 

In order to check the effectiveness of the ASO-VMD algorithm, the method is compared with 
the PSO-VMD [18] and AFSA-VMD [20] method. PSO needs to set parameters such as the 
number of particles, the inertia factor, and the maximum flying speed. AFSA needs to set 
parameters such as the number of artificial fish, the maximum number of trials, the perceived 
distance, and the congestion factor. Compared to PSO and AFSA, ASO only needs to set the initial 
number of atoms and the number of iterations to achieve VMD optimization, which minimizes the 
impact of setting parameters on the results. As shown in Table 4, different VMD optimization 
parameters are obtained by different optimization algorithms. The PSO and AFSA parameters are 
set to be basically the same as the ASO to improve the experimental contrast. 

Table 4. VMD parameters and their correlation under different optimization algorithms 
 𝐾 𝛼 Correlation coefficient Total fitness 

PSO optimization 8 100 0.983 17.41 
AFSA optimization 10 700 0.9795 25.64 
ASO optimization 10 200 0.990 14.31 

It can be seen from the table that compared with the PSO-VMD and AFSA-VMD, the 
ASO-VMD processed signal has a better correlation with the original signal, and the fault features 
are decomposed while maximally retaining the signal. Information, while ASO-VMD has a better 
fitness value than PSO-VMD and AFSA-VMD. 

 
Fig. 9. Optimization algorithm iterative process 

As shown in Fig. 9, the iterative process of ASO-VMD shows that ASO-VMD has found the 
optimal parameters in about 20 rounds. In PSO-VMD, the fitness value in the iterative process is 
at least about 17, the minimum value of AFSA-VMD is only 25.64. It can be seen that ASO-VMD 
has better ability to prevent local minimization, and its optimization result is better. 

Fig. 10 shows the positional changes of 10 atoms in the 50-pass iteration of ASO. It can be 
seen from the figure that the atomic distribution is scattered at the initial iteration, ensuring that a 
large range of space can be searched. As the iterative process progresses, the atoms gradually enter 
an equilibrium state, the distribution of atoms begins to concentrate, eventually reaching a stable 
range. 

The time domain map of each IMF after decomposition by ASO-VMD is shown in Fig. 11. It 
can be seen from the figure that the characteristics of each IMF time domain signal are obvious. 
Since each IMF represents a part of the vibration information in the original signal, the original 
signal contains the vibration information of the original signal after being decomposed by the 
ASO-VMD. It is decomposed into each IMF, making the individual vibration components of the 
original signal easier to identify, which is beneficial to the use of subsequent fault identification 
methods. 
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Fig. 10. ASO-VMD atomic changes 

 
Fig. 11. IMF time domain map 

4.3. Fault identification verification 

From the decomposition effect point of view, the effect of ASO-VMD and PSO-VMD is  
closer, so we put the signals decomposed by ASO-VMD and PSO-VMD into NRF for training. 
At the same time, the same neural network model and NRF are compared. The comparison 
indicators include model accuracy and root mean square error. The training results are shown in 
Table 5. 

Table 5. Cumulative recognition accuracy of different model tests 
 ASO-VMD PSO-VMD 
 Accuracy Root mean square error Accuracy Root mean square error 

Random forest 100 % 1.21 100 % 1.32 
BP Neural Networks 88 % 19.48 86 % 21.32 

NRF 100 % 1.17 100 % 1.21 

From the table we can see that the signal decomposed by ASO-VMD has higher accuracy and 
smaller root mean square error under each recognition model. At the same time, under the same 
parameter configuration, both NRF and RF have a higher recognition rate after rounding the value 
of the network output. However, from the perspective of root mean square error, the NRF output 
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is closer to the actual value, and the model has a more stable and accurate output. 
The accuracy rate changes between different models in the training process are compared, and 

the variation curves are shown in Fig. 12. 

 
a) 

 
b) 

Fig. 12. Root mean square error curve of a) validation set and b) test set 

It can be seen from the figure that during the training process, the initial error of the neural 
network is large. After 60 iterations, the error is smaller than the random forest of the nerve, and 
the training set achieves better results. However, in the verification set, although the neural 
network realized the gradient decline in the previous rounds of iteration, the root mean square is 
always stable at around 20, so it can be seen that the neural network has experienced a serious 
over-fitting situation. However, the neural randomization still maintains a low error in the 
verification set. It can be seen that the NRF forest has faster training speed and better test results 
than the neural network. 

Table 6. Identification accuracy of different models 
Decomposition algorithm Classification algorithm Accuracy 

ASO-VMD NRF 100 % 
VMD (center frequency method to select parameters) NRF 93.75 % 

EMD NRF 90.3 % 
ASO-VMD CNN 97.2 % 

VMD CNN 91.0 % 
EMD CNN 90.3 % 

ASO-VMD SVM 22.9 % 
VMD SVM 22.9 % 
EMD SVM 27.1 % 

/ BP neural networks 84.0 % 
/ CNN 95.8 % 

Our method is mainly composed of decomposition algorithm and classification algorithm, both 
of which directly have different methods to replace. The accuracy of data classification by the 
combination if different methods is shown in Table 6. We have manually tuned all models to 
achieve the best results. Among the existing fault diagnosis models, there are pattern recognition 
technologies such as CNN to achieve end-to-end fault diagnosis [27]. We also compared the 
end-to-end fault diagnosis model. From Table 6 we can see that ASO-VMD-NRF can achieve the 
best results. The VMD based on the center frequency method adjusts parameters cannot achieve 
the best decomposition effect for all signals, resulting in a decrease in accuracy. In the  
ASO-VMD-CNN model, some of the decomposed signal features are similar. Due to the poor 
generalization ability of CNN compared to NRF, a wrong judgment is generated. 
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5. Conclusions 

This paper presents a gearbox fault diagnosis model and tests the effect of the model in a 
simulation environment. The model has the following characteristics: 

1) ASO can realize the VSD adaptive decomposition signal, reduce the subjective error caused 
by human adjustment, and the ASO needs less adjustment parameters, which reduces the difficulty 
caused by adjusting parameters. The experimental results show that the ASO-VMD can effectively 
remove the noise in the signal and preserve the effective information components in the signal to 
the greatest extent. 

2) NRF has faster training speed and lower recognition error than neural network or random 
forest. Under the same parameter structure, NRF can achieve more stable recognition accuracy 
while avoiding over-fitting. 

3) ASO-VMD and NRF as an adaptive fault diagnosis model can accurately determine the type 
of gearbox failure. This paper verifies the effectiveness of the model through the gearbox 
simulation model. It provides a stable and accurate solution for wind turbine gear fault diagnosis. 

In the next work, we will further expand the model’s fault identification capability under 
non-steady state and study the model’s fault identification capability under dynamic load 
environment. 
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