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Abstract. The Atomic force microscope (AFM) is an enormously valuable tool in a wide variety 
of applications because of its function to depict in different mediums with the sub-nano-meter 
resolution, and also manipulating objects with nano-meter-scale features and measuring forces 
with better than pico-newton resolution. In this paper, the lumped parameter model is used to 
construct the mathematical model of the AFM cantilever. The cantilever tip, excited by the 
harmonic external force, is under the influence of the tip-sample interaction force. Since, we 
consider the AFM in the operation mode named dynamic contact mode, the  
Deryagin-Muller-Toporov (DMT) force is considered as the interaction force between the 
cantilever tip and the surface of the sample. DMT force causes non-linearity. To solve the equation 
of motion, the Van der Pol method is used to obtain the frequency response equation to investigate 
the non-linearity effect as well as the amplitude of the excitation on the response. The stability of 
steady state motion is investigated. 
Keywords: AFM, tapping mode, Van der Pol averaging, lumped model. 

1. Introduction 

The Atomic force microscope (AFM) which was invented in 1986, [1] was a great 
advancement in profilers. The AFM could achieve extremely high resolutions by utilizing an 
ultra-small probe tip mounted at the cantilever end. At first, the movement of the cantilever was 
monitored with a scanning tunneling microscopy (STM) tip. In [1] the authors proposed that the 
AFM system could be developed by oscillating the cantilever above the surface. A conventional 
AFM in contrast with usual optical microscopes or STM uses a cantilever with a sharp tip to 
construct the topology of the sample surface. The nano-scale size of the tip enables AFM to scan 
at the spatial resolution up to million X. The special feature of the construction of the topography 
of the sample surface in 3D makes AFM unique in comparison with other forms of microscopes. 
Although scanning electron microscopy (SEM) and transmission electron microscopy (TEM) can 
also scan with high resolution, but to scan the sample, preparation of the sample is needed, but in 
AFM there is no need of preparation since in AFM the cantilever tip is in direct contact with the 
surface of the sample. The other advantage of AFM is that any type of samples can be scanned by 
AFM and it has been used widely in different branches of science and technology [2-6]. The AFM, 
which consists of a cantilever at the scale of micro with a sharp probe tip loacted at its end is used 
to probe the sample surface and employed to achieve atomic-scale resolution. The cantilever is 
typically silicon or silicon nitride beam with a tip radius of curvature on the order of nanometers 
which is mounted at the end of the beam. According to Hooke's law, while the tip extends toward 
a sample surface, the cantilever deflects due to the result of interaction forces between the probe 
tip and the surface of the sample. The most significant feature which has effects on the atomic 
force microscope for obtaining proper images is the forces between the tip and sample. It should 
be noted that these forces are not measured directly; the deflection and the stiffness of the 
cantilever are used to calculate these forces [7]. Depending on the situation, (mechanical) contact 
force, Van der Waals forces, chemical bonding, capillary forces, electrostatic forces, magnetic 
forces, etc. are forces which are measured by the AFM. Also, some quantities may simultaneously 
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be calculated as well as a force through the use of specialized types of probe. Typically, a laser 
spot is used to observe the cantilever deflection. The laser spot is reflected from the top surface of 
the cantilever into an array of photodiodes. Hence, mostly a feedback mechanism has been used 
to adjust the tip-to-sample spacing and keep a constant force between the tip and the sample. 
Traditionally, a piezoelectric tube is used to hold the sample on it. Since the goal is to maintain a 
constant force, this tube moves the sample in the vertical direction and also for scanning the 
sample in the horizontal plane. The image of the sample surface is generated by the resulting map 
of the area [8]. Fig.1a illustrates the schematic of a conventional AFM. The dynamic of the AFM 
cantilever in different work modes have been analysed in [9-15]. In this article, we consider the 
AFM in its dynamic work mode which means that the interaction force between the tip of the 
cantilever and the sample surface is the DMT force. We used the Van der Pol averaging method 
to obtain the expression for the frequency response to study the influence of the non-linearity, and 
amplitude of excitation on the response. It followed by investigating the stability of the steady 
state motion. 

 
a) 

 
b) 

Fig. 1. a) Schematic of AFM, b) the AFM cantilever lumped model 

2. Modeling of a tip excited cantilever of AFM in tapping mode 

This section covers the modeling of a tip excited AFM cantilever. To construct the model, we 
use the lumped model of the cantilever as shown in Fig. 1(b). 

One can write the equation of the motion of the system, shown in Fig. 1(b), as: 

𝑚𝑑 𝑦𝑑𝜏 + 𝑏 𝑑𝑦𝑑𝜏 + 𝑘𝑦 = 𝐹 + 𝐹 , (1)

where 𝑚 denoted to the effective mass of the cantilever located at the spring (massless) end. The 
stiffness and corresponding damping coefficient of the spring are designated by 𝑘 and 𝑏. The 
excitation force, 𝐹 , applies on the cantilever tip. There exists another force, sample 
surface-cantilever tip interaction force, acts on the tip. In this work, the DMT force is considered 
as this interaction force, 𝐹 (𝑦(𝜏)). 

These forces, 𝐹 (𝜏) and 𝐹 (𝑦(𝜏)) are: 

𝐹 (𝜏) = 𝑓cos𝜔𝜏,     𝐹 (𝑦(𝜏)) = 𝐴 𝑅6𝑎 + 43𝐸∗√𝑅(𝑎 − 𝑦 + 𝑦) . (2)

In Eq. (2), 𝑓  denotes to the amplitude of excitation, 𝜔  is the frequency of excitation, the 
Hamaker constant is shown by 𝐴 , the tip apex radius is presented by 𝑅, 𝑎  is the inter-molecular 
distance, 𝐸∗ is the effective elastic modulus, and the fixed base frame coordinate distance to the 
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sample is illustrated by 𝑦 . 
Substituting Eq. (2) in Eq. (1) we have: 

𝑚𝑑 𝑦𝑑𝜏 + 𝑏 𝑑𝑦𝑑𝜏 + 𝑘𝑦 = 𝐴 𝑅6𝑎 + 43𝐸∗√𝑅(𝑎 − 𝑦 + 𝑦) + 𝑓cos𝜔𝜏. (3)

To rewrite Eq. (3) in dimensionless format, we introduce dimensionless variables as: 

𝑥 = 𝑦𝑦 ,      𝑡 = 𝜔 𝜏,      𝜁 = 𝑎 − 𝑦𝑦 ,      𝐵 = 𝑏𝑚𝜔 ,       𝑞 = 𝐴 𝑅6𝑎 𝑦 𝑘, 
𝐹 = 𝑓𝑦  𝑘 ,      Ω = 𝜔𝜔 ,      𝐵 = 𝑏𝑚𝜔 ,       𝜔 = 𝑘𝑚 ,       𝑝 = 𝐸∗√𝑅𝑘𝑦 ⁄ , (4)

where 𝑦  is the relax point of the static system, which can be get from Eq. (3) by putting the time 
terms and external excitation force, i.e. 𝑓 in Eq. (3) to zero, i.e.: 𝐴 𝑅6𝑚(𝑎 ) + 43𝑚𝐸∗√𝑅(𝑎 − 𝑦 + 𝑦 ) − 𝑘𝑚𝑦 = 0. (5)

Substituting Eq. (4) in Eq. (3) one can write the dimensionless equation of motion as: 𝑥 + 𝐵𝑥 + 𝑥 = 𝑞 − 𝑝(𝜁 + 𝑥) + 𝐹cosΩ𝑡. (6)

In this paper, dot denotes to derivation with respect to 𝑡. 
3. Van der Pol averaging method 

To solve Eq. (6), in this article, the Van der Pol averaging method is used. To use Van der Pol 
averaging method, first we need to approximate the DMT force around the equilibrium point 𝑦  
as: (𝜁 + 𝑥) = 𝜁 + 32 𝜁 𝑥 + 38 𝜁 𝑥 + 348 𝜁 𝑥 + ⋯. (7)

Defining new variables as: 𝛼 = 𝑞 − 𝑝 𝜁 ,        𝛼 = 32  𝑝 𝜁 ,        𝛼 = 38  𝑝 𝜁 ,        𝛼 = 348  𝑝 𝜁 , 
one can rewrite Eq. (6) as: 𝑥 + 𝜔 𝑥 = −𝐵𝑥 + 𝐹𝑐𝑜𝑠𝛺𝑡 + 𝛼 − 𝛼 𝑥 − 𝛼 𝑥 −⋯− 𝛼 𝑥 , (8)

where 𝜔 = 1 − 𝛼 . 
However, one can suppose that the external excitation frequency is near to the natural 

frequency of the oscillator, where the frequency difference Ω = 𝜔 + 𝛿 is small. The detuning 
parameter, 𝛿, describes how near Ω is to 𝜔 . As one can mention from Eq. (8), the right-hand 
side terms are corresponding to dissipation, external excitation, and non-linearity. Since we 
assume they are small, it is advisable to construct the solution in the quasi-harmonic oscillation 
form with a slow changing amplitude, for which a shortened equation can be derived using 
asymptotic methods [16]. 
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Expressing the solution of Eq. (8): 𝑥(𝑡) = 𝐴(𝑡)exp𝑖𝜔 𝑡 + 𝑐𝑐, (9)

where 𝑐𝑐  denotes to the conjugate part. An additional condition is introduced on the slowly 
changing complex amplitude 𝐴 [16]: 𝐴(𝑡)exp𝑖𝜔 𝑡 + �̅�(𝑡)exp − 𝑖𝜔 𝑡 = 0. (10)

One can write the external force as: 𝐹cosΩ𝑡 = 𝑅𝑒 𝐹(exp𝑖Ω𝑡) = 𝐹2 exp𝑖Ω𝑡 + 𝑐𝑐. (11)

First and second derivative of Eq. (9) with respect to time 𝑡 will be: 𝑥 = 𝑖𝜔 𝐴exp𝑖𝜔 𝑡 − 𝑖𝜔 �̅�exp− 𝑖𝜔 𝑡,𝑥 = 2𝑖𝜔 𝐴exp𝑖𝜔 𝑡 − 𝜔 𝐴exp𝑖𝜔 𝑡 − 𝜔 �̅�exp − 𝑖𝜔 𝑡. (12)

Now, by substituting Eqs. (9), (11) and (12) in (8), we have: 2𝑖𝜔 𝐴exp𝑖𝜔 𝑡 = 𝛼 − 𝐵𝑖𝜔 𝐴exp𝑖𝜔 𝑡 + 𝐵𝑖𝜔 �̅�exp − 𝑖𝜔 𝑡       + 12𝐹exp𝑖Ω𝑡 + 12𝐹𝑒𝑥𝑝 − 𝑖Ω𝑡 − 𝛼 {𝐴 exp2𝑖𝜔 𝑡 + 2𝐴�̅� + �̅� exp − 2𝑖𝜔 𝑡}        +𝛼 {𝐴 exp3𝑖𝜔 𝑡 + 3𝐴 �̅�exp𝑖𝜔 𝑡 + 3𝐴�̅� exp − 𝑖𝜔 𝑡 + �̅� exp − 3𝑖𝜔 𝑡} + ⋯. (13)

Times both sides of Eq. (13) by exp − 𝑖𝜔 𝑡, dividing by 𝑖𝜔  and averaging over the period 
of fluctuations, i.e. 2𝜋 𝜔⁄ , we obtain: 2𝐴 = −𝐵𝐴 − 𝑖 𝐹2𝜔 exp𝑖𝛿𝑡 + 3𝛼 𝑖𝜔 |𝐴| �̅�. (14)

At this time scale, we disregard the change in complex amplitudes, and also the term containing 
the exponent since they change slowly. Then by omitting the rapidly oscillating terms, we come 
to a shortened Eq. (14). 

The solution of Eq. (14) can be written in the form of:  𝐴 = 𝑎exp𝑖𝛽, (15)

where 𝑎 and 𝛽 are real variables. 
Substituting Eq. (15) into (14), and separating the real and imaginary parts, we have: 

2𝑎cos𝛽 − 2𝑎𝛽sin𝛽 = −𝐵𝑎cos𝛽 + 𝐹2𝜔 sin𝛿𝑡 − 3𝛼 𝑎𝜔 sin𝛽, (16)2𝑎sin𝛽 + 2𝑎𝛽cos𝛽 = −𝐵𝑎sin𝛽 − 𝐹2𝜔 cos𝛿𝑡 + 3𝛼 𝑎𝜔 cos𝛽. (17)

Solving for 𝑎 and 𝛽, and introducing 𝜓 = 𝛽 − 𝛿𝑡, we have: 

𝑎 = −12𝐵𝑎 + 𝐹4𝜔 cos𝜓,      𝜓 = 3𝑎 𝛼2𝜔 − 𝐹4𝑎𝜔 sin𝜓 − 𝛿. (18)
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Setting 𝑎 = 𝜓 = 0 in Eq. (18), one obtains: 

2𝐵𝑎𝜔 = 𝐹cos𝜓,       3𝑎 𝛼2𝜔 − 𝛿 4 𝑎𝜔 = 𝐹sin𝜓. (19)

Squaring and summing equations in Eq. (19) leads to the frequency response: 2𝐵𝑎𝜔𝐹 + 3𝑎 𝛼2 𝜔 − 𝛿 4𝑎𝜔𝐹 = 1. (20)

To investigate the effect of non-linearity and amplitude of excitation on the response we use 
Eq. (20). Results are shown in Fig. 2. 

Eq. (20) shows that the maximum of the amplitude, 𝑎 = 𝐹 2𝜔 𝐵⁄ , does not depend on the 𝛼 , the non-linearity. The non-linearity on the response amplitude is illustrated in Fig. 2(a). 

 
a) 

 
b) 

Fig. 2. a) Effect of the non-linearity, b) the excitation amplitude  
on the response amplitude for several detunings 

The effect of the excitation amplitude is shown in Fig. 2(b). As expected by increasing the 
amplitude of the excitation force increases the response amplitude. Also, depending on the value 
of 𝐹 , some of the frequency-response curves are multivalued while others are single valued 
(Fig. 2(b)). 

4. Stability of steady-state motions 

To study the stability of the different portions of the response curves one can use different 
methods [17, 18]. 

To determine the stability of the steady-state motion by studying the singular points nature of 
Eq. (18), we set: 𝑎 = 𝑎 + 𝑎 ,       𝜓 = 𝜓 + 𝜓 . (21)

Substituting Eq. (21) into Eq. (18), expanding for small 𝑎  and 𝜓 . It should be mentioned that 𝑎  and 𝜓  satisfy Eq. (19). Omitting nonlinear terms in 𝑎  and 𝜓 , we get: 

𝑎 = −12𝐵𝑎 − 𝐹4𝜔 sin𝜓 𝜓 ,      𝜓 = 3𝑎 𝛼𝜔 − 𝐹4𝑎 𝜔 𝑎 − 𝐹4𝑎 𝜔 cos𝜓 𝜓 . (22)

Accordingly, the steady-state motions stability depends on the eigenvalues of the right-hand 



DYNAMIC ANALYSIS OF ATOMIC FORCE MICROSCOPE IN TAPPING MODE.  
MOHAMMAD REZA BAHRAMI 

18 VIBROENGINEERING PROCEDIA. JUNE 2020, VOLUME 32  

sides coefficient matrix of Eq. (22). Then, we obtain the eigenvalue equation using Eq. (19): 

− 12𝐵 − 𝜆 −𝑎0 32 𝑎02𝛼3𝜔0𝑛 − 𝛿
− 1𝑎0 92 𝑎02𝛼3𝜔0𝑛 − 𝛿 − 12𝐵 − 𝜆 = 0. (23)

Expanding this determinant one can conclude that the steady-state motions are unstable when: 14 𝐵2 + 32 𝑎02𝛼3𝜔0𝑛 − 𝛿 92 𝑎02𝛼3𝜔0𝑛 − 𝛿 < 0, (24)

and are otherwise stable. 

5. Conclusions 

The AFM is a valuable tool for imaging, measuring, and manipulating material at the 
nano-scale. The surface information is gathered by probing the surface with a mechanical scanner. 
The most precise scanning is done by using piezoelectric elements that facilitate small but accurate 
and precise movements on electronic command. The lumped parameter model has been used to 
construct the mathematical model of the tip excited AFM cantilever under the influence of DMT 
force. Because of the DMT force, the system became nonlinear. To solve the equation of motion, 
the Van der Pol averaging method has been used. The obtained frequency response equation has 
been utilized to examine the effect of non-linearity, and the excitation on the response. The 
stability of steady state motion has been studied. 
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