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Abstract. The vibration-based damage detection and the monitoring of modal data are currently 
based on different Operational Modal Analysis (OMA) approaches. For the continuous monitoring 
of modal quantities, different techniques for automated feature extraction are known. Especially 
in recent years several research groups and companies have been working on the automatic 
interpretation of stability plots. Nevertheless, many questions regarding data pre-processing for 
OMA in time or frequency domain are still unanswered. The present paper deals with issues 
regarding effective pre-processing methods for OMA based on Covariance-Stochastic Subspace 
Identification. In this context, the orthogonality of matrices after model order reduction, etc. are 
referred. This includes, for example, a comparison between the classical calculation of the 
reduced-order matrices and a procedure that preserves the orthogonality of these matrices. A 
method known from the signal denoising and image processing is also successful used to extract 
and select the modes. The mode extraction method is validated with an innovative 
three-dimensional stability plot. This paper does not claim to solve all tasks of an automated OMA, 
but it contributes the calculation of clean, easy to interpret, stability plots, which should facilitate 
the automatic evaluation in the future. The effectiveness of the algorithms is demonstrated by 
means of simulated (3DOF-StateSpace) and measured data of a laboratory structure described in 
[1]. Afterwards the results and the future works on the topic are discussed. 
Keywords: automated operational modal analysis, covariance-driven stochastic subspace 
identification, stabilization diagram, structural health monitoring, three-dimensional stability  
plots, mode extraction. 

1. Introduction 

The Stochastic Subspace Identification (SSI) Algorithm is widely used in modal analysis to 
identify the modal parameters of a system. A distinction is made between data- and covariance -
driven. This paper only deals with the covariance driven (SSI-COV) algorithm. The methods and 
approaches presented hereby are examined against the background of the development of an 
automated modal analysis for damage detection or detection of a system change. First of all, the 
SSI-COV procedure is modified in such a way that the orthogonality of the always required 𝐔 and 𝐕  matrices obtained by means of the singular value decomposition is preserved. Another 
modification, the reconstruction of a shadow Hankel matrix to extract modes is examined. In this 
context shadow Hankel means, that the matrix is no longer a real Hankel matrix because the typical 
characteristics of an block Hankel matrix are partly lost. three-dimensional stability diagrams, 
which are also suitable for experimental modal analysis, are used to visualize the results and to 
evaluate the effectiveness of the method. Both variants (with and without consideration of the 
orthogonality of the order-reduced matrices) are validated with the appropriate modifications on 
the basis of state-space simulation data and experimentally collected measurement data of a two 
mass oscillator. Calculated results are not clustered in this case to show the effectiveness of the 
modifications independently of the cluster method. The aim of the authors of this publication 
report is to facilitate the automatic interpretation of the stability diagrams. For this purpose, this 
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paper follows the approach to improve the results before clustering. 

2. Fundamentals of the SSI-COV algorithm 

In the following, the basics for understanding the SSI-COV procedure are explained. An even 
more comprehensive explanation can be found in the publication [2] by Rainieri and Fabbrochino. 
The SSI-COV algorithm is an output only method for system identification which is based on the 
eigenvalue realization algorithm. The method was originally designed for the impulse excitation. 
[3] The algorithm assumes that a real existing system can be transformed into a state space model. 
Instead of a simple impulse, the system is now ideally excited with uniformly distributed white 
noise, which is not measured. In this context it should be noted that a mode can only be identified 
if it is accordingly excited. During measurements of systems and structures in operation, not only 
the amplitude of the excitation but also the underlying distribution is unknown, which means that 
modes in different frequency ranges can be excited stronger or weaker, which can make a reliable 
detection difficult. Under the assumption of stochastic excitation, the following equations and 
relationships of the state space representation are applicable. 

State space equation: 𝐳௞ାଵ = 𝐀ௗ𝐳௞ + 𝐰௞. (1)

Measurement equation: 𝐲௞ = 𝐂௬𝐳௞ + 𝐯௞. (2)

Output covariance matrix: 𝐑௜ = 𝐄ሾ𝐲௞ା௜  𝐲௞்ሿ. (3)

State output covariance matrix: 𝐆 = 𝐄ሾ𝐳௞ା௜   𝐲௞்ሿ. (4)

With the assumption that all system relevant variables do not correlate with each other, i.e. are 
independent of each other except for the initial covariance and the initial covariance state, the 
following relationship can be established after a series development Eq. (5). 

Output covariance to state space relation: 𝐑௜ = 𝐂௬𝐀ௗ௜ିଵ𝐆. (5)

Auto and cross correlation functions between the sensor signals are arranged in a block Hankel 
matrix. The running variable 𝑖 from equation Eq. (5) corresponds to the number of time steps of 
the correlation function: 

ሺ𝐁௭ሻ𝛂ሺ𝐒௭ሻ𝛃 = (𝐇ఈ,ఉ)଴ = ⎣⎢⎢
⎢⎡ 𝐂௬𝐆 𝐂௬𝐀ௗ𝐆 ⋯ 𝐂௬𝐀ௗఉିଵ𝐆𝐂௬𝐀ௗ𝐆 𝐂௬𝐀ௗଶ 𝐆 … 𝐂௬𝐀ௗఉ𝐆⋮ ⋮ ⋱ ⋮𝐂௬𝐀ௗఈିଵ𝐆 𝐂௬𝐀ௗఈ𝐆 … 𝐂௬𝐀ௗఈାఉିଶ𝐆⎦⎥⎥

⎥⎤. (6)

To determine the system matrix from which the modal parameters are extracted, the Hankel 
matrix Eq. (6) with the dimensions 𝑚 × 𝑚, where 𝑚 is determined as follows Eq. (7): 𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 ∗ 𝑚𝑎𝑥 (𝑖)/2, (7)



METHODS TO ENHANCE THE AUTOMATION OF OPERATIONAL MODAL ANALYSIS.  
MARCEL WIEMANN, LUKAS BONEKEMPER, PETER KRAEMER 

48 VIBROENGINEERING PROCEDIA. MAY 2020, VOLUME 31  

is disassembled into a unitary 𝐔, into an adjoint 𝐕 and into a diagonal matrix 𝐒 by use of a singular 
value decomposition. The following Eq. (8) applies for the diagonal elements of 𝐒. 

Decreasing singular values of 𝐇଴ matrix: 𝜎ଵ ≥ ⋯  ≥  𝜎௠. (8)

With the following relation the 𝐀ௗ matrix can be calculated Eq. (9).  
Estimation of system matrix: 𝐀ௗ = 𝐒௣ିଵ/ଶ𝐔௣𝐇ଵ𝐕௣𝐒௣ିଵ/ଶ. (9)

The index 𝑝 corresponds to the model order, i.e. a dimensional reduction of the matrices 𝐔, 𝐒 
and 𝐕 with each calculation process is performed: 

𝐔௣ =  ൥𝑢ଵଵ ⋯ 𝑢ଵ௣⋮ ⋱ ⋮𝑢ଵ௠ ⋯ 𝑢௠௣൩ ,   𝐒௣ =  ൥𝜎ଵଵ ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝜎௡௣൩ ,    𝐕௣ =  ൥𝑣ଵଵ ⋯ 𝑣ଵ௣⋮ ⋱ ⋮𝑣ଵ௠ ⋯ 𝑣௠௣൩. (10)

The determination of the 𝐀ௗ matrix is repeated from the maximum fixed order to the minimum 
fixed order under the assumption that modes that are reproduced in all or many calculation orders 
are stable. The 𝐇ଵ matrix is constructed from the 𝐇଴ and contains all entries of the 𝐇଴ matrix 
except the first column. The discrete system matrix (𝐀ௗ) determined in this way can then be used 
to calculate the modal parameters of interest using an eigendecomposition. Subsequently, cluster 
methods as well as soft and hard validation criteria are applied to extract system relevant modes 
from the calculated modal parameters. 

3. Orthogonality of the 𝐔 and 𝐕 matrices and its influence on the calculation results 

As described in chapter 2, the singular value decomposition is performed only once and order 
reduction is achieved by cutting the corresponding matrices Eq. (10). Due to the single application 
of SVD, there is little calculation effort [4], but with decreasing order (𝑝) the orthogonality 
relationship is increasingly violated. Thus, the following applies Eq. (11). The maximum order 
(𝑝௠௔௫) is equal to the dimension (𝑚) of the Hankel matrix 𝐇଴. The maximum order so directly 
depends on the manually selected number of time steps (𝑖) and on the number of used sensors. 
Weakly excited modes can rather be detected with a high number of time steps. In this example 
the actual maximum order is irrelevant, it is only to show what happens if the current calculation 
order is smaller than the maximum: 𝐔௣ ∙ 𝐔௣் ≠ 𝐈     𝐕𝒑 ∙ 𝐕௣்  ≠ 𝐈,       𝑝 <  𝑝௠௔௫,      𝑝௠௔௫ = 𝑚. (11)

Fig. 1 shows exemplary the loss of the orthogonality in case of the unitary 𝐔 matrix, depending 
on the order. The same applies of course to the adjoint 𝐕 matrix. If the calculation order is nearly 
the maximum order, the structure of an identity matrix can be seen in the diagram. Lower orders 
strongly affect the structure of the matrices 𝐔௣ and 𝐕௣. These remain diagonally symmetrical, but 
no longer have the structure of a unit matrix. In order to preserve the orthogonality, in the 
following a different approach is presented. For this purpose, depending on the calculation order 𝑝, the 𝐇଴ and the 𝐇ଵ matrix are reduced in their dimension, like the singular value matrix in 
Eq. (10). Afterwards the calculation is continued as described in Eq. (9). Due to the repeated 
execution of the singular value decomposition, this procedure is associated with a higher 
computational effort, which, however, is relativized from the authors point of view by a simpler 
interpretation of the examples presented here. 
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Fig. 1. Loss of orthogonality with reduced order; 𝑝௠௔௫ = 116 

Fig. 2 shows the calculated results with the method presented in chapter 2, where the matrices 𝐔௣  and 𝐕௣  loss their orthogonality. Usually the stability diagram is cleared with different 
postprocessing methods (hard and soft validation criteria, modal transfer norm, ...) to enhance the 
interpretability of the results. [5] This was deliberately omitted to ensure the comparability of the 
two methods. The stable frequencies (4,039 Hz and 6,1157 Hz, [1]) are shown in the diagram by 
the vertical dotted line, but there are still many poles in the environment which could give the 
impression of a weaker excited natural frequency. These so-called mathematical poles or partially 
split modes make the interpretation of the results difficult, both manually and automatically. 

 
Fig. 2. Calculated Systempols without postprocessing (classic method 1) of a real 2DOF-system 

The results of Fig. 3 were calculated with the method presented in this chapter, where the 
matrices stay orthogonal. If the diagrams resulting from the calculations are compared with each 
other, it is clearly shown that although mathematical poles were calculated, but these occur much 
more randomly and only actually existing natural frequencies form a continuous straight vertical 
line, which makes it much easier to interpret the stability diagram. Similar results can also be 
achieved with simulated data of a three-mass oscillator. Further studies will show which effects 
this calculation method with more random distributed poles have on the subsequent clustering 
regarding calculation time and precision. 

4. Reconstructed shadow Hankel matrix for mode extraction 

A further approach for calculation of clearly interpretable stability diagrams will be shown in 
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this chapter. Based on a method used by Zhao and Jia described in [6] in the context of signal 
denoising and image processing for compressing images, the following equation Eq. (12) forms 
the necessary framework: 

𝐇𝟎 = ൣ𝐮ଵ,𝐮ଶ, … ,𝐮୮ ൧ ൦𝜎ଵ 0 ⋯ 00 𝜎ଶ ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 𝜎௣൪ ⎣⎢⎢
⎡𝐯ଵ்𝐯ଶ்⋮𝐯௣் ⎦⎥⎥

⎤ = 𝜎ଵ𝐮ଵ𝐯ଵ் + ⋯+ 𝜎௣𝐮௣𝐯௣் , (12)

and 𝑢௜ ∈ ℝ௣×ଵ, 𝑣௜ ∈ ℝ௣×ଵ are column vectors of the respective matrix.  

 
Fig. 3. Calculated Systempols without postprocessing (classic method 2) of a real 2DOF-system 

 
Fig. 4. 3D-Stability plot of 3DOF simulated system and shadow Hankel matrix 

A natural frequency or a harmonic that is found in the recorded acceleration spectrum is shown 
by pairs of singular values. If a natural frequency or a region of interest in the singular value curve 
is identified, Eq. (12) allows the reconstruction of a reduced shadow Hankel matrix (𝐇଴௥௘ௗ), which 
is only reconstructed from the desired singular value pairs with the associated 𝐮௜ and 𝐯௜ vectors. 
The structure of the 𝐇଴௥௘ௗ  is like the original Hankel matrix 𝐇଴, if enough singular pairs are 
selected but the absolute values are different for each cell compared between 𝐇଴ and 𝐇଴௥௘ௗ. If the 
algorithm described in chapter 2 is now continued from Eq. (9) with the algorithm described in 
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Eq. (12), the result for the data of the state space simulation of the accelerations of a 3 
mass-spring-damper system including the first six singular values with the corresponding column 
vectors in two-dimensional space (i.e. order over frequency) is almost identical to the conventional 
calculation. If a third dimension (frequency, order and damping) is added, the advantage of this 
reduction is clearly visible. Without exception, all mathematical poles are now located in the range 
of negative damping. Fig. 4 with the help of this unambiguous allocation, all irrelevant poles can 
be removed. If, for instance, natural frequencies are known from previous analysis and can be 
assigned to the singular value pairs, this allows a very precise selective observation of individual 
frequencies. The shown eigenfrequencies and values for damping fit perfectly to the analytic data. 
Same results are obtained by use of data from the real 2-DOF System [1]. 

5. Summary and outlook of the accomplished work 

The modifications of the classic SSI-COV algorithm presented here, favour the creation of 
clean stability diagrams. If the singular value decomposition is repeated for smaller Hankel 
matrices, the calculation effort increases and due to the decreasing dimensions of the matrices 𝐔௣ 
and 𝐕௣, the accuracy of pole estimation can also be reduced for lower calculation orders. However, 
as can be seen in Fig. 2 and Fig. 3, the interpretability of the stability diagrams is made much 
easier. The reconstruction of the Hankel matrix presented in chapter 3 leads to a loss of the typical 
Hankel structure, without interfering the SSI-COV algorithm. If the model order of the system is 
known, the reconstruction with the corresponding singular values allows an exact calculation of 
the system poles. All other mathematical poles fall out of the grid without application of hard or 
soft validation criteria due to the clearly implausible damping. Eq. (12) allows the removal of 
undesired natural frequencies or harmonics that are found in the acceleration spectrum due to the 
excitation. However, the lack of knowledge about the model order can be a problem in the 
application, as well as the fact that a reconstruction is done with too less pairs of singular values. 
There is a need for further research to transfer the results as shown in Fig. 4 to more complex and 
unknown systems in order to increase the degree of automation of the modal analysis.  
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