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Abstract. Gearbox is the key component of mechanical transmission system. Accurate fault 
diagnosis of gearbox is of great significance to ensure the operation of rotating machinery. Based 
on the comprehensive simulation test-bed in the laboratory, a gearbox fault diagnosis method 
based on QPSO-KELM is proposed. Firstly, the fault pre planting experiments of gear fault, 
bearing fault and gear bearing mixed fault are carried out on the comprehensive simulation 
test-bed. Then, the vibration signals collected are preprocessed by TSA to eliminate noise. The 
time domain, frequency domain and NASA feature parameters of the preprocessed signals are 
taken as training samples and test samples of QPSO-KELM. The experimental results show that 
the proposed method can effectively solve the problem of gearbox fault pattern recognition, and 
the fault diagnosis accuracy is higher than traditional methods, so the research has certain 
reference significance and engineering application value. 
Keywords: quantum particle swarm optimization, kernel extreme learning machine, gearbox, 
feature extraction, fault diagnosis. 

1. Introduction 

Gearbox is widely used in fans, machine tools, vehicles and other equipments. As a key 
component of mechanical transmission system, gearbox will cause huge economic losses and even 
casualties in case of failure during equipment operation. Therefore, the earlier the fault is found 
in the gearbox and the earlier the maintenance is carried out, the more loss can be reduced. The 
main components of gearbox are shaft, bearing and gear, among which gear failure and bearing 
failure are quite common. 

At present, the mechanical transmission system fault diagnosis research is extensive, and the 
method is diverse. As the most mainstream classification method, intelligent classification 
algorithm has achieved good results in the field of equipment fault diagnosis. Common intelligent 
classification algorithms include neural network [1, 2], support vector machine (SVM) [3-5], 
kernel extreme learning machine (KELM) [6, 7], deep learning [8-10] and other methods. Wang 
[2] proposed a fault diagnosis method based on RDGWPR-MSE and PNN, which is used to realize 
the automatic fault identification of electric submersible pump. Wang and Yan [4] used the energy 
of IMF component after SVD decomposition as feature parameters to input and train SVM model, 
so as to realize bearing fault diagnosis. Saari et al. [5] proposed a fault diagnosis method for wind 
turbine bearing based on one class SVM. Iosifidis A et al. [7] studied the classification method of 
KELM, and achieved good results. Yang Yu et al. [9] proposed a structure adaptive DBN 
algorithm to solve the problem of difficult to determine the structure of DBN, which was 
successfully applied to the fault classification of rolling bearings. Shao et al. [10] successfully 
diagnosed the bearing fault by combining the dual tree complex wavelet packet transform with 
the adaptive DBN algorithm. 

 Compared with these methods, KELM has a stronger comprehensive advantage in sample 
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size, network generalization, calculation speed and accuracy, so KELM is more suitable for 
solving gearbox fault diagnosis problems that require higher calculation speed and accuracy. Since 
the classification capability of KELM network is greatly affected by the value of kernel parameters 
and penalty coefficient, it is necessary to optimize the above structure parameters. Currently, 
genetic algorithm [11], fish swarm algorithm [12], whale algorithm[13], ant colony algorithm  
[14], wolf algorithm [15], particle swarm algorithm [16] and other intelligent algorithms have 
been widely applied in the field of parameter optimization, such as Xu [13] used whale algorithm 
to optimize wavelet kernel extreme learning machine (WKELM) and Wang [17] used the modified 
WKELM wolves algorithm in diagnosing rolling bearing fault; Wu [18] used ant colony algorithm 
for fault diagnosis of rotating mechanical equipment. Pei [19] used particle swarm optimization 
algorithm to optimize KELM for transformer fault diagnosis. Liu [20] proposed the method of 
combining the variational mode decomposition (VMD) with the improved KELM for engine fault 
diagnosis. However, most of the above parameter optimization methods have the problem of long 
calculation time and easy to fall into the local optimum. Therefore, the QPSO-KELM (KELM-
based on Quantum Particle Swarm Optimization) [21-23] was put forward. With strong global 
search ability, the QPSO can find the optimal parameters of KELM, thereby, the learning speed 
and classification accuracy of KELM can be improved and the accuracy of gearbox fault diagnosis 
will also be improved. 

2. Fault diagnosis strategy of gearbox based on QPSO-KELM 

The fault diagnosis process of gearbox based on QPSO-KELM is described as follows: 
(1) Signal acquisition. In general, the closer the sensor is to the source of the vibration, the 

better the signal will be. 
(2) Extract the fault characteristic parameters. The time-domain characteristic parameters, 

frequency-domain characteristic parameters and the characteristic parameters in the technical 
report of NASA were extracted from the collected signals. Then, the corresponding training set 
and test set were selected from all samples in a ratio of 3:1. 

(3) The training of KELM. Aiming at maximizing the training accuracy, the training set is 
input to KELM, and the QPSO algorithm is used to search the optimal parameters. After that, the 
trained KELM can be obtained. 

(4) Calculate the test accuracy. Input the test samples to the trained KELM, the correct 
classification times of test samples will be calculated and the test accuracy will be calculated.  

The above process is shown in Fig. 1. 

 
Fig. 1. The process of fault diagnosis of gearbox based on QPSO-KELM 

In the Fig. 1, the gearbox fault diagnosis process also involves time-domain synchronous 
average algorithm [24], time-domain synchronous resampling algorithm [25, 26], pre-whitening 
algorithm [27], relevant fault characteristic parameters, KELM, QPSO and other relevant contents. 
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2.1. Signal preprocessing  

During the signal acquisition process, the signal are easy interfered by other vibration signals, 
such as the vibration of the bearing of the equipment itself, the vibration of the motor, the meshing 
vibration of the gear independent of the synchronous shaft and the vibration from other machines 
and equipment. As a signal preprocessing technology, time synchronous averaging (TSA) 
technology can eliminate the signal components irrelevant to the synchronous shaft and enhance 
the fault signals of the synchronous shaft gear and its meshing gear, making the gear fault 
diagnosis easier. Where, the reference axis is the synchronous axis and the non-reference axis is 
the nonsynchronous axis. The theoretical equation of TSA is as follows: 

𝑦௡ = 1𝑀 ෍ 𝑥௡ା௠ே,      𝑛 = 1, …𝑁ெିଵ
௠ୀ଴ , (1)

where, 𝑦௡ is the TSA signal, 𝑥 is the original signal, and 𝑀 is the average times. 
In the actual process, the implementation steps of TSA are as follows: 
(1) Determine the zero crossing point of the synchronous axis according to the speed pulse 

signal, that is, the starting or ending position of each rotation of the synchronous axis. 
(2) According to the position of zero crossing, divide the vibration acceleration signal into  𝑀 − 1 segments, and each segment represents the sampling signal of the integer rotation of the 

synchronous axis.  
(3) Perform cubic curve interpolation for each signal segment, so that the sampling points of 

each signal segment are the same. The newly interpolated sampling points are 𝑛 = 2௖௘௜௟௜௡௚൫௟௢௚ଶሺ௚ሻ൯, 
where 𝑔 is the mean of sampling points of each signal segment. 

(4) Stack and average the resampled signals to obtain the time-domain synchronous average 
signal. 

Based on the speed signal sampled at the same angle, TSA resamples the time-domain 
vibration acceleration signal to ensure that each revolution has the same number of sampling 
points, that is, equal angle sampling. The speed signal is usually obtained by the photoelectric 
sensor, and a rotation of the axis produces several pulses. The more pulses generated by a rotation, 
the more accurate the speed signal will be. The position of zero crossing can be obtained by 
rotating speed signal, and it is the key of the TSA algorithm. The gear fault data is mainly the fault 
characteristic parameters extracted from the time-domain synchronous average signal.  

2.2. Extract feature parameters [28]  

After preprocessing, the feature extraction of the preprocessed signal is carried out. The feature 
parameters are the basis for feature classification and fault recognition. The feature parameters 
adopted in this paper include time-domain feature parameters, frequency-domain feature 
parameters and some feature parameters mentioned in the report of NASA.  

Time-domain characteristic parameters include: maximum (𝑋ଵ), minimum (𝑋ଶ), peak-to-peak 
(𝑋ଷ), mean value (𝑋ସ), mean square value (𝑋ହ), root mean square (𝑋଺), variance (𝑋଻), standard 
deviation (𝑋଼), energy (𝑋ଽ), root square amplitude (𝑋ଵ଴), mean square amplitude (𝑋ଵଵ), mean 
square amplitude (𝑋ଵଶ), kurtosis (𝑋ଵଷ), skewness (𝑋ଵସ), waveform index (𝑋ଵହ), peak index (𝑋ଵ଺), 
pulse index (X17), margin index (𝑋ଵ଼), clearance coefficient (𝑋ଵଽ), etc: 

𝑋ଵ = maxሺ𝑥௜ሻ,       𝑋ଶ = minሺ𝑥௜ሻ,       𝑋ଷ = 𝑥୫ୟ୶ − 𝑥୫୧୬,        𝑋ସ = 1𝑁෍𝑥௜ே
௜ୀଵ , 
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𝑋ହ = 1𝑁෍𝑥௜ଶே
௜ୀଵ ,       𝑋଺ = ඩ1𝑁෍𝑥௜ଶே

௜ୀଵ ,       𝑋଻ = max|𝑥௜|,       𝑋଼ = 1𝑁෍ሺ𝑥௜ − 𝑋ସሻଶ,ே
௜ୀଵ  

𝑋ଽ = ඩ1𝑁෍ሺ𝑥௜ − 𝑋ସሻଶே
௜ୀଵ ,       𝑋ଵ଴ = ෍𝑥௜ଶே

௜ୀଵ ,       𝑋ଵଵ = 1𝑁∑ ሺ𝑥௜ − 𝑋ସሻଷே௜ୀଵ 𝑋଺ଷ , 
𝑋ଵଶ = 1𝑁∑ ሺ𝑥௜ − 𝑋ସሻସே௜ୀଵ 𝑋଺ସ ,       𝑋ଵଷ = ൭1𝑁෍|𝑥௜|ଵ/ଶே

௜ୀଵ ൱ଶ ,       𝑋ଵସ = 1𝑁෍|𝑥௜|ே
௜ୀଵ , 

𝑋ଵହ = 𝑋଺|𝑋ଵସ|,        𝑋ଵ଺ = 𝑋଻𝑋଺ ,        𝑋ଵ଻ = 𝑋଻𝑋ଵସ ,         𝑋ଵ଼ = 𝑋଻𝑋ଵଷ ,         𝑋ଵଽ = 𝑋ଵ𝑋ଷ. 
Some common statistical features in the frequency domain are shown below. Feature 𝑝ଵ 

namely mean frequency. Features 𝑝ଶ -𝑝ସ , 𝑝଺ , and 𝑝ଵଵ -𝑝ଵଷ  describe the convergence of the 
spectrum power, reflecting the energy of frequency spectrum. Features 𝑝ହ and 𝑝଻-𝑝ଽ show the 
change of main frequencies which are dominant in the frequency spectrum. The features in 
frequency-domain are calculated from the spectrum of the original signal, which contains more 
effective information than time-domain features: 

𝑝ଵ = 𝑋௠௙ = ∑ 𝑠(𝑘)௄௞ୀଵ𝐾 ,      𝑝ଶ = ∑ (𝑠(𝑘) − 𝑝ଵ)ଶ௄௞ୀଵ 𝐾 − 1 ,      𝑝ଷ = ∑ (𝑠(𝑘) − 𝑝ଵ)ଷ௄௞ୀଵ𝐾(ඥ𝑝ଶ)ଷ , 
𝑝ସ = ∑ ((𝑠(𝑘) − 𝑝ଵ))ସ௄௞ୀଵ 𝐾𝑝ଶଶ ,      𝑝ହ = 𝑋௙௖ = ∑ 𝑓௞𝑠(𝑘)௄௞ୀଵ∑ 𝑠(𝑘)௄௞ୀଵ ,      𝑝଺ = ඨ∑ (𝑓௞ − 𝑝ହ)ଶ𝑠(𝑘)௄௞ୀଵ 𝐾 , 
𝑝଻ = 𝑋௥௠௦௙ = ඨ∑ 𝑓௞ଶ𝑠(𝑘)௄௞ୀଵ∑ 𝑠(𝑘)௄௞ୀଵ ,      𝑝଼ = ඨ∑ 𝑓௞ସ𝑠(𝑘)௄௞ୀଵ∑ 𝑓௞ଶ𝑠(𝑘)௄௞ୀଵ ,      𝑝ଽ = ∑ 𝑓௞ଶ𝑠(𝑘)௄௞ୀଵට∑ 𝑠(𝑘)∑ 𝑓௞ସ𝑠(𝑘)௄௞ୀଵ௄௞ୀଵ , 
𝑝ଵ଴ = 𝑝଺𝑝ହ ,      𝑝ଵଵ = ∑ (𝑓௞ − 𝑝ହ)ଷ𝑠(𝑘)௄௞ୀଵ 𝐾𝑝଺ଷ ,      𝑝ଵଶ = ∑ (𝑓௞ − 𝑝ହ)ସ𝑠(𝑘)௄௞ୀଵ 𝐾𝑝଺ସ , 
𝑝ଵଷ = ∑ (𝑓௞ − 𝑝ହ)ଵ ଶ⁄ 𝑠(𝑘)௄௞ୀଵ 𝐾ඥ𝑝଺ ,      𝑝ଵସ = ඨ∑ (𝑓௞ − 𝑝ହ)ଶ𝑠(𝑘)௄௞ୀଵ∑ 𝑠(𝑘)௄௞ୀଵ . 

In addition to the common time-domain and frequency-domain features, NASA also proposed 
some features, such as FM0, ER, FM4, FM4*, M6A, M6A*, M8A, M8A*, NA4, NA4*, NB4, 
NB4*, ER, EOP, etc. These features are mainly used to assess the gear failure: 

𝐹𝑀0 = 𝑃𝑃௫∑ 𝑃௡ு௡ୀ଴ ,      𝐹𝑀4 = 𝑁∑ ൫𝑑௜ − 𝑑̅൯ସே௜ୀଵቂ∑ ൫𝑑௜ − 𝑑̅൯ଶே௜ୀଵ ቃଶ ,      𝐹𝑀4∗ = 1 𝑁⁄ ∑ ൫𝑑௜ − 𝑑̅൯ସே௜ୀଵቂ1 𝑀ᇱ⁄ ∑ 1 𝑁⁄ ∑ ൫𝑑௝௞ − 𝑑̅௝൯ଶே௞ୀଵெᇲ௝ୀଵ ቃଶ, 
𝑀6𝐴 = 𝑁ଶ ∑ ൫𝑑௜ − 𝑑൯଺ே௜ୀଵቂ∑ ൫𝑑௜ − 𝑑൯ଶே௜ୀଵ ቃଷ ,       𝑀6𝐴∗ = 1 𝑁⁄ ∑ ൫𝑑௜ − 𝑑̅൯଺ே௜ୀଵቂ1 𝑀ᇱ⁄ ∑ 1 𝑁⁄ ∑ ൫𝑑′௝௞ − 𝑑̅′௝൯ଶே௞ୀଵெᇲ௝ୀଵ ቃଷ, 
𝑀8𝐴 = 𝑁ଷ ∑ ൫𝑑௜ − 𝑑̅൯଼ே௜ୀଵቂ∑ ൫𝑑௜ − 𝑑̅൯ଶே௜ୀଵ ቃସ ,       𝑀8𝐴∗ = 1 𝑁⁄ ∑ ൫𝑑௜ − 𝑑̅൯଼ே௜ୀଵቂ1 𝑀ᇱ⁄ ∑ 1 𝑁⁄ ∑ ൫𝑑′௝௞ − 𝑑̅′௝൯ଶே௞ୀଵெᇲ௝ୀଵ ቃସ, 
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𝑁𝐴4 = 𝑁∑ (𝑟௜ − 𝑟̅)ସே௜ୀଵቂ1 𝑀⁄ ∑ ∑ ൫𝑟′௝௞ − 𝑟̅′௝൯ଶே௞ୀଵெ௝ୀଵ ቃଶ ,       𝑁𝐴4∗ = 1 𝑁⁄ ∑ (𝑟௜ − 𝑟̅)ସே௜ୀଵቂ1 𝑀ଵ⁄ ∑ ∑ ൫𝑟′௝௞ − 𝑟̅′௝൯ଶே௞ୀଵெభ௝ୀଵ ቃଶ, 
𝑁𝐵4 = 1 𝑁⁄ ∑ (𝑠௜ − 𝑠̅)ସே௜ୀଵቂ1 𝑀⁄ ∑ 1 𝑁⁄ ∑ ൫𝑠௝௞ − 𝑠̅௝൯ଶே௞ୀଵெ௝ୀଵ ቃସ 𝑠̅,       𝑁𝐵4∗ = 1 𝑁⁄ ∑ (𝑠௜ − 𝑠̅)ସே௜ୀଵቂ1 𝑀′⁄ ∑ 1 𝑁⁄ ∑ ൫𝑠௝௞ − 𝑠̅௝൯ଶே௞ୀଵெᇱ௝ୀଵ ቃସ, 
𝐸𝑅 = 𝑅𝑀𝑆ௗ೔𝑅𝑀𝑆ௗ೔ᇲ = ඨ1 𝑁∑ (𝑑௜)ଶே௜ିଵ⁄1 𝑁⁄ ∑ (𝑑௜ᇱ)ଶே௜ିଵ ,       𝐸𝑂𝑃 = 𝑁∑ (𝑟𝑒௜ − 𝑟̅𝑒̅)ସே௜ୀଵሾ∑ (𝑟𝑒௜ − 𝑟̅𝑒̅)ଶே௜ୀଵ ሿଶ. 
3. Research on classification method based on QPSO-KELM 

3.1. KELM 

In KELM algorithm, the kernel function is introduced into ELM, and the input weights and 
offsets in ELM are replaced by kernel function mapping, which makes the output of the ELM 
more stable and solves the over learning problems. Therefore, the KELM is widely used in 
classification identify areas. 

ELM is a single hidden layer feedforward neural network, and its hidden layer weight does not 
need to be adjusted by feedback regulation. The structure of the ELM is shown in the Fig. 2, 
including an input layer, a hidden layer and an output layer. 

Suppose 𝐙 = ሼ𝐱௜ , 𝐭௜ሽ௜ୀଵே  are 𝑁  training sample sets, where 𝑥௜ = ሾ𝑥௜ଵ, 𝑥௜ଵ,⋯ , 𝑥௜௠ሿ் ∈ 𝐑௠  is 
the input characteristic parameter and 𝑡௜ = ሾ𝑡௜ଵ, 𝑡௜ଵ,⋯ , 𝑡௜௡ሿ் ∈ 𝐑௡ is the sample label, then the 
output function expression of ELM training model is: 

෍𝛽௜ெ
௜ୀଵ 𝑔(𝐰௜ ⋅ 𝐱௜ ൅ 𝑏௜) = 𝑜௜ ,       𝑖 = 1,2,⋯ ,𝑁, (2)

where, 𝑤௜ = ሾ𝑤ଵ௜ ,𝑤ଶ௜ ,⋯ ,𝑤௠௜ሿ and 𝛽௜ = ሾ𝛽௜ଵ,𝛽௜ଶ,⋯ ,𝛽௜௡ሿ் represent the input and output weight 
matrix of the 𝑖 th hidden layer node respectively; 𝑜௝ = ሾ𝑜௜ଵ, 𝑜௜ଶ,⋯ , 𝑜௜௡ሿ்  represents the output 
layer vector of the ELM. 

 
Fig. 2. ELM model 

The goal of ELM training is to make the error between the actual output of the training sample 
and the sample label close to 0, the equation is: 

෍‖𝑜௜ − 𝑡௜‖ே
௜ୀଵ = 0,      𝛽௜𝑤௜𝑏௜෍𝛽௜ெ

௜ୀଵ 𝑔(𝐰௜ ⋅ 𝐱௜ ൅ 𝑏௜) = 𝑡௜ ,      𝑖 = 1,2,⋯ ,𝑁,      𝐻𝛽 = 𝑇. (3)
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So the existence of 𝛽௜, 𝑤௜ and 𝑏௜ can be used to obtain the Eq. (4), as below: 

෍𝛽௜ெ
௜ୀଵ 𝑔(𝐰௜ ⋅ 𝐱௜ + 𝑏௜) = 𝑡௜ ,       𝑖 = 1,2,⋯ ,𝑁. (4)

The Eq. (4) can be expressed as a matrix: 𝐻𝛽 = 𝑇, (5)

where, 𝐻  is the output matrix of the hidden layer, which can be expressed in the following 
equation: 

𝐻(𝑤ଵ,⋯ ,𝑤ெ, 𝑏ଵ,⋯ , 𝑏ெ, 𝑥ଵ,⋯ , 𝑥ே) = ൥𝑔(𝑤ଵ ⋅ 𝑥ଵ + 𝑏ଵ) ⋯ 𝑔(𝑤ெ ⋅ 𝑥ଵ + 𝑏ெ)⋮ ⋯ ⋮𝑔(𝑤ଵ ⋅ 𝑥ே + 𝑏ଵ) ⋯ 𝑔(𝑤ெ ⋅ 𝑥ே + 𝑏ெ)൩ே×ெ, (6)

𝛽 = ൥𝛽ଵ்⋮𝛽ெ்൩ெ×௡ ,      𝑇 = ൥𝑡ଵ் ⋮𝑡ே்൩ே×௡. (7)

For 𝛽, the equation is as follows: 𝛽ᇱ = 𝐻ା𝑇, (8)

where, 𝐻ା represents the inverse matrix of 𝐻, 𝛽ᇱ is the optimal quadratic solution to 𝛽. 
According to the structural optimization and ERM criteria, the output weight 𝛽 of ELM can 

be determined, that is: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:      𝐿௉ಶಽಾ = 12 ‖𝛽‖ଶ + 𝐶 12෍‖𝜉௜‖ଶே
௜ୀଵ ,𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      ℎ(𝑥௜),      𝛽 = 𝑡௜் − 𝜉௜் ,       𝑖 = 1,⋯ ,𝑁, (9)

where, 𝜉௜ = ൣ𝜉௜,ଵ,⋯ , 𝜉௜,௠൧்  represents network calculation error, ଵଶ ‖𝛽‖ଶ  is the structural error, ଵଶ∑ ฮ𝜉௣ฮே௣ୀଵ ଶ is the empirical error, and 𝐶 is the penalty factor. 
Through the optimization of the solution, the optimal solution of 𝛽 can be obtained as follows: 

𝛽 = 𝐻் ൬𝐼𝐶 + 𝐻𝐻்൰ିଵ 𝑇. (10)

Therefore, the output model function of ELM is as follows: 

𝑜௜ = ℎ௜𝐻் ൬𝐼𝐶 + 𝐻𝐻்൰ିଵ 𝑇. (11)

By using kernel operation to replace matrix operation 𝐻 in ELM, the KELM classification 
model can be established. The kernel matrix is defined as: Ω = 𝐻𝐻்: Ω௜,௝ = ℎ(𝑥௜) ⋅ ℎ൫𝑥௝൯  = 𝐾൫𝑥௜ , 𝑥௝൯, (12)

where Ω is the symmetric matrix of 𝑁 × 𝑁 and 𝐾(𝑥,𝑦) is the kernel function. 
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Eq. (11) can be expressed by kernel function as follows: 𝑜௜ = ൣ𝐾൫𝑥௜ , 𝑥௝൯,⋯ ,𝐾൫𝑥௜ , 𝑥௝൯൧𝜆, (13)

where, 𝜆 represents the output weight matrix of KELM. 
Different support vector machines can be constructed by selecting different kernel functions. 

Among the commonly used kernel functions, compared with the polynomial kernel function and 
Sigmoid kernel function, the radial basis kernel function has the advantages of simple parameters 
and strong adaptability to randomly distributed samples. Therefore, a SVM based on radial basis 
kernel function is established in this paper, and its expression is shown as follows: 

𝐾(𝑥, 𝑥௜) = expቆ−‖𝑥 − 𝑥௜‖ଶ𝜎ଶ ቇ. (14)

According to Eq. (9) and (14), it can be seen that KELM contains kernel parameter 𝜎 and 
penalty coefficient 𝐶, and it is necessary to find the optimal parameter to make the classification 
effect of KELM the best. 

3.2. QPSO-KELM 

By quantizing the iterative updating process of particles of PSO algorithm, the QPSO can 
reduce the algorithm complexity, improve algorithm convergence speed and global search ability. 
The basic principles of QPSO are as follows: 

Assume that Ω is the 𝑑-dimensional search space, and the population number of particles in 
the space is 𝑏, then the position of the 𝑖th particle can be expressed as: 𝑉௜ = (𝑣௜ଵ, 𝑣௜ଶ ⋯𝑣௜ௗ). (15)

Suppose the individual optimal position of the particle is 𝑝௜௕௘௦௧, and the global optimal position 
of the particle is 𝑝௚௕௘௦௧, the 𝑝௜௕௘௦௧ and 𝑝௚௕௘௦௧ are as follows: 𝑝௜௕௘௦௧ = (𝑝௜ଵ, p௜ଶ ⋯𝑝௜ௗ), (16)𝑝௚௕௘௦௧ = ൫𝑝௚ଵ,𝑝௚ଶ ⋯ ,𝑝௚ௗ൯. (17)

The particle can find and update its individual optimal position 𝑝௜  and population optimal 
position 𝑝௚ through iterative operation, and the average optimal position 𝑚𝑏𝑒𝑠𝑡 can be introduced 
as the population optimal center. Then the particle optimization process can be expressed as: 

𝑚𝑏𝑒𝑠𝑡 = 1𝑀෍𝑝௜௕௘௦௧ெ
௜ୀଵ = ൥1𝑀෍𝑝௜ଵெ

௜ୀଵ , 1𝑀෍𝑝௜ଶ ⋯ 1𝑀෍𝑝௜ௗெ
௜ୀଵ

ெ
௜ୀଵ ൩, (18)𝑝௜ௗ = 𝜑𝑝௜ௗ + (1 − 𝜑)𝑝௚ௗ ,      𝜑 ∈ (0,1), (19)𝑣௜ௗ = 𝑝௜ௗ ± 𝛼|𝑚𝑏𝑒𝑠𝑡 − 𝑣௜ௗ|ln(1 𝑢⁄ ),       𝑢 ∈ (0,1), (20)

where, 𝛼  is the contraction expansion factor, which is dynamically adjusted in the iterative 
operation according to the Eq. (21): 𝛼 = (𝛼ଵ − 𝛼ଶ) × 𝑁 − 𝑡𝑁 + 𝛼ଶ, (21)

where, 𝑁 represents the maximum number of iterations. 𝛼ଵ and 𝛼ଶ are the initial and final values 
of 𝛼 respectively, usually the two parameters are set as: 𝛼ଵ = 0.5, 𝛼ଶ = 1. 
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According to the basic principle of KELM and QPSO, the network training process which is 
used QPSO to optimize the network structure parameters of KELM is as follows: 

(1) Initialize the position of population particles, and set parameters such as particle swarm 
size, iteration step size, termination conditions and so on. 

(2) Initialize the current position of each particle as 𝑝௜௕௘௦௧, define the classification accuracy 
of KELM as fitness function, and calculate the fitness value of each particle. The position of the 
particle with the maximum fitness value was initialized as 𝑝௚௕௘௦௧. 

(3) Update the particle position according to Eq. (18-20). 
(4) The fitness value of each particle is calculated, and the individual optimal position 𝑝௕௘௦௧, 

the group optimal position 𝑝௚௕௘௦௧ and the group optimal center 𝑚𝑏𝑒𝑠𝑡 are updated based on the 
optimal fitness value. 

(5) Judge whether the termination conditions are met. If so, stop the calculation and output the 
result, if not, return to step (3). 

According to the above steps, the modeling flow chart of QPSO-KELM can be drawn as shown 
in Fig. 3. 

 
Fig. 3. Modeling flow chart of QPSO-KELM 

4. Experimental verification and discussion 

To verify whether the QPSO-KELM is available, the pre planting fault tests are carried out for 
gear fault, bearing fault and gear-bearing mixed fault. The fault simulation test rig is shown in 
Fig. 4. The test rig consists of four parts: the power and control part, the bearing fault simulation 
part (not used), the gear fault simulation part and the data acquisition part (not shown). This section 
mainly uses the gearbox fault simulation part, which is mainly composed of a two-stage reduction 
spur gearbox, a magnetic powder brake (supply the load) and a magnetic powder brake controller 

Initialize particle swarm size, evolutionary 
algebra and particle position (C,σ)

Determine particle fitness function
 (The test classification accuracy of KELM)

Calculate the fitness function value of each 
particle

Update individual optimal location, group 
optimal location and group optimal center
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The end
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(control the load change). 
The perspective and internal structure of the two-stage reduction spur gearbox are shown in 

Fig. 5. The teeth number in the gearbox from high speed shaft to low speed shaft is 41, 79, 36 and 
90. The fault gear is the intermediate shaft pinion gear (gear 3 with 36 teeth). The fault types 
include wear, break and miss teeth. The fault bearing is located in the deep groove ball bearing at 
the end cover of the gear 3 side of the medium-speed shaft (Fig. 5(b)). The deep groove ball 
bearing type is ER-16k, and its size parameters are shown in Table 1. The fault types include inner 
race fault, outer race fault and single roller fault. 

 

Fig. 4. The mechanical fault simulation test bench 

In the test, we set two vibration acceleration sensors in vertical and horizontal directions 
respectively. Both sensors are installed outside the end cover of the fault bearing (Fig. 5(c)), which 
are used to collect the vibration acceleration data in vertical and horizontal directions. The data 
acquisition parameters are set as: sampling frequency 𝑓𝑠 = 20.48 kHz, sampling time 𝑡 = 48 s, 
motor speed 30 r/s (the actual motor speed is about 29.602 r/s). According to the speed of the 
motor, the number of gear teeth of the gearbox and the main dimension parameters of the bearing 
ER-16K (Table 1), the main relevant frequency of the gearbox can be calculated by the calculation 
formula of bearing fault characteristic frequency (Table 2). The calculation results are shown in 
Table 3. 

 
a) Perspective view 

 
b) The inner structure 

 
c) The outer structure 

Fig. 5. The structure of gearbox 

4.1. Bearing fault diagnosis 

Firstly, the single fault of bearing is analyzed. In the experiment, the motor speed is set to 
30 r/s, and the signal sampling frequency is 20.48 kHz. The analysis data is mainly collected by 
sensor1 (vertical direction). The test data types include bearing normal data, rolling element fault 
data, inner ring fault data and outer ring fault data, each type contains 240 groups of data, and 
960 groups of data is in total. The sampling time of each group of data is 2 seconds. 
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Table 1. Main dimensions of bearing ER-16K 
Number of rolling elements 𝑁௕ Ball diameter 𝑑 / inch Pitch diameter 𝐷 / inch Contact angle 𝜃 (°) 

9 0.3125 1.516 0 

Table 2. The formulas of fault characteristic frequencies to bearings 
Name Formulas 

Fault characteristic frequencies of outer race 𝑓஻௉ிை = 𝑁௕2 𝑓௥ ቈ1 − 𝑑cos(𝜃)𝐷 ቉ 
Fault characteristic frequencies of inner race 𝑓஻௉ிூ = 𝑁௕2 𝑓௥ ቈ1 + 𝑑cos(𝜃)𝐷 ቉ 
Fault characteristic frequencies of ball spin 𝑓஻ௌி = 𝐷𝑑 𝑓௥ ቈ1 − 𝑑ଶcosଶ(𝜃)𝐷ଶ ቉ 𝑁௕ is the number of rolling elements, 𝑑 means the Ball diameter, 𝐷 means the Pitch diameter, 𝜃 means 

the Contact angle, 𝑓௥ is the bearing rotation frequency 

Table 3. Relevant frequencies of the gearbox 
Rotating frequency / r∙s-1 Meshing frequency / Hz Fault feature frequency of bearing/ Hz 𝑓௥ଵ 𝑓௥ଶ 𝑓௥ଷ 𝑓௠ଵ 𝑓௠ଶ 𝑓஻௉ிை 𝑓஻௉ிூ 𝑓஻ௌி 

29.602 15.363 6.145 1213.662 553.061 54.882 82.448 35.681 𝑓௥ଵ is the rotating frequencies of high speed axis, 𝑓௥ଶ is the rotating frequencies of medium speed axis, 𝑓௥ଷ 
is the rotating frequencies of low speed axis; 𝑓௠ଵ is the meshing frequencies of gear 1 and gear 2, 𝑓௠ଶ is 
the meshing frequencies of gear 3 and gear 4; 𝑓஻௉ிை is the fault characteristic frequencies of the bearing 
outer race, 𝑓஻௉ிூ is the fault characteristic frequencies of the bearing inner race, 𝑓஻ௌி is the fault 
characteristic frequencies of the bearing ball spin 

When diagnosing the bearing fault, follow the procedure shown in Fig. 1. Firstly, the 
time-domain, frequency-domain and NASA characteristic parameters of the bearing fault were 
extracted from the bearing data of each group, and 960 samples will be obtained. And each group 
of the samples is marked with the following rules: normal-1, roller-2, inner-3, outer-4. Then, the 
training set and test set are selected from all samples in a ratio of 3:1, and the training set is input 
to KELM for training. In order to maximize the test accuracy, QPSO is used to optimize the 
parameters of KELM. Finally, in order to verify the superiority and effectiveness of the method, 
the ELM and PSO-KELM are also applied to bearing fault diagnosis, and the experiment results 
of different methods are used to compare with each other. 

Since the standard elm algorithm uses a single layer feedforward neural network structure, it 
is unnecessary to consider the parameter optimization of ELM. So the parameter optimization 
process of PSO-KELM and QPSO-KELM are analyzed, the results is shown in Fig. 6. Therefore, 
it is only necessary to analyze the parameter optimization process of PSO-KELM and 
QPSO-KELM. 

 
a) 

 
b) 

Fig. 6. a) Iterative process of the two methods, b) the local amplify of a) 
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Fig. 6(a) is iterative process of the two methods, Fig. 6(b) is the local amplify of Fig. 6(a). It 
can be seen from the figure that PSO-KELM and QPSO-KELM algorithm have the highest test 
accuracy from the beginning, which shows that the fault characteristics of bearing single fault are 
obvious, and it can achieve high classification accuracy without parameter iteration optimization. 
The initial parameters setting of QPSO-KELM is 𝐶 ∈ ሾ0.01,1000ሿ , 𝜎 ∈ ሾ0.01,100ሿ , and the 
optomized parameters are 𝐶 = 1000, 𝜎 = 18. 

The final training accuracy and test accuracy of the methods are shown in Table 4. It can be 
seen from Table 4 that both of the training accuracy and the test accuracy of QPSO are the highest 
and reach 99.58 %. The QPSO-KELM classification results of the test dataset are shown in Fig. 7, 
in which there is only one misjudgment point, so the accuracy of the trained QPSO-KELM model 
is reliable. 

Table 4. Bearing fault classification accuracy 
 SVM CNN ELM PSO-KELM QPSO-KELM 

Training accuracy 90.43 % 98.89 % 91.74 % 98.47 % 99.58 % 
Testing accuracy 89.97 % 98.74 % 91.74 % 97.92 % 99.58 % 

 
Fig. 7. Classification results of bearing test dataset based on QPSO-KELM 

4.2. Gear fault diagnosis 

Secondly, the single fault of gear is analyzed. The fault gear is the medium-speed shaft pinion 
in the gearbox, which is gear 3 in Fig. 5(b). In the experiment, the motor speed and the signal 
sampling frequency are the same as in section 4.1. The analysis data is mainly collected by 
sensor 1 (vertical direction). The test data types include gear normal data, worn teeth data, broken 
tooth data and missing tooth data, each type contains 240 groups of data, and 960 groups of data 
is in total. The sampling time of each group of data is 2 seconds. 

When diagnosing the gear fault, follow the procedure shown in Fig. 1. Firstly, the characteristic 
parameters of gear fault in time-domain, frequency-domain and NASA are extracted from each 
group of gear data, and 960 samples will be gotten. And each group of the samples is marked with 
the following rules: normal-1, wear-2, miss-3, break-4. Then, the training set and test set are 
selected from all samples in a ratio of 3:1, and the training dataset is input to KELM for training. 
In order to maximize the test accuracy, QPSO is used to optimize the parameters of KELM.  
Finally, in order to verify the effectiveness of the method and highlight the advantages of the 
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proposed method. The ELM and PSO-KELM are also used for gear fault diagnosis to compare 
with QPSO-KELM. 

The parameters optimization of PSO-KELM and QPSO-KELM are analyzed, the iteration 
process is shown in Fig. 8. It can be seen from the figure that the QPSO-KELM algorithm has the 
highest test accuracy from the beginning, which indicates that the QPSO-KELM has stronger 
learning ability, while PSO-KELM reaches the maximum value at the 11th iteration, which 
indicates that its learning ability is slightly inferior to the method proposed in this paper. The 
initial setting of parameters is the same as that in Section 4.1, and the settings after parameter 
optimization are as follows: 𝐶 = 1000, 𝜎 = 19. 

The final training accuracy and test accuracy of the methods are shown in Table 5. It can be 
seen from Table 5 that both of the training accuracy and the test accuracy of QPSO are the highest 
and the test accuracy reaches 98.75 %. The QPSO-KELM classification results of the test dataset 
are shown in Fig. 9, in which there are only three error points, so the accuracy of the trained 
QPSO-KELM model is available. From the iteration process and fault diagnosis accuracy, it can 
be seen that the fault features of bearing are more obvious than that of gear. Therefore, gear fault 
diagnosis needs less iteration times, but higher test accuracy can be achieved. 

 
Fig. 8. Iterative process of the two methods 

 
Fig. 9. Classification results of gear test dataset based on QPSO-KELM 
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Table 5. Gear fault classification accuracy 
 SVM CNN ELM PSO-KELM QPSO-KELM 

Training accuracy 83.41 % 98.43 % 80.88 % 98.75 % 99.31 % 
Testing accuracy 81.57 % 97.69 % 80.88 % 97.92 % 98.75 % 

4.3. Gear-bearing fault diagnosis 

At last, the composite faults of gear-bearing are analyzed. The fault parts are the gear and 
bearing mentioned in the previous section. There are 10 types of gear-bearing data: normal 
gear-normal bearing data, worn gear – faulty bearing rolling element data, worn gear-faulty 
bearing inner race data, worn gear-faulty bearing outer race data, gear tooth missing-faulty bearing 
rolling element data, missing gear tooth-faulty bearing inner race data, missing gear tooth-faulty 
bearing outer race data, broken gear tooth-faulty bearing rolling element data, broken gear 
tooth-faulty bearing inner race data, broken gear tooth-faulty bearing inner race data. The mixed 
faults of gear-bearing is shown in Table 6. 

In the experiment, the motor speed is set to 30 r/s, and the signal sampling frequency is 
20.48 kHz. The sampling time of each group of data is 2 seconds. The total data is 2472, except 
the data of the normal state (sample size is 288) and the broken tooth- faulty inner race (sample 
size is 264), the sample sizes of the other states are all 240 of each group. 

Table 6. The mixed faults of gear-bearing 

Combinations Gear fault Bearing fault 
Normal Wear Miss Break Normal Roller Inner Outer 

1 +    +    
2  +    +   
3  +     +  
4  +      + 
5   +   +   
6   +    +  
7   +     + 
8    +  +   
9    +   +  

10    +    + 

When diagnosing the gear-bearing fault, follow the procedure shown in Fig. 1. Firstly, the 
feature parameters of gear-bearing fault in time-domain, frequency-domain and NASA are 
extracted from each group of gear-bearing data, and 2742 samples will be gotten. Each group of 
samples is labeled with the following rules: normal-1, wear-roller-2, wear-inner-3, wear-outer-4, 
miss-roller-5, miss-inner-6, miss-outer-7, break-roller-8, break-inner-9, break-outer-10. Then, the 
training set and test set are randomly selected from all samples in a ratio of 3:1, and the training 
dataset is input to KELM for training. In order to maximize the test accuracy, QPSO is used to 
optimize the parameters of KELM. Finally, in order to verify the effectiveness of the method and 
the superiority of the method, the ELM and PSO-KELM are also used for gear-bearing fault 
diagnosis to compare with QPSO-KELM. 

The optimization process of PSO-KELM and QPSO-KELM are shown in Fig. 10. It can be 
seen from the figure that the test progress of QPSO-KELM algorithm reach the highest after six 
iterations, while the PSO-KELM algorithm has no transformation from the beginning, and the 
accuracy is low, indicating that the classification ability of PSO-KELM is weaker than that of 
QPSO-KELM. The initial setting of parameters is the same as that in Section 4.1, and the settings 
after parameter optimization are as follows: 𝐶 = 1000, 𝜎 =20. 

The final classification accuracy of the three methods for mixed faults of gear-bearing is shown 
in Table 7. It can be seen from Table 7 that the training accuracy of QPSO is not the highest in the 
training process, but when comparing the final test accuracy, the classification accuracy of QPSO 
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is far higher than that of the other two calculations, and the test accuracy is 90.13 %. However, 
the test accuracy of the other two methods are no higher than 60 %. The QPSO-KELM 
classification results of the test dataset are shown in Fig. 11. As can be seen from Fig. 11, the error 
points are mainly concentrated in three states: the worn-rolling element fault state, worn-outer 
race fault state and broken-outer race fault state. Therefore, more sensitive feature parameters 
should be extracted for these three states. 

 
Fig. 10. Iterative process of the two methods 

Table 7. Classification accuracy of mixed faults of gear-bearing 
 SVM CNN ELM PSO-KELM QPSO-KELM 

Training accuracy 58.43 % 90.67 % 53.34 % 92.27 % 92.45 % 
Testing accuracy 55.52 % 89.49 % 53.34 % 89.64 % 90.13 % 

 
Fig. 11. Classification results of gear-bearing test dataset based on QPSO-KELM 

5. Conclusions 

A novel QPSO-KELM method is proposed in this paper and applied to gearbox fault diagnosis. 
The method is implemented by using QPSO algorithm to select the proper KELM parameters, 
kernel parameter 𝜎  and penalty coefficient 𝐶 . In order to verify the effectiveness and the 
superiority of the method, the time-domain, frequency-domain and NASA features are collected, 
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the results of the bearing single fault, gear single fault and gear-bearing fault are analyzed. After 
comparing with two other methods (ELM and PSO-KELM), and analyzing the test results, the 
following conclusions can be given: (1) Experimental results show that the proposed method is 
effective, it can identify the types of faults mentioned above; (2) Compared with SVM, ELM, 
CNN and PSO-KELM, OPSO-KELM has more advantages. The accuracy of QPSO-KELM is 
more than 90 % in both training data and test data, which is higher than other methods. 

The study focuses on optimizing the structural parameters of KELM and the application in 
gearbox fault diagnosis. From the analysis of experimental results, however, it can be found that 
there is still a space to improve the identification accuracy of gear-bearing hybrid fault. Since the 
accuracy of fault judgment is closely related to fault feature extraction, in order to further improve 
the fault identification accuracy of composite faults, the next step of the study is to extract more 
sensitive and effective fault feature parameters. 
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