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Abstract. Stochastic resonance is the use of nonlinear systems to synchronize an original signal 
with noise. This method is commonly used to extract useful signals by reducing noise and has 
been widely used for mechanical weak fault diagnosis. This paper analyzes the characteristics of 
a periodic non-sinusoidal potential function, considers the shape of the model, and introduces a 
time-delay. The steady-state probability density function, effective potential function, and 
signal-to-noise ratio are then analyzed. As a result, a signal detection method for periodic non-
sinusoidal time-delay stochastic resonance (PNTSR) is proposed. Experimental and engineering 
data are used to explain the PNTSR through the simulation. It is found that the PNTSR method 
has better fault detection results when compared to the classic bi-stable stochastic resonance 
method. 
Keywords: stochastic resonance, periodic non-sinusoidal potential, time-delay feedback, weak 
signal, fault detection. 

1. Introduction 

Fault detection technology in industrial production for mechanical equipment has received 
recent attention. This is because equipment failure can cause equipment damage and also affect 
personnel safety [1, 2]. Because large mechanical equipment is often operated at low-speed in 
heavy-duty and noisy working environments, it can be difficult to identify early warnings of 
failure [3]. Early fault signals in key parts (e.g., bearings) are often difficult to detect in noisy 
settings and can lead to inaccurate fault diagnosis [4]. Therefore, for early fault detection, the 
ability to extract weak fault characteristics within a noisy background is important [5]. 

A variety of signal processing methods have been proposed and studied. These include 
empirical mode decomposition [6, 7], wavelet analysis [8, 9], and singular value decomposition 
[10, 11]. These methods are primarily based on noise reduction, having the potential to weaken 
the weak fault characteristic signal while processing noise [12]. Some scholars have developed 
fault detection systems based on traditional signal processing algorithms. These include 
supervised learning systems that predict performance and remaining life of bearings and other 
components [13-15]. Stochastic resonance (SR), on the other hand, uses a different approach for 
filtering noise. It adds moderate noise that can excite the particles in the nonlinear system and 
enhance the amplitude and power of the weak signal. 

SR was first proposed by Benzi [16] as a method to detect weak faults in paleo-meteorological 
glaciers. Since then, SR has been applied to meteorology, biology, and physics [17-21]. Recently, 
SR has been used for mechanical fault detection [22, 23]. Early fault detection SR studies aimed 
to overcome small parameter limits (e.g., fault frequency < 1 Hz) [24-26]; however, the actual 
fault frequency is typically greater than 1 Hz. Lu et al. [27] developed an embedded system based 
on multi-scale noise-tuned SR and applied it to train signal detection. Lei et al. [28] proposed an 
adaptive signal processing mechanism and applied it to fault detection of missing or broken teeth. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2020.21511&domain=pdf&date_stamp=2021-06-22
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Qiao et al. [12] researched an unsaturated SR to overcome the output saturation problem of classic 
bi-stable SR (CBSR). This application effectively improved the signal-to-noise ratio (SNR). Lei 
et al. [29] investigated under-damped SR on the synergistic effect of the damping factor and 
vibration signal. It was shown to obtain both a higher amplitude and larger SNR output. Shi et al. 
[30] proposed multiple fault frequency detection to the background of color noise. Lu et al. [31] 
investigated an SR mechanism for the Woods-Saxon potential function. This could detect weak 
signals at different noise levels. Lu et al. [32] proposed a tri-stable SR model that could further 
amplify the SNR in low SNR signal detection settings. 

All of the aforementioned SR studies are considered to be short-term memory systems as they 
do not consider historical information. A time-delay feedback SR uses historical information of 
the original system and applies it to the negative feedback to form a new system. This may improve 
the detection of weak periodic signals; however, few studies have been conducted using this 
method. Two examples are Lu et al. [33] and Shi et al. [34]. Lu et al. [33] used a time-delay CBSR 
weak fault detection method for the purpose of analyzing bearings; Shi et al. [34] investigated the 
SR of a three-stable system with a time-delay feedback. Although these two methods considered 
time-delay, both were directed to bi-stable or tri-stable nonlinear systems with a single potential 
structure. Therefore, it is impossible to form a perfect nonlinear system structure and match 
complex vibration signals. The synergy between time-delay feedback, system parameters, and 
vibration signals is also not considered which can affect the enhancement ability of SR. 
Furthermore, the global optimization ability of genetic algorithms, time-delay feedback, system 
parameters, and vibration signals is synergistic. Therefore, these should also be included to 
achieve the best SNR output using the most optimal parameter settings. 

This paper presents a periodic non-sinusoidal time-delay SR (PNTSR) model and applies it to 
bearing fault detection. The PNTSR model has a richer potential model structure with coefficients 
that can be adjusted to better match with the complex vibration signals. The time-delay is 
introduced on the basis of a traditional SR system, allowing the model to incorporate the influence 
of historical factors. The second part of this paper analyzes the characteristics of the PNTSR model 
and discusses the effective potential function (EPF), steady-state probability density function 
(SPDF), and SNR. The third part describes the weak fault detection strategy and simulation for 
the PNTSR model. The paper then verifies the PNTSR method using experimental and 
engineering data and concludes with a summary of the findings. 

2. PNTSR introduction 

2.1. Model of PNTSR 

SR is the synergy between noise and weak signals in a nonlinear system. The appropriate 
amount of noise and weak signals are used to drive the particles to move periodically into the 
potential wells on both sides to detect weak signals. CBSR methods are based on the bi-stable 
potential model: 𝑈௖ሺ𝑥ሻ = 12𝑎𝑥ଶ + 14 𝑏𝑥ସ, (1)

where 𝑎 and 𝑏 are non-zero values. By adjusting 𝑎 and 𝑏, different potential model shapes can be 
obtained. However, this article introduces a new potential model [35]: 𝑈ሺ𝑥ሻ = 𝑈଴ሺ1 − 𝑟ሻଶ 1 − cos𝑥ሺ1 + 𝑟ଶ + 2𝑟cos𝑥ሻ. (2)
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Fig. 1. The shape of 𝑈ሺ𝑥ሻ depends on the parameter𝑟. Assuming 𝑈଴ = 1, 𝑈ሺ𝑥ሻ 

is plotted for a) 𝑟 = –0.6, b) 𝑟 = 0, c) 𝑟 = 0.4, and d) 𝑟 = 0.6 

  

  
Fig. 2. The peak value of 𝑈ሺ𝑥ሻ depends on 𝑈଴:  

a) 𝑈଴ = 0.1, b) 𝑈଴ = 0.25, c) 𝑈଴ = 0.5, d) 𝑈଴ = 0.75, where 𝑟 = 0.4 
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The potential has periodicity but belongs to a non-sinusoidal function, and the period is 2𝜋 
(Fig. 1, Fig. 2). As you can see from Fig. 1 that the parameter 𝑟 determines the roundness of the 
barrier and the width of the potential well. The smaller parameter 𝑟 is, the smoother the barrier 
will be, and the potential well becomes wider. Fig. 2 illustrates that the parameter 𝑈଴ controls the 
peak of the barrier, the larger 𝑈଴ , the higher the barrier. Therefore, adjusting the size of the 
parameters 𝑟 and 𝑈଴ determines the shape of the potential structure. Comparing with the CBSR 
system, the periodic non-sinusoidal potential model has multiple potential wells, when the noise 
is too large, multiple potential wells can absorb part of the noise energy and reduce noise 
interference; the periodic non-sinusoidal potential model can achieve independent adjustment of 
the well width and the barrier height, and a richer potential model structure can be formed by 
adjusting the parameters. 

2.2. Impact of the time-delay feedback on EPF, SPDF, and SNR 

Time-delay feedback SR is based on CBSR, which introduces historical information from the 
original short-term memory system to the long-term memory system, and the classical bi-stable 
delay system is: 𝑑𝑥ሺ𝑡ሻ𝑑𝑡 = 𝑥ሺ𝑡ሻ − 𝑥ଷሺ𝑡ሻ + 𝜆𝑥ሺ𝑡 − 𝜏ሻ + 𝐴cosሺΩ𝑡ሻ + √2𝐷𝜉ሺ𝑡ሻ. (3)𝐴cos(Ω𝑡)is a extracted signal, 𝐴 is signal strength, and Ω represents the phase. 𝜆 represents 
the feedback strength, 𝜏 represents the time-delay. 𝐷 stands for noise intensity, 𝜉(𝑡) stands for 
external noise. We consider a delay period non-sinusoidal potential system driven by a weak 
periodic signal. Substituting Eq. (2) into Eq. (3) gives: 𝑑𝑥(𝑡)𝑑𝑡 = 𝑈଴(1 − 𝑟)ଶ sin𝑥(𝑡) + 2𝑟sin𝑥(𝑡)൫1 − cos𝑥(𝑡)൯൫1 + 𝑟ଶ + 2𝑟cos𝑥(𝑡)൯ଶ        +𝜆𝑥(𝑡 − 𝜏) + 𝐴cos(Ω𝑡) + √2𝐷𝜉(𝑡). (4)

Eq. (4) is a non-Markov that needs to be simplified to a Markov process. The Fucker Plane is 
as follows [36]: 𝜕𝑝(𝑥, 𝑡)𝜕𝑡 = 𝜕ൣℎ௘௙௙𝑝(𝑥, 𝑡)൧𝜕𝑥 + 𝐷 𝜕ଶ𝑝(𝑥, 𝑡)𝜕𝑥ଶ , (5)

where ℎ௘௙௙ represents the conditional average drift rate to satisfy: 

ℎ௘௙௙ = න 𝑑𝑥ఛ௔
௕ ℎ(𝑥, 𝑥ఛ)𝑝(𝑥ఛ, 𝑡 − 𝜏|𝑥, 𝑡), (6)

where: 𝑥ఛ = 𝑥(𝑡 − 𝜏), (7)ℎ(𝑥, 𝑥ఛ) = 𝑈଴(1 − 𝑟)ଶ sin𝑥(𝑡) + 2𝑟sin𝑥(𝑡)൫1 − cos𝑥(𝑡)൯൫1 + 𝑟ଶ + 2𝑟cos𝑥(𝑡)൯ଶ + 𝜆𝑥ఛ + 𝐴cos(Ω𝑡), (8)

ℎ(𝑥) = 𝑈଴(1 − 𝑟)ଶ sin𝑥(𝑡) + 2𝑟sin𝑥(𝑡)൫1 − cos𝑥(𝑡)൯൫1 + 𝑟ଶ + 2𝑟cos𝑥(𝑡)൯ଶ + 𝜆𝑥 + 𝐴cos(Ω𝑡). (9)

𝑝(𝑥ఛ, 𝑡 − 𝜏|𝑥, 𝑡) is the zero-order approximate Markov transition probability density [37]: 
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𝑝(𝑥ఛ, 𝑡 − 𝜏|𝑥, 𝑡) = 1√4𝜋𝐷𝜏 expቆ− (𝑥ఛ − 𝑥 − ℎ(𝑥)𝜏ଶ)4𝐷𝜏 ቇ. (10)

Eq. (10) brings in Eq. (6) and we get: 

ℎ௘௙௙ = (1 + 𝜆𝜏)𝑈଴(1 − 𝑟)ଶ sin𝑥(𝑡) + 2𝑟sin𝑥(𝑡)൫1 − cos𝑥(𝑡)൯൫1 + 𝑟ଶ + 2𝑟cos𝑥(𝑡)൯ଶ         +𝜆(1 + 𝜆𝜏) + (1 + 𝜆𝜏)𝐴cos(Ω𝑡). (11)

Further derivation can get an Equivalent Langevin equation: 𝑑𝑥(𝑡)𝑑𝑡 = 𝑈଴(1 − 𝑟)ଶ sin𝑥(𝑡) + 2𝑟sin𝑥(𝑡)൫1 − cos𝑥(𝑡)൯൫1 + 𝑟ଶ + 2𝑟cos𝑥(𝑡)൯ଶ + 𝜆𝑥 + 𝐴cos(Ω𝑡)
      +𝜆𝜏 ൥𝑈଴(1 − 𝑟)ଶ sin𝑥(𝑡) + 2𝑟sin𝑥(𝑡)൫1 − cos𝑥(𝑡)൯൫1 + 𝑟ଶ + 2𝑟cos𝑥(𝑡)൯ଶ + 𝜆𝑥 + 𝐴cos(Ω𝑡)൩ + √2𝐷𝜉(𝑡). (12)

Without considering the periodic signal, the EPF can be derived as: 𝑈௘௙௙(𝑥) = (1 + 𝜆𝜏) ൬𝑈଴(1 − 𝑟) 1 − cos𝑥1 + 𝑟ଶ + 2𝑟cos𝑥൰ + 12 𝜆(1 + 𝜆𝜏)𝑥ଶ. (13)

The effect of different 𝜆 and 𝜏 on the EPF is shown in Fig. 3. 

 
Fig. 3. Different 𝜆 and 𝜏 for EPF 

Fig. 3(a) shows that as 𝜆 increases, the potential wells on both sides of the zero point become 
lower, the barrier is relatively lower, and the round trip of the particles between the potential wells 
becomes easier. In Fig. 3(b), with the increase of 𝜏, the potential wells on both sides of the zero 
point rise, and it is easier for the particles to transition from one side well to the other. Comparing 
Fig. 3(a) and 3(b), it can be noted that the 𝜆 is more sensitive to the adjustment EPF than the 𝜏. 
The time delay 𝜏 varies from 1 to 10, and the EPF changes significantly, while the feedback 
strength requires only a small parameter variation range. With further calculation, we obtain the 
SPDF expression: 

𝑝௦௧ = 𝑁exp ൬−𝑈௘௙௙𝐷 ൰, (14)

where 𝑁 is the normalized constant. The SPDF is shown in Fig. 4. 
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Fig. 4. Different 𝜆 and 𝜏 for SPDF 

Different values of 𝜆 have no effect on the peak of the SPDF (Fig. 4(a)). As 𝜆 increases, the 
SPDF is more concentrated. Figs. 4(b) and 4(a) have similar properties. As 𝜏 increases, the peak 
of SPDF does not change. Comparing the two figures, the effect of the feedback strength 𝜆 is more 
sensitive than the effect of the time-delay time 𝜏 on the SPDF. Subsequently the power spectral 
density can be derived as [38]: 

𝑆(𝜔) = 𝑆ଵ(𝜔) + 𝑆ଶ(𝜔) = 𝜋(1 + 𝜆)𝑀ଶ2(𝑁ଶ + Ωଶ) ሾ𝛿(Ω − 𝜔) + 𝛿(Ω + 𝜔)ሿ       + ቈ1 − 𝑀ଶ2(𝑁ଶ + Ωଶ)቉ 2(1 + 𝜆)𝑁𝑁ଶ + 𝜔ଶ , (15)

where 𝑆1(𝜔) and 𝑆2(𝜔) is the power spectrum of the useful signal and external noise, respectively. 𝑁 and 𝑀 are as follows: 

𝑁 = √2(1 + 𝜆)(1 + 𝜆𝜏)𝜋 expቆ− (1 + 𝜆)ଶ(1 + 𝜆𝜏)4𝐷 ቇ, (16)𝑀 = 𝐴𝐷 (1 + 𝜆𝜏)√1 + 𝜆𝑁. (17)

Subsequently, the output SNR can be expressed as 𝑆ଵ(𝜔)/𝑆ଶ(𝜔). Substituting 𝑆ଵ(𝜔) and 𝑆ଶ(𝜔) gives: 

𝑆𝑁𝑅 = 𝑆ଵ(𝜔)𝑆ଶ(𝜔) = √2𝐴ଶ4𝐷ଶ (1 + 𝜆)ଶ(1 + 𝜆𝜏)ଷexp ቈ− (1 + 𝜆)ଶ(1 + 𝜆𝜏)4𝐷 ቉. (18)

As shown in Fig. 5, as the feedback strength 𝜆 increases, the SNR tends to increase first and 
then decrease. Since noise intensity at the detection of a weak fault signal is fixed, the optimum 
SNR should be obtained by changing the delay term. 

3. Detection strategy and simulation for the PNTSR 

3.1. Detection strategy for the PNTSR method 

Because the realization condition of SR is under the adiabatic approximation theory, it satisfies 
the small parameter requirement. Therefore, the frequency shift variable scale to change signal 
scale, and then use the fourth-order Runge-Kutta method and get the output. SNR is the evaluation 
index. The definition of SNR is: 
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𝑆𝑁𝑅 = 10logଵ଴ 𝐴ௗଶ∑ 𝐴௜ଶ − 𝐴ௗଶே ଶ⁄௜ୀଵ , (19)

where 𝑁 represent the data length, and 𝐴ௗଶ  and ∑ 𝐴௜ଶ − 𝐴ௗଶே ଶ⁄௜ୀଵ  correspond to the amplitude of the 
extracted signal and the external noise. The genetic algorithm is used to adjust the parameters 𝑈଴, 𝑟, 𝜆 and 𝜏 to match the complex vibration signals to obtain the optimal output. Therefore, we get 
the PNTSR fault detection method flow:  

(1) Data preprocessing. The signal demodulation methods such as band pass filtering and 
envelope extraction are used to obtain the driving signal. The small parameter limitation is solved 
by the frequency shift variable scale. 

(2) Parameter initialization. Initialize the potential system parameters, time extension and 
feedback strength, and use SNR as the output evaluation index. 

(3) Parameter optimization. Using the global optimization ability of the genetic algorithm, the 
system parameters, time-delay feedback and complex vibration signals work together to obtain 
the optimal values of system parameters, time-delay, and feedback strength. 

(4) Output calculation. The result output is calculated by Eq. (14), and then the SNR is 
calculated by Eq. (15) to ensure the best combination of parameters. 

(5) Signal post processing. The optimal parameters are substituted into the potential model to 
obtain the optimal filtering, which is the spectrum, to realize the identification and diagnosis of 
fault characteristics. 

 
Fig. 5. Effect of time-delay 𝜏 and feedback strength 𝜆 on SNR 

The specific flow chart is as follows (Fig. 6). 

3.2. Simulation verification of PNTSR method 

To verify the PNTSR method, the PNTSR method is analyzed by simulating the rolling bearing 
fault signal. The simulation signal is generated by the following formula: 𝑆(𝑡) = expሼ−𝑑ሾ𝑡 − 𝑛(𝑡)𝑇ௗሿଶሽ ⋅ 𝐴sin(2𝜋𝑓𝑡), (20)

where 𝐴 represents the signal strength, 𝑑 represents the reaction signal attenuation, 𝑛(𝑡) which 
control pulse period. 𝑓 = 79 Hz is the fault frequency. Moreover, the PNTSR method is contrast 
CBSR to emphasize that PNTSR is more effective. 

The simulated clean signal and the noisy signal are shown in Fig. 7(a) and Fig. 7(b), 
respectively, and the corresponding spectrogram is seen in Fig. 7(c). Fig. 7(d) shows the resulting 
envelope spectrum. The spectrum and envelope extraction reveal that the useful signal is 
completely hidden, and fault signal cannot be detected. 
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Fig. 6. Weak signal detection strategy for PNTSR 

 
Fig. 7. Bearing simulation data: a) clean data; b) noisy signal; c) spectrogram; d) envelope spectrogram 
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Fig. 8. a) PNTSR processing signal, b) spectrogram, c) CBSR processing signal, d) spectrogram 

In order to extract the simulated rolling bearing fault signal, the simulated fault signal is 
applied to the CBSR and the PNTSR. Here, the distance between the amplitude of surrounding 
noise and the amplitude of simulated data is represented by the recognition degree. Comparing 
Figs. 8(b) and 8(d), the recognition degree of PNTSR method is 0.153, and the recognition degree 
of CBSR method is 0.01271. In Fig. 8(b), it is apparent that the primary frequency is the fault 
characteristic frequency and the other noises are smaller. In Fig. 8(d), the signal is more seriously 
affected by noise. Thus, we can conclude that the PNTSR has better extraction results. 

4. Experimental verification of PNTSR method 

In the next step, we use the proposed method to detect bearing inner ring with slight wear faults 
in the laboratory. The experimental platform is a comprehensive bench for mechanical equipment 
(Fig. 9). The rotational frequency is 40 Hz, the experimental sampling frequency is 5120 Hz, and 
the bearing inner ring frequency is 217.28 Hz. The processed bearing fault signal is displayed in 
Fig. 10. In Fig. 10(b), the fault frequency is difficult to recognize due to interference from multiple 
high frequency and low frequency noise. However, in Fig. 10(c), although the useful signal 
frequency of 216 Hz, and seriously interfered by low frequency noise. 

 
Fig. 9. Bearing fault simulation platform 

We apply the proposed method to the extraction fault feature of the bearing. Fig. 11(b) shows 
the spectrum output result. The fault frequency is the dominant frequency and the noise component 
is less affected. The recognition degree of the PNTSR method is 0.21. In Fig. 11(d), the CBSR 
output shows that the recognition degree of the faulty constant frequency is 0.04807. Therefore, 
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we can conclude that the PNTSR is further better effective than CBSR in the bearing signal 
diagnosis. 

 
Fig. 10. a) Bearing signal, b) spectrogram, c) envelope spectrogram 

  
Fig. 11. a) PNTSR processing signal, b) spectrogram, c) CBSR processing signal, d) spectrogram 

5. Engineering verification of PNTSR method 

In view of the good results, we apply the proposed method to engineering practice. The 
experimental object used is the rolling bearing of a steel mill and its inner ring fault characteristics 
are identified (Fig. 12). The bearing inner ring useful signal frequency is 24 Hz. The processed 
data is shown in Fig. 13. Because noise is large, the signal contour in the time domain graph is 
very inconspicuous. In Fig. 13(b), the extracted signal frequency of 24.3 Hz is hidden in the noise 
and cannot be discerned. Therefore, applying the PNTSR method processing signal can be seen 
in Fig. 14(a) and (b), which indicates that the signal profile in the time domain graph is relatively 
clear. In Fig. 14(b), the extracted signal frequency of 24.32 HZ, other noise interference is small, 
and the recognition degree of PNTSR method is 0.325. The collected data are applied to the CBSR 
method, the processed signal can be obtained, as shown in Figs. 14(c) and (d). The CBSR method 
has a large noise interference and the recognition degree is only 0.023 (Fig. 14d). Therefore, we 
can conclude that the proposed method not only has good signal extraction effects in simulation 
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and experiments, but is also effective in practical engineering. 

 
Fig. 12. Fault detection of the bearing inner ring of the steel mill. 

 
Fig. 13. a) Engineering verification bearing signal, b) spectrogram, c) envelope spectrogram 

  
Fig. 14. a) PNTSR processing signal, b) spectrogram, c) CBSR processing signa, d) spectrogram 
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6. Conclusions 

In this paper, the PNTSR system was investigated and a method for diagnosing weak faults 
was proposed. Following are the conclusions from this paper: 

1) The introduced periodic non-sinusoidal potential function consists of two structural 
parameters 𝑈଴ and 𝑟. These can be adjusted to obtain a variety of potential models. Notably, 
transitions are more abundant. 

2) The PNTSR system is a multiple potential well negative feedback system. Because of the 
presence of multiple potential wells, this system can absorb excess noise energy and reduce noise 
interference. An additional long memory feedback term was introduced to this system. Under 
suitable conditions, the feedback item can improve the effect of the periodic weak signal detection 
by adding the historical information to the current output. 

3) The system parameters, time-delay, feedback strength, and complex vibration signals work 
synergistically while using the global optimization ability of the genetic algorithm. As a result, 
the SR effect is optimized. 

4) The feasibility of the PNTSR method is verified by simulation, experiments, and rolling 
mill gearbox. In contrast to the CBSR output results, PNTSR is shown to be more effective on 
fault feature extraction with better recognition and less noise frequency interference. 
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