
 

190 VIBROENGINEERING PROCEDIA. JUNE 2020, VOLUME 32  

A test for multidimensional reducible diffusion models 

Wang Jun1, Chen Ping2 
Nanjing University of Science and Technology, Nanjing, China 
2Corresponding author 
E-mail: 1wangjun19901998@sina.com, 2pancigm89@163.com 
Received 22 March 2020; accepted 9 April 2020 
DOI https://doi.org/10.21595/vp.2020.21388 

Copyright © 2020 Wang Jun, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. We develop a test for multidimensional diffusion models with known drift term based 
on transformation of diffusion matrix. The test in this article is different from the traditional 
method. We use a one-to-one transformation to transform the original model into a unit diffusion. 
Our approach is not only effective for stationary processes. On the other hand, our test performs 
well both on size and power. 
Keywords: multidimensional diffusion models, reducible diffusion, one-to-one transformation, 
hypothesis and test. 

1. Introduction 

A random variable 𝑋  satisfies the following stochastic differential equation and parametric 
specification model: 𝑑𝑋 𝜇 𝑋 𝑑𝑡 𝜎 𝑋 𝑑𝑊 , (1)𝑑𝑋 𝜇 𝑋 ,𝜃 𝑑𝑡 𝜎 𝑋 ,𝜃 𝑑𝑊 , (2)

where the random variable 𝑋 𝑋 ,𝑋 , … ,𝑋  is a d-dimension state vector on 𝑆 ⊂ 𝑅 , 
drift coefficient 𝜇 𝑋  and 𝜇 𝑋 ,𝜃  are both 𝑑-dimension vector, diffusion coefficient 𝜎 𝑋  and 𝜎 𝑋 ,𝜃  are both 𝑑 𝑚 matrix 𝑚 ≤ 𝑑, and 𝑊  is a m-dimension standard Brownian motion.The 
focus of this paper is on testing the validity of the parametric specification Mode (2) based on a 
set of discretely observed data 𝑋 . 

For testing one-dimensional diffusion, in a pioneering work, Ait-Sahalia proposed an approach 
for testing the parametric specification model based on marginal density [1]. The advantage of the 
test is that the parametric marginal density of most of the diffusion processes is easy to know. But 
the method has several limitations. Hong and Li, Chen and Gao have an important development 
after Ait-Sahalia’s work [2, 3]. Separately, the above two articles presents two different methods 
even though both of the methods are based on TPDF (transition probability distribution density). 
Chen shows that the method of Hong and Li will excessively accept the null hypothesis [4].  

The work in multi-dimensional case is not going well. Hong and Li's method can be used in 
multidimensional case. But the result is not very satisfactory. Song develops a martingale 
approach [5]. “Martingale Problems” is used to transform null hypothesis several times. Then, the 
multi-dimensional problem is broken into multiple one-dimensional problems. Their method 
considers all relationship of any two variables, so the difficulty of calculation is geometric growth. 
This is the so-called dimensional disaster. 

Based on Hermite series expansion, Ait-Sahalia makes a breakthrough in giving the 
closed-form of the approximate TPDF for a univariate time-homogeneous diffusion [6]. 
Ait-Sahalia extends his previous work to the multidimensional diffusions by using Kolmogorov 
equations [7]. On the basis of Ait-Sahalia, Choi proposes the approximate TPDF of 
multidimensional time-inhomogeneous diffusion models [8, 9]. In recent years, there are some 
other works on diffusion model testing [4, 10-12]. 

In this paper, we propose a new test method moved by Ait-Sahalia [7]. For most of diffusion 
processes, we can transfer diffusion 𝑋 into a diffusion 𝑌 whose diffusion matrix 𝜎  is the identity 
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matrix by a one-to-one transformation. Then, we test if the diffusion matrix 𝜎  is an identity 
matrix.  

Our method has 3 advantages: (a) The condition of the strictly stationary process is not needed. 
Whether calculating the marginal density or the transitional density, the process needs to be strictly 
stationary process. While our method is adapted to non-stationary process. Only if the diffusion is 
a strictly stationary process, we can give the nonparametric estimator of TDPF. But our method 
does not need to calculate the nonparametric estimator of TDPF. (b) Our test improves the result 
of size and power. (c) It also works for more complicated cases. The most important improvement 
is dimensional disaster can be avoided.  

The structure of the paper is as follows. In Section 2, we state the setup and assumptions. 
Section 3 reports the procedure and main results of the test. Simulation studies and empirical 
application are reported in the next two sections. At last, we conclude the discussion.  

2. Setup and assumptions 

Assumption 1. 𝑆  is a product of 𝑚 intervals with limits 𝑥  and 𝑥 , where possibly 𝑥 = −∞ 
and 𝑥 = +∞, in which case, the intervals are open at infinite limits.  

Assumption 2. ∀𝑥 ∈ 𝑆 , the matrix 𝑎(𝑥) ≡ 𝜎(𝑥)𝜎 (𝑥) is positive definite. 
Assumption 3. For 𝑖, 𝑗 = 1,2, … ,𝑚, 𝜇 (𝑥) and 𝜎 (𝑥) are infinitely differentiable with respect 

to 𝑥 ∈ 𝑆  and 𝑡 ∈ 0, +∞). 
Assumption 4. There is a constant 𝐾 > 0 such that for all 𝑥 ∈ 0, +∞) × 𝑆 : ‖𝜇(𝑥)‖ ≤ 𝐾(1 + ‖𝑥‖ ),     ‖𝜎(𝑥)‖ ≤ 𝐾(1 + ‖𝑥‖ ). (3)

Assumption 3 and Assumption 4 ensure the uniqueness and existence of the solution of the 
Eq. (1) respectively. Indeed, Assumption 3 implies in particular that the coefficients of the 
stochastic differential equation are locally Lipschitz under their assumed (once) differentiability, 
which can be seen by applying the mean value theorem. And Assumption 4 can be relaxed in 
specific examples; it is not possible to do so in full generality. 

3. Approach and test statistics 

3.1. Reducible diffusions 

Definition 1. If and only if there exists a one-to-one transformation of the diffusion 𝑋 into a 
diffusion 𝑌  whose diffusion matrix 𝜎  is the identity matrix, we can say that diffusion 𝑋  is 
reducible. There exists an invertible function 𝛾(𝑥) which is infinitely differentiable in 𝑋 on 𝑆 , 
such that 𝑌 = 𝛾(𝑋 ) satisfies the stochastic differential equation on the domain 𝑆 : 𝑑𝑌 = 𝜇(𝑌 )𝑑𝑡 + 𝑑𝑊 . (4)

If diffusion is reducible, the change of variable 𝛾 satisfies ∇𝛾(𝑥) = 𝜎 (𝑥), by Ito’s lemma. 
One-dimensional diffusion is reducible, by the simple transformation: 

𝑌  ≡ ∇𝛾(𝑋 ) = 𝑑𝑢𝜎(𝑢), (5)

where the lower bound of integration is an arbitrary point in the interior of 𝑆 . The differentiability 
of 𝛾 ensures that 𝜇  satisfies assumption 3. This change of variable is a Lamperti transform which 
plays a critical role in the derivation of closed-form Hermite approximations to the transition 
density of univariate diffusions. In next section, we give the method to solve the case that 1/𝜎(𝑢) 
cannot be integrated in closed form. For multivariate case, not every diffusion is reducible. It 



A TEST FOR MULTIDIMENSIONAL REDUCIBLE DIFFUSION MODELS.  
WANG JUN, CHEN PING 

192 VIBROENGINEERING PROCEDIA. JUNE 2020, VOLUME 32  

depends on the specification of its σ matrix, in the following way. 
Proposition 1. (Necessary and sufficient condition for reducibility). The diffusion 𝑋 is said to 

be reducible if and only if: 𝜕𝜎 (𝑥)𝜕𝑥 𝜎 (𝑥) = 𝜕𝜎 (𝑥)𝜕𝑥 𝜎 (𝑥), (6)

for each 𝑥 in 𝑆  and triplet 𝑥(𝑖, 𝑗, 𝑘) = 1,2, … ,𝑚 such that 𝑘 > 𝑗. If 𝜎 is non-singular, then the 
condition can be expressed as: 𝜕[𝜎 (𝑥)]𝜕𝑥 = 𝜕[𝜎 (𝑥)]𝜕𝑥 . (7)

Reducibility conditions are only for the matrix 𝜎(𝑥) . Under Proposition 1, when 𝜎  is 
nonsingular, 𝑚 (𝑚− 1)/2 equalities must hold in order for an m-dimensional diffusion to be 
reducible. For example, when 𝑚 = 2, only two equalities need to be checked. 

3.2. Irreducible diffusions 

If the diffusion is irreducible, however, one no longer has the option of transforming 𝑋 to 𝑌. 
Notice that sample {𝑋 ,𝑋 , . . . ,𝑋 }  is discrete. Though we can’t give the closed-form of 
transformation for diffusion 𝑋  directly, we can transfer the sample {𝑋 ,𝑋 , . . . ,𝑋 } to sample {𝑌 ,𝑌 , . . . ,𝑌 }  of a unit diffusion 𝑌  discretely. For example, Ait-Sahalia points out that the 
diffusion is irreducible if 𝜎 is like case 𝜎 : 𝜎 = 𝜎 (𝑥 ) 00 𝜎 (𝑥 ) , 𝜎 = 𝑎(𝑥 )𝑏(𝑥 ) 𝑎(𝑥 )𝑐(𝑥 )0 𝑑(𝑥 ) . (8)

Because 𝜎  depends on 𝑥 . In practice, we treat the process of variable 𝑥  and 𝑥  in 𝑋  as 
one-dimensional diffusion separately. So 𝑥  can be seen as a constant even though the 𝑥  changes 
every moment. Fortunately, the sample of 𝑥  is observed so that we can transform the sample of 𝑥  to the sample of a unit diffusion 𝑦 . 

If 𝜎  just depends on 𝑥 , the diffusion process is reducible. Like 𝜎 , we treat 𝑏(𝑥 ) in 𝜎  
as constant. The matrix is similar to a diagonal matrix. Then it is like case 1.  

Proposition 2. If irreducible diffusion 𝑋 is diagonalized, we can transform the sample of 
diffusion 𝑋 to a sample which belongs to a unit diffusion 𝑌. 

3.3. Hypothesis and test statistics 

With known drift function, the hypothesis is as follows: 𝐻 :𝑃[𝜎(𝑋 ,𝜃) = 𝜎 (𝑋 )] = 1,     ∃  𝜃 ∈  Θ,     𝐻 :𝑃[𝜎(𝑋 ,𝜃) = 𝜎 (𝑋 )] < 1,       ∀  𝜃 ∈  Θ. (9)

By Proposition 1 and Proposition 2, there exists a one-to-one transformation of a reducible 
diffusion to unit diffusion. So we just need to test whether the diffusion function is unit diffusion. 
We can transfer the reducible diffusion 𝑋 to unit diffusion 𝑌 or the sample of irreducible diffusion 𝑋 to sample of unit diffusion 𝑌. The hypothesis becomes like the following: 𝐻 :𝑃[𝜎(𝑌 ,𝜃) = 𝐼] = 1,     ∃  𝜃 ∈  Θ,    𝐻 :𝑃[𝜎(𝑌 ,𝜃) = 𝐼] < 1,     ∀  𝜃 ∈  Θ, (10)

where 𝐼 is a unit matrix.  
For the purpose, we need:  



A TEST FOR MULTIDIMENSIONAL REDUCIBLE DIFFUSION MODELS.  
WANG JUN, CHEN PING 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 193 

(1) Estimate the parameter 𝜃 of diffusion function by the observation sample data set {𝑋 } , 
(2) Transfer {𝑋 }  with a unique transformation to sample {𝑌 }  of a unit diffusion 𝑌, 
(3) Estimate the diffusion function of 𝑌 with {𝑌 } . 
Remark 1. In this paper, 𝑋  means the 𝑖-th component in 𝑋. 𝑋  means the observation at 𝑡 - moment of 𝑋. 
(𝑌 − 𝑌 )(𝑌 − 𝑌 )′ can be treated as sample of 𝑎(𝑦). So our test statistics is: 

𝑇 = 𝑛𝑇 𝑌 − 𝑌 𝑌 − 𝑌 . (11)

Theorem 1. Under Assumptions 1-4, 𝑇 → 𝜒 (1) and 𝑇 → 0, 𝑖 ≠ 𝑗, under 𝐻 . 
Theorem 2. Under Assumptions 1-4, 𝑇 → ∞ or 𝑇 → ∞, 𝑖 ≠ 𝑗, under 𝐻 . 
Theorem 1 and Theorem 2 are applicable to one-dimensional situation. 

4. Simulation experiment 

4.1. Size evaluation  

For examining the size of our test for multivariate models, we use a three-factor Vasicek model 
to generate the sample data. We also do size evaluation with Hong and Li's test and Song’s test 
for comparison. Following [16], we set: 

𝑑 𝑋𝑋𝑋 = 0.5 0 0−0.2 1 00.1 0.2 2 𝑋𝑋𝑋 𝑑𝑡 + 1 0 00 2 00 0 3 𝑑𝑊 . (12)

We use the asymptotic critical values (1.28 and 1.65) at the 10 and 5 % levels as the empirical 
rejection rates. Reference [8], we compute 𝑇(𝜃) over a bandwidth set ℋ = {ℎ } . So the results 
in Table 1 are selected to be the result of the optimal bandwidth at the time of simulation. 

Table 1. Sizes of 𝑄(𝑗), Song’s test and our 𝑇(𝜃) test 
 𝑄(𝑗) Song 𝑇(𝜃) 
 𝑋  𝑋  𝑋  Total 𝑋  𝑋  𝑋  Total 𝑋  𝑋  𝑋  Total 

5 %             𝑛 = 250 4.5 3.4   2.9 3.7 4.6 5.1 4.9 6.1 4.3 4.3 3.3 3.4 𝑛 = 500 4.1 2.9 5.0 4.2 5.6 4.8 4.2 5.7 3.6 3.4 2.7 3.0 𝑛 = 1000 3.6 3.8 4.8 4.7 3.9 3.8 3.4 5.2 2.9 2.8 2.3 2.4 
10 %             𝑛 = 250 6.9 5.8 5.9 8.4 8.0 7.9 8.5 9.3 6.5 6.8 7.2 7.4 𝑛 = 500 7.0 6.5 6.9 8.2 7.7 7.6 7.8 8.6 5.8 6.3 6.6 6.9 𝑛 = 1000 7.3 7.1 6.7 7.7 7.0 6.5 7.2 7.7 5.3 5.2 6.1 6.2 

Table 1 shows the result of sizes of three tests for three individual and combined generalized 
residuals separately at the 5 % and 10 % level. Overall, our test has a good performance on sizes 
at both 5 % and 10 % levels for sample sizes as small as 𝑛 = 250 (i.e., about 20 years of monthly 
data). Our test makes an improvement to the size result. 

Then, we consider the test for irreducible case. We use a bivariate Heston Model which is not 
a stationary process to generate 250, 500 and 1000 random samples. Table 2 shows that our test 
statistic also works on non-stationary process and has a good result. This is the most important 
breakthrough of our method. It makes 𝑇(𝜃) test can deal with more complex models: 
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𝑑 𝑋𝑋 = 𝑟𝑋𝑏(𝑎 − 𝑋 ) 𝑑𝑡 + (1 − 𝜌 )𝑋 𝑋 𝜌 𝑋 𝑋0 𝜎𝑋 𝑑𝑊 . (13)

Table 2. Sizes of test for Heston model 
 5 % 10 % 𝑛 = 250 𝑛 = 500 𝑛 = 1000 𝑛 = 250 𝑛 = 500 𝑛 = 1000 𝑋  5.1 4.9 3.6 7.2 6.7 4.5 𝑋  6.4 5.7 3.9 8.1 6.5 5.0 

Total 4.7 5.1 3.3 7.1 6.1 4.4 

4.2. Power evaluation 

𝑑 𝑋𝑋𝑋 = 0.5 0 0−0.2 1 00.1 0.2 2 𝑋𝑋𝑋 𝑑𝑡 + 1 0 00 2 00 0 3 𝑑𝑊 , (14)

𝑑 𝑋𝑋𝑋 = 0.5 0 0−0.2 1 00.1 0.2 2 𝑋𝑋𝑋 𝑑𝑡 + 1 0 00 2 00 0 3 𝑑𝑊 . (15)

Table 3 shows comparison result of 𝑄(𝑗) our 𝑇(𝜃) test. We can see that, for the two models, 
we can determine which factors cause the error of null hypothesis, and from the whole, it is good 
to reject the null hypothesis. It will not accept the wrong null hypothesis too much, even though 
some components may be assumed to be correct. For either the 𝑇(𝜃) test or the 𝑄(𝑗) test, the more 
the sample data 𝑛 is, the larger the 𝑛 is, the more significant the power is. For small samples. The 
power of the test needs to be improved, especially when 𝑛 = 250. In general, power of our test is 
not as good as the size. Due to the principle of hypothesis testing, we can only ask for the size of 
our test to be as good as possible with finite sample. 

Table 3. Power of 𝑄(𝑗) our 𝑇(𝜃) test (in parentheses) 
 𝑋  𝑋  𝑋  Total 

Model 1     𝑛 =250 37.2 (24.2) 6.3 (4.9) 7.7 (3.2) 17.2 (9.4) 𝑛 = 500 63.5 (50.8)  6.7 (4.8) 7.5 (5.2 27.2 (16.3) 𝑛 = 1000 94.6 (97.4)  6.6 (4.7) 6.6 (4.7) 53.7 (48.3) 
Model 2     𝑛 = 250 38.4 (26.7)  26.3 (13.7) 6.7 (4.5) 32.2 (18.2) 𝑛 = 500 74.2 (62.9)  48.1 (37.2) 7.2 (5.3) 65.7 (49.5) 𝑛 = 1000 95.3 (98.3)  78.5 (72.4) 6.8 (5.9) 93.2 (91.1) 

5. Conclusions 

In this article, we have developed a goodness of fit test for multidimensional diffusion models 
with known drift function. We use TPDF directly to construct our test statistic. Our method is 
effective for most multidimensional diffusion models. And it has a good performance in empirical 
applications. Of course, there is something to be improved. Even though our test works for most 
situations, there are still some cases that have not been covered. Next, we will focus on the test of 
drift function. 
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