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Abstract. Based on the theory of vehicle-bridge coupling vibration, the differential equation of 
vehicle-bridge coupling system is set up according to different conditions. The differential 
equation of the system is converted into matrix form using mode decomposition method and is 
solved using MATLAB. The system equation has a non-linear matrix term when the geometric 
nonlinearity of the bridge is considered. The influence of wheel acceleration on the dynamic 
response of the bridge is analyzed without simplification under four speeds. The results show that 
it is acceptable to neglect the influence of wheel acceleration at low speeds, but it has a significant 
influence which must be considered at high speeds. 
Keywords: vehicle-bridge coupling vibration, acceleration, nonlinear vibration. 

1. Introduction 

With the remarkable and increasing span and vehicle load of bridges, as well as the gradually 
decreasing mass and stiffness of bridge structures, much attention has been focused on the 
complexity and diversity of vehicle-bridge coupling vibration.  

There are numerous methods of analyzing vehicle-bridge coupling vibration. Xia [1] presented 
a method of simplifying the bridge into a modal model to analyze the vehicle-bridge-pier system. 
Based on the finite element method, Chen [2] analyzed the resonance of a rigid-frame bridge under 
vehicle-bridge coupling vibration. Li [3] conducted in-depth analyses of the vehicle-bridge 
interaction under stochastic vibration. Shen [4] used an ODE function based on the Runge-Kutta 
method to compile a secondary development function which can solve the differential equation of 
the vehicle-bridge coupling system.  

The influence of the geometric nonlinearity of the structures on the vehicle-bridge coupling 
vibration is important, especially for long-span and low-mass bridges. Considering the geometric 
nonlinearity of the bridge, it can be more realistic to analyze the dynamic response of the structure, 
which is of great theoretical and practical significance in the design and construction of the bridge 
structure. 

2. Establishment of system equation considering the geometric nonlinearity of the bridge 

Fig. 1 shows the simply supported beam subjected to sprung mass, the vehicle system passes 
through the beam at a uniform speed 𝑣, 𝑤 𝑥, 𝑡  and 𝑍 𝑡  denotes the dynamic deflection of the 
beam and the mass 𝑀 , respectively. Meanwhile, the displacement of the mass 𝑀  is consistent 
with the deflection of the beam at its position expressed as 𝑤 𝑥, 𝑡 . 

The main derivation process of the differential equation is as follows. First, the dynamic 
equilibrium equation of a simply-supported beam can be written as Eq. (1): 
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𝐸𝐼 𝜕 𝑤 𝑥, 𝑡𝜕𝑥 + 𝜌𝐴 𝜕 𝑤 𝑥, 𝑡𝜕𝑡 − 3𝐸𝐴2 𝜕 𝑤 𝑥, 𝑡𝜕𝑥 𝜕𝑤 𝑥, 𝑡𝜕𝑥 + 𝑐 𝜕𝑤 𝑥, 𝑡𝜕𝑡  
   = 𝛿 𝑥 − 𝑣𝑡 𝑀 + 𝑀 𝑔 −𝑀 𝑑 𝑤 𝑥, 𝑡𝑑𝑡 + 𝑘 𝑍 𝑡 − 𝑤 𝑥, 𝑡 + 𝑐 𝑍 𝑡 − 𝑑𝑤 𝑥, 𝑡𝑑𝑡 . (1)

 
Fig. 1. Simply supported beam subjected to sprung mass model 

The dynamic equilibrium equation of 𝑀  can be written as: 

𝑀 𝑍 𝑡 + 𝑘 𝑍 𝑡 − 𝑤(𝑥, 𝑡)| + 𝑐 𝑍(𝑡) − 𝜕𝑤(𝑥, 𝑡)𝜕𝑡 = 0. (2)

The external load acting on the beam can be expressed as Eq. (3): 

𝑃(𝑥, 𝑡) = 𝛿(𝑥 − 𝑣𝑡) ⎣⎢⎢⎢
⎡ (𝑀 + 𝑀 )𝑔 −𝑀 𝜕 𝑤(𝑥, 𝑡)𝜕𝑡+𝑘 𝑍(𝑡) − 𝑤(𝑥, 𝑡) + 𝑐 𝑍(𝑡) − 𝜕𝑤(𝑥, 𝑡)𝜕𝑡 ⎦⎥⎥⎥

⎤. (3)

According to the mode decomposition method, the right end of Eq. (3) can be transformed into: 𝑃 (𝑡) = 𝑃 (𝑡) + 𝑃 (𝑡), 𝑃 (𝑡) = 2𝑚𝑙 (𝑀 + 𝑀 )𝑔 sin𝑛𝜋𝑣𝑡𝑙 − 𝑀 𝑞 (𝑡) sin 𝑖𝜋𝑣𝑡𝑙 sin𝑛𝜋𝑣𝑡𝑙 , 
𝑃 (𝑡) = 2𝑚𝑙 𝑘 𝑍(𝑡) + 𝑐 𝑍(𝑡) sin𝑛𝜋𝑣𝑡𝑙 − 2𝑚𝑙 𝑘 𝑞 (𝑡) + 𝑐 𝑞 (𝑡) sin 𝑖𝜋𝑣𝑡𝑙 sin𝑛𝜋𝑣𝑡𝑙 . (4)

The left end of the Eq. (1) can be transformed into: 𝑞 (𝑡) + 2𝜉 𝜔 𝑞 (𝑡) + 𝜔 𝑞 (𝑡) + 3𝐴8𝐼 𝜔 𝑞 (𝑡). (5)

Therefore, Eq. (3) can be expressed as Eq. (6): 

𝑞 (𝑡) + 2𝑀𝑚𝑙 𝑞 (𝑡) sin 𝑖𝜋𝑣𝑡𝑙 sin𝑛𝜋𝑣𝑡𝑙+ 2𝜉 𝜔 𝑞 (𝑡) + 2𝑐𝑚𝑙 𝑞 (𝑡) sin 𝑖𝜋𝑣𝑡𝑙 sin𝑛𝜋𝑣𝑡𝑙  (6)
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      + 3𝐴8𝐼 𝜔 𝑞 (𝑡) + 𝜔 𝑞 (𝑡) + 2𝑘𝑚𝑙 𝑞 (𝑡) sin 𝑖𝜋𝑣𝑡𝑙 sin𝑛𝜋𝑣𝑡𝑙  

      − 2𝑚𝑙  sin𝑛𝜋𝑣𝑡𝑙 = 2𝑚𝑙 𝑔 sin𝑛𝜋𝑣𝑡𝑙 . 
Similarly, using the mode decomposition method, the Eq. (2) can be written as: 

𝑀 𝑍(𝑡) + 𝑐 𝑍(𝑡) + 𝑘 𝑍(𝑡) − 𝑐 𝑞 (𝑡) sin 𝑖𝜋𝑣𝑡𝑙 − 𝑘 𝑞 sin 𝑖𝜋𝑣𝑡𝑙 = 0. (7)

By combining Eq. (6) and Eq. (7), the system dynamic equilibrium equations of the vehicle 
coupling with the simply-supported beam are obtained. The 𝑁th order matrix expression of the 
system motion equation is: 𝑀 𝑋 + 𝐶 𝑋 + 𝐾 𝑋 = 𝐹 , (8)

where 𝑋 = 𝑞 ,𝑞 ,⋯𝑞 ,𝑍  represents the generalized displacement vector,  𝐹 = 𝜌 𝜑 ,𝜌 𝜑 ,⋯𝜌 𝜑 , 0  represents the generalized force vector, 𝑀  represents the 
generalized mass matrix, 𝐶  represents the generalized damping matrix and 𝐾  represents the 
generalized stiffness matrix, 𝐻 is used to describe the nonlinear matrix. This can be described by 
the following matrices: 

𝑀 = ⎣⎢⎢
⎢⎡1 + 𝜌 𝜑 𝜌 𝜑𝜌 𝜑 𝜌 𝜑 ⋯ 𝜌 𝜑 0𝜌 𝜑 0⋮ ⋱ ⋮𝜌 𝜑 𝜌 𝜑0 0 ⋯ 𝜌 𝜑 00 𝑀 ⎦⎥⎥

⎥⎤ ,      𝐻 = 3𝐴8𝐼 ⎣⎢⎢
⎢⎡𝜔 00 𝜔 ⋯ 0 00 0⋮ ⋱ ⋮0 00 0 ⋯ 𝜔 00 0⎦⎥⎥

⎥⎤, 
𝐶 = ⎣⎢⎢

⎢⎡2𝜉 𝜔 + 𝜌 𝜑 𝜌 𝜑𝜌 𝜑 2𝜉 𝜔 + 𝜌 𝜑 ⋯ 𝜌 𝜑 −𝜌 𝜑𝜌 𝜑 −𝜌 𝜑⋮ ⋱ ⋮𝜌 𝜑 𝜌 𝜑−𝑐 𝜑 −𝑐 𝜑 ⋯ 2𝜉 𝜔 + 𝜌 𝜑 −𝜌 𝜑−𝑐 𝜑 𝑐 ⎦⎥⎥
⎥⎤, 

𝐾 = ⎣⎢⎢
⎢⎡𝜔 + 𝜌 𝜑 𝜌 𝜑𝜌 𝜑 𝜔 + 𝜌 𝜑 ⋯ 𝜌 𝜑 −𝜌 𝜑𝜌 𝜑 −𝜌 𝜑⋮ ⋱ ⋮𝜌 𝜑 𝜌 𝜑−𝑘 𝜑 −𝑘 𝜑 ⋯ 𝜔 + 𝜌 𝜑 −𝜌 𝜑−𝑘 𝜑 𝑘 ⎦⎥⎥

⎥⎤, 
where 𝜌 = 2𝑀 𝑚𝑙⁄ , 𝜌 = 2𝐶 𝑚𝑙⁄ , 𝜌 = 2𝑘 𝑚𝑙⁄  and 𝜑 = sin𝑛𝜋𝑣𝑡 𝑙⁄ . 

It can be seen from the above derivations that in cases where the geometric nonlinearity of the 
bridge is taken into consideration, the system equation has a non-linear matrix term. It can be 
found that the non-linear matrix is related only to the nature of the bridge itself, and not to the 
parameters of the vehicle. 

3. Establishment of system equation without simplifying wheel acceleration 

The external load acting on the bridge is deduced by Eq. (6). In fact, the overall analysis of the 
vehicle shows that the external loads on the bridge can be expressed as Eq. (9): 
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𝑃(𝑥, 𝑡) = 𝛿(𝑥 − 𝑣𝑡) (𝑀 + 𝑀 )𝑔 −𝑀 𝑑 𝑤(𝑥, 𝑡)𝑑𝑡 −𝑀 𝑍(𝑡) , (9)𝑑 𝑤(𝑥, 𝑡)𝑑𝑡 = (𝑖) 𝜕 𝑤(𝑥, 𝑡)𝜕𝑡 + (𝑖𝑖)2𝜕 𝑤(𝑥, 𝑡)𝜕𝑥𝜕𝑡 𝑣 + (𝑖𝑖𝑖)𝜕 𝑤(𝑥, 𝑡)𝜕𝑥 𝑣 , (10)

where (𝑖) represents the vertical acceleration of the vibration of the bridge at the position of the 
wheel, regardless of the change in the position of the load; (𝑖𝑖) represents the vertical acceleration 
of the bridge caused by the movement of the load; (𝑖𝑖𝑖) represents the vertical acceleration of the 
bridge caused by the curvature during structural vibration. The external loads on the bridge can 
be described by Eq. (11), which is calculated by substituting Eq. (10) into Eq. (9): 𝑃(𝑥, 𝑡) = 𝛿(𝑥 − 𝑣𝑡) (𝑀 + 𝑀 )𝑔       −𝑀 𝜕 𝑤(𝑥, 𝑡)𝜕𝑡 + 2𝜕 𝑤(𝑥, 𝑡)𝜕𝑥𝜕𝑡 𝑣 + 𝜕 𝑤(𝑥, 𝑡)𝜕𝑥 𝑣 −𝑀 𝑍(𝑡) . (11)

According to the mode decomposition method, the right end of Eq. (6) can be obtained and 
converted into the following equations: 𝑃 (𝑡) = 𝑃 (𝑡) + 𝑃 (𝑡) + 𝑃 (𝑡), (12)𝑃 (𝑡) = 2𝑚𝑙 (𝑀 + 𝑀 )𝑔 sin𝑛𝜋𝑣𝑡𝑙 − 𝑀 𝑞 (𝑡) sin 𝑖𝜋𝑣𝑡𝑙 sin𝑛𝜋𝑣𝑡𝑙 , (13)

𝑃 (𝑡) = −2𝑀𝑚𝑙 2𝑣 𝑛𝜋𝑣𝑙 cos𝑛𝜋𝑣𝑡𝑙 𝑐 𝑞 (𝑡) − −2𝑀𝑚𝑙 𝑣 𝑛𝜋𝑣𝑙 sin𝑛𝜋𝑣𝑡𝑙 𝑘 𝑞 (𝑡) , (14)𝑃 (𝑡) = 2𝑀𝑚𝑙 𝑍(𝑡) sin𝑛𝜋𝑣𝑡𝑙 . (15)

The system dynamic equilibrium equations of a simply-supported beam, wheel and spring 
(damper) mass system can be obtained by combining Eq. (5), Eq. (13), Eq. (14) and Eq. (15).  

The 𝑁th-order matrix expression can be expressed as follows: 

𝑀 = ⎣⎢⎢
⎢⎡1 + 𝜌 𝜑 𝜑 𝜌 𝜑 𝜑 ⋯ 𝜌 𝜑 𝜑 𝜌 𝜑𝜌 𝜑 𝜑 1 + 𝜌 𝜑 𝜑 ⋯ 𝜌 𝜑 𝜑 𝜌 𝜑⋮ ⋮ ⋱ ⋮ ⋮𝜌 𝜑 𝜑 𝜌 𝜑 𝜑 ⋯ 1 + 𝜌 𝜑 𝜑 𝜌 𝜑0 0 ⋯ 0 𝑀 ⎦⎥⎥

⎥⎤, 
𝐻 = 3𝐴8𝐼 ⎣⎢⎢

⎢⎡𝜔 0 ⋯ 0 00 𝜔 ⋯ 0 0⋮ ⋮ ⋱ ⋮ ⋮0 0 ⋯ 𝜔 00 0 ⋯ 0 0⎦⎥⎥
⎥⎤, 

𝐶 = ⎣⎢⎢
⎢⎡2𝜉 𝜔 + 𝜌 𝜑 𝜑 𝜌 𝜑 𝜑 ⋯ 𝜌 𝜑 𝜑 0𝜌 𝜑 𝜑 2𝜉 𝜔 + 𝜌 𝜑 𝜑 ⋯ 𝜌 𝜑 𝜑 0⋮ ⋮ ⋱ ⋮ ⋮𝜌 𝜑 𝜑 𝜌 𝜑 𝜑 ⋯ 2𝜉 𝜔 + 𝜌 𝜑 𝜑 0−𝑐 𝜑 −𝑐 𝜑 ⋯ −𝑐 𝜑 𝑐 ⎦⎥⎥

⎥⎤, 
𝐾 = ⎣⎢⎢

⎢⎡𝜔 + 𝜌 𝑣 𝜑 𝜑 𝜌 𝑣 𝜑 𝜑 ⋯ 𝜌 𝑣 𝜑 𝜑 0𝜌 𝑣 𝜑 𝜑 𝜔 + 𝜌 𝑣 𝜑 𝜑 ⋯ 𝜌 𝑣 𝜑 𝜑 0⋮ ⋮ ⋱ ⋮ ⋮𝜌 𝑣 𝜑 𝜑 𝜌 𝑣 𝜑 𝜑 ⋯ 𝜔 + 𝜌 𝑣 𝜑 𝜑 0−𝑘 𝜑 −𝑘 𝜑 ⋯ −𝑘 𝜑 𝑘 ⎦⎥⎥
⎥⎤, 

(16)

𝐹 = 𝜌 𝜑 ,𝜌 𝜑 ,⋯ ,𝜌 𝜑 , 0 , 
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where: 

𝜌 = 2𝑀𝑚𝑙 ,     𝜌 = 2𝑀𝑚𝑙 ,     𝜌 = 2(𝑀 + 𝑀 )𝑔𝑚𝑙 ,     𝜑 = sin𝑛𝜋𝑣𝑡𝑙 , 𝜑 = 𝑛𝜋𝑣𝑙 cos𝑛𝜋𝑣𝑡𝑙 ,     𝜑 = − 𝑛𝜋𝑣𝑙 sin𝑛𝜋𝑣𝑡𝑙 . 
4. Effect of velocity on dynamic response of bridge without simplifying wheel acceleration 

For the dynamic response of the wheel mass coupled acceleration of a high-speed vehicle on 
the bridge, it is necessary to analyze the influence of the last two terms of Eq. (12) (𝑖𝑖) and (𝑖𝑖𝑖) 
on the dynamic response of the vehicle-bridge coupling system [1, 5]. 

In this section, the influence of wheel acceleration on the bridge’s dynamic response is 
analyzed without simplification under four speeds: 20 m/s, 25 m/s, 30 m/s and 35 m/s. The 
calculating model of Eq. (12) is defined as Model A, and the model neglecting (𝑖𝑖) and (𝑖𝑖𝑖) is 
defined as Model B. Fig. 2 shows the vertical displacement response of the two models at different 
speeds. The maximum displacement of the structure and the maximum displacement ratio of the 
two models are shown in Table 1. 

Table 1. The dynamic responses of the bridge structure 𝑣 velocity(m/s) 𝐷   𝐷   𝐷  /𝐷   
20 79.1 74.2 1.0660 
25 86.3 74.4 1.1599 
30 99.1 73.1 1.3557 
35 123.6 70.5 1.7532 𝐷  and 𝐷  represent the maximum displacement in the span of Model A and Model B 

 

 
a) 𝑣 = 20 m/s 

 
b) 𝑣 = 25 m/s 

 
c) 𝑣 = 30 m/s 

 
d) 𝑣 = 35 m/s 

Fig. 2. Comparisons of dynamic response of the mid-span at different speeds 

It can be observed that 𝐷  increases continuously with the increasing velocity. However, 𝐷  changes slightly with the increase in velocity, varying between 70 mm and 75 mm. With 
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the increase in velocity, the position of the maximum mid-span displacement gradually recedes 
for both Model A and Model B. When the speed is 35 m/s, the maximum mid-span displacement 
of Model A and Model B occurs when the vehicle is about to leave the bridge. 

When the speed is 𝑉 ≤ 20 m/s, Model A and Model B exhibit little difference in their mid-span 
displacement response. However, when the speed is 𝑉 ≥ 30 m/s, the ratio 𝐷  /𝐷  is 
1.3557, and model A should be adopted. When the speed is 20 m/s < 𝑉 < 30 m/s, the appropriate 
model can be selected according to the calculation accuracy requirements. 

5. Conclusions 

In this paper, the effect of the geometric nonlinearity of bridges on the dynamic response of 
the vehicle-bridge coupling system is taken into account, and the following conclusions are 
obtained: 

(1) The system equation has a non-linear matrix term when the geometric nonlinearity of the 
bridge is considered. The non-linear matrix is related only to the nature of the bridge structures, 
and the parameters of the vehicles have no influence on the matrix.  

(2) The value of the non-linear matrix will increase as the inertia moment decreases when the 
other conditions remain unchanged. 

(3) The influence of wheel acceleration on the bridge dynamic response is analyzed without 
simplification under four speeds. It is acceptable to neglect the influence of wheel acceleration at 𝑉 ≤ 20 m/s, while it is necessary to consider the significant influence of the wheel acceleration at 𝑉 ≥ 30 m/s. 
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