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Abstract. The dynamic stall at high angle of attack is an important aerodynamic problem faced 
by aircraft, and it has always been a hotspot of aerodynamic research. The traditional reduced 
order model (ROM) methods needs to establish an accurate model, and has a high demand for 
experience. In this paper, a novel nonlinear aerodynamic identification method based on recurrent 
neural networks (RNNs) is proposed. The computational fluid dynamics (CFD) method is used to 
calculate the unsteady aerodynamic parameters of the NACA0012 airfoil. A group of sinusoidal 
chirp signals with variable amplitude and frequency are adopted as the excitation signals, and the 
obtained data are used to train the recurrent neural networks, and the ROM of the nonlinear 
aerodynamic model of high angle of attack dynamic stall is obtained. Finally, the aerodynamic 
parameters of a group of composite sinusoidal motion signals different from the training signals 
are predicted by the trained neural networks model and compared with the CFD results. 
Keywords: unsteady aerodynamic identification, recurrent neural networks, computational fluid 
dynamics, high angle of attack, reduced order model. 

1. Introduction 

Dynamic stall refers to the unsteady separation of the flow field around an oscillating or other 
unsteady airfoils when it exceeds the critical angle of attack, which leads to stall. For example, a 
dynamic stall occurs in the flow of a fighter’s post-stall maneuver, helicopter blade rotation, 
aeroengine’s turbine and fan blade flutter. Its main feature is the existence of complex unsteady 
separation vortex and large-scale structure vortex in the flow field, the vortex turbulence separates 
from the leading edge or trailing edge area of the airfoil, and the airfoil keeps stalling until the air 
flow re-adheres to the airfoil. Compared with the static stall, the dynamic stall is more complex. 
The lift, moment and drag characteristics of the airfoil vary with the different motion forms of the 
airfoil, and there will be obvious nonlinear hysteresis phenomenon at the maximum angle of attack 
when the dynamic stall occurs. Once dynamic stall occurs, the consequences are more serious and 
the duration is longer [1]. The aerodynamic coefficient may greatly deviate from the static value. 
So the simple static stall research can’t meet the needs of dynamic stall research. 

At present, the research of dynamic stall mainly adopts numerical simulation or wind tunnel 
test methods. Wind tunnel test can measure the aerodynamic force and pressure of the reduced 
ratio airfoil in the wind tunnel, which can intuitively observe the hysteresis effect of aerodynamic 
force in the process of dynamic stall of airfoil. However, the wind tunnel test method is difficult 
to capture the generation, separation and reattachment of vortices in the oscillating process of 
airfoil, its preliminary preparation and specific wind tunnel test process are very complex, 
expensive and time-consuming, which can only be used for principle research of specific working 
conditions. The numerical simulation method can overcome the shortcomings and difficulties of 
the wind tunnel test [2]. It can simulate the dynamic stall of airfoil under various conditions and 
capture the whole falling off process of the detached vortices. This method has become an 
important way to study the unsteady dynamic stall characteristics. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2020.21612&domain=pdf&date_stamp=2020-12-15
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Numerical methods can be divided into semi empirical model based on test data and 
computational fluid dynamics (CFD) method. Researchers have developed a series of semi 
empirical dynamic stall theoretical models, such as Gangwani model [3], ONERA model [4], 
Leishman-Beddoes (L-B) model [5]. The Gangwani model is the early semi empirical model. The 
ONERA model and Leishman Beddoes (L-B) model are internationally recognized as 
two-dimensional aerodynamic force and widely used. Although the above two methods have 
achieved the engineering application accuracy and greatly reduced the calculation time, the semi 
empirical model is not a strict prediction method, which is only applicable to specific airfoil, and 
there is a big deviation between the calculated value and the test value of the peak value in the 
whole stall process and the aerodynamic force during the reattachment after the flow separation. 
In addition, the semi empirical model can only calculate the aerodynamic force effectively, but it 
can't simulate the details of the vortex flow in the complex separation and reattachment 
phenomenon in the unsteady flow field of the airfoil. It’s difficult to carry out further research for 
semi empirical model due to the above reasons. The computational fluid dynamics method can 
capture the detail of the formation, development, shedding and reattachment process of the vortex 
in the dynamic stall process, which is an important means to study the dynamic stall problem. 
Dubuc [6] used the implicit dual-time step method to solve the Euler equation to study the 
unsteady motion of a NACA0012 airfoil with small amplitude transonic oscillation and accurately 
simulate the hysteresis effect of the airfoil in the shallow stall state. Later, a grid deformation 
algorithm based on transfinite interpolation method was developed and verified by the forced 
oscillation numerical simulation of flap validity of the method [7]. 

The CFD method has a high calculation accuracy, but it needs a lot of time and computing 
resources. Therefore, the reduced order model (ROM) methods for complex nonlinear systems 
have been widely concerned, such as proper orthogonal decomposition (POD) [8], Volterra series 
[9], dynamic mode decomposition (DMD) [10, 11], etc. However, the shortcomings of these 
methods in nonlinear and multi-scale simulation limit their application. Lucia [12, 13] developed 
a kind of unsteady aerodynamic reduced order model based on CFD technology, which was 
successfully used to study the flutter and gust response dynamics of aircraft at transonic speed or 
high angle of attack. However, most of these ROM methods are dynamic linear models, which 
could take into account the static nonlinear characteristics of the flow at transonic speed or high 
angle of attack, but cannot be used for the aerodynamic modeling research with large amplitude 
shock motion, unsteady separation and other dynamic nonlinear characteristics. 

The traditional ROM methods has a high demand for experience, which is difficult to give a 
suitable explicit expression due to the complexity of the nonlinear flow field. The neural networks 
can deal with high-dimensional problems and does not need to give the explicit mathematical 
expression between the input and output of the identification system, which is an ideal tool for 
nonlinear aerodynamic prediction. Marques [14] identified the unsteady aerodynamic forces of 
transonic airfoils using an artificial neural networks with multi-layer functions. Zhang [15, 16] 
proposed a nonlinear unsteady aerodynamic layered reduced order model based on radial basis 
function networks (RBFNN), and used the model to predict the unsteady aerodynamic force, limit 
cycle oscillation and flutter characteristics of AGARD wing 115.6 and NACA 64A010 airfoils. 
Winter [17] proposed a nonlinear aerodynamic reduction scheme based on the series connection 
of a recurrent local linear neural fuzzy model and multilayer perceptron neural networks. Wang 
[18] uses a long-short term memory (LSTM) neural networks to construct a set of hypersurfaces 
representing the reduced fluid dynamic system. Afshar [19] proposes a flow field prediction model 
based on convolutional neural networks (CNNs), which is successful to predict the velocity and 
pressure field in geometry given the pixelated shape of the object and unseen flow conditions. 
Mannarino [20] develops a reduced order method based on continuous time recurrent neural 
networks (CTRNN) identification. Their researches show that deep neural networks identification 
is efficient for dealing with fluid dynamic problems with strong nonlinearity. 

In this paper, a novel reduced order model method based on recurrent neural networks is 
presented to predict the nonlinear unsteady aerodynamic forces at high angle of attack. The 
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unsteady aerodynamic force of NACA0012 airfoil at deep stall is calculated by the CFD method. 
The results are compared with the experimental data, and the effectiveness of the CFD model is 
verified. Two kinds of unsteady aerodynamic forces are calculated by CFD method: a variable 
frequency and amplitude motion is used as the identification training input signals; a composite 
sine signal is used to verify the effectiveness of the identification system. The trained recurrent 
neural networks is used for unsteady aerodynamic force identification, and the results predicted 
by neural networks are compared with the results of CFD. 

2. Recurrent neural networks 

2.1. Networks structure 

Artificial neural networks can be divided into forward neural networks (FNNs) and recurrent 
neural networks (RNNs) according to whether there is feedback nodes. The architecture of basic 
forward neural networks is shown in Fig. 1. 

 
Fig. 1. Architecture of forward neural networks 

There is not delay layer and feedback nodes in the FNNs, which cannot deal with the time 
series problems and dynamic problems. Its mapping relationship between input and output can be 
expressed as: 𝑦 = 𝑓ሺ𝑥ሻ = 𝑓ଶሺ𝑊ଶ𝑓ଵሺ𝑊ଵ𝑥 + 𝑏ଵሻ + 𝑏ଶሻ, (1)

where 𝑦 is the output of the system; 𝑓 represents the transfer function of the system; 𝑥 is the input 
of the system; 𝑓ଵ  and 𝑓ଶ  denote the transfer functions of the neuron, respectively; 𝑊ଵ  and 𝑊ଶ 
represent the weight of the neuron, respectively; and 𝑏ଵ  and 𝑏ଶ  are the biase of the neuron, 
respectively. 

The structure of recurrent neural networks is shown in the Fig. 2. 
Its mapping relationship between input and output can be expressed as: 𝑦ሺ𝑡ሻ = 𝑓൫𝑦ሺ𝑡 − 1ሻ,𝑦ሺ𝑡 − 2ሻ, … ,𝑦ሺ𝑡 − 𝑝ሻ, 𝑥ሺ𝑡 − 1ሻ, 𝑥ሺ𝑡 − 2ሻ, … , 𝑥ሺ𝑡 − 𝑞ሻ൯, (2)

where 𝑦ሺ𝑡ሻ denotes the output of the system at 𝑡 moment; and 𝑥ሺ𝑡ሻ represents the input of the 
system at 𝑡 moment. 

2.2. Optimization algorithm 

The commonly used optimization algorithms of neural networks include: gradient descent 
method; Newton method; Levenberg Marquardt (L-M) method; conjugate gradient method. 
Gradient descent method decreases rapidly in the first few steps, but with the approach to the 
optimal value, the gradient tends to zero, which makes the objective function decline slowly; 
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Newton method can produce an ideal search direction near the optimal value; which could 
converge fast; L-M method combines the advantages of Newton method and gradient descent 
method, which could get the best solution quickly; conjugate gradient method needs less storage, 
but its convergence speed is slower than L-M method and Quasi Newton method. This paper 
adopts the L-M method as the optimization algorithm. 

 
Fig. 2. Architecture of recurrent neural networks 

The L-M method is an iterative technique, which can find the minimum value of multivariate 
function expressed as the sum-of-squares of nonlinear real valued functions [21]: 

𝐸ሺ𝑥ሻ = ෍𝐹௜ଶሺ𝑥ሻ௠
௜ୀଵ , (3)

where 𝐸ሺ𝑥ሻ is the minimum value of multivariate function, 𝑖 is the training pattern index and 𝐹௜ሺ𝑥ሻ is the error for pattern 𝑖, which can be defined by the following formula: 

𝐹ሺ𝑥ሻ = ൦ 𝑦ሺ𝑥, 𝑡ଵሻ − 𝜑ሺ𝑡ଵሻ𝑦ሺ𝑥, 𝑡ଶሻ − 𝜑ሺ𝑡ଶሻ⋯𝑦ሺ𝑥, 𝑡௠ሻ − 𝜑ሺ𝑡௠ሻ൪, (4)

where 𝑦ሺ𝑥, 𝑡௜ሻ and 𝜑ሺ𝑡௜ሻ are scalar functions. 
The weights of RNNs are updated by the following solutions of linear equations: 𝑑௞ = −ሾ𝐽ሺ𝑥௞ሻ்𝐽ሺ𝑥௞ሻ + 𝜆௞𝐼ሿିଵ𝐽ሺ𝑥௞ሻ்𝐹ሺ𝑥௞ሻ, (5)

where 𝐽ሺ𝑥௞ሻ is the Jacobian matric of 𝐹ሺ𝑥௞ሻ; 𝜆௞ is a scalar regulation which controls the modulus 
sum direction of 𝑑௞ and 𝐼 is the identity matrix. When 𝜆௞ is zero, the direction 𝑑௞ is the same as 
the Newton method. As 𝜆௞ tends to infinity, 𝑑௞ tends to the steepest descent direction and the 
mode tends to zero, which means that when 𝜆௞ is large enough, the term 𝐹ሺ𝑥௞ + 𝑑௞ሻ < 𝐹ሺ𝑥௞ሻ 
holds. Therefore, the term 𝜆௞ can be controlled to ensure the descent even if the second-order term 
which will limit the efficiency of the Newton method is encountered. Hence, the search direction 
of L-M method combines the advantages of Newton direction and steepest descent direction. 
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3. CFD simulation of aerodynamic at high angle of attack 

3.1. Grid model 

The spring grid method and transfinite interpolation method, which are widely used at present, 
can effectively avoid the appearance of negative volume and grid distortion, and have certain 
accuracy for small amplitude oscillation motion. However, it is difficult to ensure the grid 
orthogonality and smoothness when the airfoil with large deformation and large amplitude 
oscillation motion, which will result in grid distortion and negative volume and cannot be 
calculated. The nested grid allows the grid in different regions to perform independent parallel 
computing without changing the grid shape, and coupling by interpolation. Therefore, nested grid 
technology is often used to study the dynamic stall of high angle of attack. This work adopt the 
nested grid. 

In this paper, the ICEM is used to generate the computational grid. Firstly, the body fitted grid 
around the airfoil is generated, which is a C-H type foreground structure grid with the boundary 
condition set to overset. Then, the fixed H type background structure grid is generated. The two 
types of grid are merged by interpolation. The distance between the boundary of the background 
grid and the airfoil is 15 times of the chord length. The thickness of the first layer grid on the 
airfoil surface is 0.001 mm, and the growth rate of grid thickness is 1.1. The total number of 
elements is 365482. Fig. 3 shows the structure of the nested grid and the boundary condition 
setting. From the area around the airfoil surface, it can be seen that the grid has better performance 
of orthogonality and smoothness, which provide a good basis for the Reynolds averaged 
Navier-Stokes (N-S) equation to capture the viscous and high angle of attack flow separation. The 
user-defined functions (UDF) is used to define the region motion of the foreground grid in the 
nested grid, which is used to control the motion of the airfoil. 

 
Fig. 3. Nested mesh and local enlargement diagram of NACA0012 airfoil 

3.2. Numerical simulation of unsteady dynamic stall of airfoil 

In this section, the CFD model of NACA0012 airfoil is established, nested grid is employed 
to divide flow field, Transition SST 𝑘–𝜔 model is chosen as the viscous model. According to the 
experiments in reference [22], the airfoil makes large amplitude oscillation around 1/4 chord 
length point. The move equation is shown as bellow: 
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𝛼 = 𝛼଴ + 𝛼ଵ sinሺ𝑘𝜏ሻ, (6)

where 𝛼଴ is the average angle of attack; 𝛼ଵ is the amplitude angle of attack; 𝑘 is the reduction 
frequency; and 𝜏 is dimensionless time (reduction time). 𝑘 and 𝜏 can be defined as follows [23]: 

𝑘 = 𝜋𝑓𝑐𝑢ஶ , (7)𝜏 = 2𝑢ஶ𝑡𝑐 , (8)

where 𝑢ஶ is the flow velocity in the far field; 𝑡 is the time; 𝑓 is the oscillation frequency; and 𝑐 is 
the reference chord length of the airfoil. The Reynolds number based on the chord length is defined 
by the following formula [23]: 𝑅𝑒 = 𝜌𝑢ஶ𝑐𝜇 , (9)

where 𝜌 is the density of inflow air; and 𝜇 is dynamic viscosity. 

3.3. Unsteady aerodynamic verification 

The above method is used to simulate the unsteady aerodynamic force of NACA0012 low 
speed large amplitude oscillation. The calculation conditions are shown in Table 1. The test values 
of this state are given in reference [20]. Other calculation conditions are: solver type is 
density-based; pressure far-field boundary condition is adopted; the boundary of the overlapping 
region is set to overset; and the wall condition is slip free boundary. Firstly, the steady flow field 
of airfoil at the average angle of attack is calculated; then, set the calculated value of the steady 
flow field as the initial value of the unsteady calculation to ensure the accuracy of the transient 
calculation results. The calculation results are shown in Fig. 4. 

 
a) 

 
b) 

Fig. 4. CFD results compared with experiments: a) lift coefficient, b) moment coefficient 

Fig. 4 shows the variation law of lift coefficient and moment coefficient in the process of airfoil 
motion. It can be seen from the figure that both lift coefficient and moment coefficient are 
basically the same as the experiment values [20]. At the same time, the results of CFD can reflect 
the secondary stall which is not reflected in the test results. The results indicate that the calculation 
grid and numerical method adopted in this paper can prediction the nonlinear unsteady 
aerodynamic of airfoil at large angle of attack. 
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Table 1. Nonlinear aeroelastic system parameters 
Parameters Definition Value 𝑢ஶ Far field velocity 14 m/s 𝑐 Reference chord 1 𝑘 Reduction frequency 0.1 𝛼଴ Average angle of attack 10° 𝛼ଵ Amplitude angle of attack 15° 𝑅௘ Reynolds number 1.35×105 𝜌 Density of air 1.226 kg/m3 𝑇 Temperature 288.15 K ∆𝑡 Time step 0.001 s 

4. Results and discussion 

4.1. Training data preparation 

A group of sinusoidal chirp signals with variable amplitude and frequency are used as input 
signals for neural networks training. The maximum amplitude of pitch angle is 15°, and the 
frequency range is 0-3 Hz. The variation law of pitch angle is as follows: 𝛼ଵ = ሺ0.0222𝑡ଶ − 0.667𝑡 + 15ሻ sinሺ0.314𝑡ଶሻ. (10)

This signal is used to establish the motion input of the airfoil, and the unsteady aerodynamic 
force of the airfoil under this motion is calculated by the CFD method as the training parameter 
of the neural networks. The trained RNNs is used to predict the lift and moment coefficient of the 
airfoil. The identification results of neural networks are shown in Fig. 5 and Fig. 6. 

 
Fig. 5. Lift coefficient identification results of chirp input 

The dotted line shows the response of computational fluid dynamics simulation, and the solid 
line shows the results of recurrent neural networks prediction. The two results are agreement very 
good, and it is hard to distinguish one from the other, which means that the trained networks could 
be used to predict the force of the unsteady aerodynamic. 

4.2. Model verification 

In order to verify the effectiveness of the identification model, a new set of composite 
sinusoidal motion signals, which are different from the training signals, are used as the verification 

0 5 10 15 20 25 30
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Li
ft 

co
ef

fic
ie

nt

Time (s)

 CFD Results
 RNN Prediction



UNSTEADY AERODYNAMIC IDENTIFICATION BASED ON RECURRENT NEURAL NETWORKS.  
BO ZHANG, JINGLONG HAN, TUANYUAN ZHANG, RUIQUN MA 

456 JOURNAL OF VIBROENGINEERING. MARCH 2021, VOLUME 23, ISSUE 2  

input signals: 𝛼ଶ = 5 sinሺ2𝜋𝑡ሻ + 3 sinሺ3𝜋𝑡ሻ + 2 sinሺ5𝜋𝑡ሻ. (11)

 
Fig. 6. Moment coefficient identification results of chirp input 

Its maximum amplitude is 10°. Then, the trained neural networks model is used to predict the 
aerodynamic force of the airfoil in this motion. The predicted results are compared with the CFD 
results. The results are shown in Fig. 7 and Fig. 8. 

 
Fig. 7. Lift coefficient prediction  

results of verification signal 

 
Fig. 8. Moment coefficient prediction  

results of verification signal 

The dotted line represents the CFD simulation results, and the solid line represents the RNNs 
prediction results. It can be seen from the figures that the two results are consistent, which 
indicates that the neural networks identification method can approach the nonlinear aerodynamic 
system very well. 

The mean squared error (MSE) of the prediction data is used to evaluate the performance of 
the RNNs, which is defined as: 

𝑀𝑆𝐸 = ∑ ൫𝑦ොሺ𝑖ሻ − 𝑦ሺ𝑖ሻ൯ଶே௜ୀଵ 𝑁 , (12)

where 𝑦ොሺ𝑖ሻ is the prediction results of the RNNs; 𝑦ሺ𝑖ሻ represent the CFD results; and 𝑁 is the 
number of calculated dates. The MSE of the lift coefficient prediction is 4.0217×10-7, and the 
MSE of the lift coefficient prediction is 7.5282×10-10. The results show that RNNs can accurately 
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predict the lift coefficient and moment coefficient, but the prediction of moment coefficient is 
more accurate. 

5. Conclusions 

In this work, the aerodynamic parameters of NACA0012 airfoil with sinusoidal motion around 
its 1/4 chord length are calculated by nested grid method, and compared with the test results, which 
verify the effectiveness of CFD method. A recurrent neural networks with time-delay element is 
used to approach the nonlinear aerodynamic system of large amplitude oscillation airfoil. A group 
of aerodynamic force of chirp motion with variable amplitude and frequency are obtained from 
the CFD method. The parameters of motion and aerodynamic force are used as input and output 
signals of the neural networks training. The trained networks is used to predict the aerodynamic 
force of composite sinusoidal motion. The results show that the neural networks ROM can 
accurately identify the nonlinear unsteady aerodynamic force of airfoil with large amplitude 
motion. 
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