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Abstract. This paper presents a method for decreasing sound radiation from vibrating plates. The 
method uses Functionally Graded Materials (FGM) for building the plates instead of isotropic 
material. The graded pattern of material composition is characterized within the in-plane 
directions based on a two-dimensional trigonometric law. In the proposed method, the finite 
element method (FEM) is utilized for estimating the dynamic response of the plates. Then, the 
Lumped Parameter Model (LPM) is used for calculating sound radiation power. A genetic 
algorithm is applied as an optimization tool for determining the best distribution of the FGM. The 
efficacy of the proposed method is demonstrated by three design problems; minimizing the 
radiated sound from vibrating FGM plate at a particular excitation frequency, over a frequency 
band, and at a particular natural frequency. The design problems show that a considerable decrease 
of sound power can be accomplished with the optimal design of FGM plates in comparison with 
the isotropic plates. 
Keywords: functionally graded materials, plate vibration, noise reduction, optimal design. 

1. Introduction  

In modern structural and machine design, noise reduction from vibrating element is one of the 
common challenges of engineers. Some of the most important sound radiation elements include 
vibrating plate structures. Sound radiation minimization is typically performed via passive 
methods by adding auxiliary elements to the original structure like masses [1-3], adding stiffeners 
[4-7], local thickness distribution [8-11], modifying boundary supports [12-15], shape 
modification [16-19], and/or using material tailoring [20]. 

Material tailoring to realize a reduction in sound radiation, at a single frequency, was studied 
first by Naghshineh and Koopmann [20]. They enforce the structure to vibrate as a weak radiator 
at a specific frequency. They divided the structure into segments. The material properties of each 
segment were assumed to be independent of other segments, i.e., the Young’s modulus and the 
material density are physically unrelated and continuity conditions are not enforced. A 
distinguishing feature of this paper is that, material tailoring is implemented using FGM for 
minimizing the sound radiation from vibrating plates.  

FGMs are new composites typically made of at least two materials with continuous changing 
of materials’ composition within the volume. The continuous variation of composition results in 
a consistent and smooth variation of material properties such as Young’s modulus and density. 
The idea of FGMs initially rose in the 1980s for engineering applications which were necessary 
to endure in situations with a high-temperature gradient such as thermal barriers. Due to their 
superior characteristics, the FGMs are widely used in aerospace, biomedical, defense, energy, and 
optoelectronic applications [21]. 

A large and growing body of the literature has investigated the vibration of FGM plates. 
Previous studies have examined the dynamics of FGM plates [22, 23]. Forced vibration of FGM 
plates was considered by different studies. For example, Yang and Shen [24] investigated the 
forced vibration of FGM plates which are exposed to diverse sorts of loadings such as pulse, or 
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harmonic, or exponential with respect to time. The plates were initially stressed and rested on an 
elastic foundation. The equations of motion were obtained based on classical plate theory, then 
the Galerkin methodology was employed to study the dynamic response. Yang and Shen [25] 
examined the forced vibration of FGM plates which were subjected to initial stress in a thermal 
medium. They used the Galerkin and modal superposition methods to determine the behavior of 
the vibrating plates. Qian et al. [26] modeled FGM plate exposed to forces and transient thermal 
loads using the higher-order shear deformation theory. The dynamic responses were attained using 
the meshless Petrove-Galerkin approach. Vel and Batra [27] presented an exact solution for the 
forced vibration of FGM thick plates exposed to thermal loads. The equations of motion were 
transformed from PDEs to a group of coupled ODEs by utilizing displacement functions 
identically satisfying the boundary conditions. Huang and Shen [28] modeled stressed FGM  
plates, exposed to mechanical and thermal loads, using Reddy’s third-order shear deformation. 
Next, a perturbation technique was used to study the dynamic response. Using state-space and 
one-dimensional differential quadrature methods, Nie and Zhong [29] investigated forced 
vibration of FGM circular plates. They found that this semi-analytical method is computationally 
efficient. Allahverdizadeh et al. [30] presented a semi-analytical method to analyze the 
axisymmetric forced vibration of a circular FGM plate. The solutions were obtained using the 
Kantorovich time averaging procedure. Based on Reddy’s third-order shear deformation theory 
and Hamilton’s principle, Hao et al. [31] derived the equations of motion of FGM plates. The 
Galerkin strategy was employed to change over the equations of motion into a nonlinear two 
degree of freedom system. Fakhari et al. [32] utilized FEM to analyze the dynamic responses of 
FGM plates. The plate was bonded, at the surface, by piezoelectric layers and exposed to electrical 
and mechanical loadings. Shen and Wang [33] investigated the forced vibration of FGM plate 
supported by Winkler-Pasternak elastic base. The equations of motion were derived utilizing a 
higher-order shear deformation theory. Prakash et al. [34] investigated the flutter behavior of FGM 
plates subjected to supersonic airflow using FEM. The effects of Mach number and aerodynamic 
loads on the FGM plate vibration were considered. Most commonly, researchers have studied the 
vibration of FGM plates when material compositions vary through the thickness only by power or 
exponential laws [24-34]. Alshabatat et al. [35] investigated the designing of in-plane FGM plates 
for optimum fundamental frequencies and minimum kinetic energy level at a specific excitation 
frequency. The FGM constituents were varied throughout the two in-plane directions of the plate. 
The free and forced vibration characteristics were assessed using the FEM. 

The sound radiation from vibrating FGM plates has been studied infrequently. Kumar et al. 
[36] examined the vibroacoustic behavior of FGM elliptic plate exposed to thermal and 
mechanical loadings. The vibration and acoustic responses were evaluated using FEM and the 
BEM, respectively. Chandra et al. [37] investigated the vibroacoustic and transmission loss 
characteristics of FGM plate analytically. The governing equations were formulated using 
Hamilton’s approach, and then the solution was derived using Navier strategy. The sound radiation 
was calculated based on the Rayleigh integral. Both Refs. [36, 37] assumed that the phases of 
FGM vary according to a power law through plate thickness. They investigated the effect of the 
power index on the radiated sound power. Chandra et al. [38] studied the vibroacoustic response 
of sandwich plates with functionally graded core and isotropic face sheets using the same approach 
as Chandra et al. [37]. Similarly, the material properties of the core are assumed to vary according 
to a power low distribution through plate thickness.  

To the best of authors’ knowledge, minimizing sound radiation from vibrating plates, using 
FGM, has not been attempted. This paper investigates the potential usefulness of using FGM 
instead of isotropic materials for minimizing the radiated sound from excited plates. As mentioned 
above, some researchers [36-38] have studied the vibroacoustic behavior of FGMs plates with 
material variation through thickness direction only. This paper presents a two-dimensional 
trignometric law, with six design variables, for describing the material variation through the 
in-plane directions of the FGM plate that gives engineers a powerful tool for design optimization. 
The proposed method for minimizing the radiated sound from vibrating plates using FGM couples 
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the finite element method (for computing the vibration response of the vibrating FGM plates), 
Lumped Parameter Model [39] for evaluating the sound power, and a Genetic Algorithm (GA) as 
an optimization tool. The efficacy of the proposed technique is illustrated by three design  
problems. In the first problem, the sound radiation from a vibrating FGM plate at a particular 
excitation frequency is minimized. The second design problem minimizes the sound radiation 
from a vibrating FGM plate over a frequency band. The third design problem minimizes the sound 
radiation from a vibrating FGM plate of a particular natural frequency.  

2. Theoretical background 

2.1. Effective properties of FGM plate 

The plates under consideration are rectangular with length 𝐿௫ , width 𝐿௬ , and thickness ℎ  
(0 ≤ 𝑥 ≤ 𝐿௫, 0 ≤ 𝑦 ≤ 𝐿௬, and 0 ≤ 𝑧 ≤ ℎ). It is constructed from a blend of two materials. This 
work suggests that the volume fractions of the constituents change gradually throughout the 
in-plane directions according to six-parameter trigonometric law: 

𝑉ଵ = ൤12 − 12 sin ൬𝛽௫𝜋𝑥𝐿௫ + 𝜑௫൰൨ఈೣ ቈ12 − 12 sinቆ𝛽௬𝜋𝑦𝐿௬ + 𝜑௬ቇ቉ఈ೤ , (1)

where 𝑉ଵ is the volume fraction of the first constituent, and the volume fraction of the second 
constituent is 𝑉ଶ . The volume fractions 𝑉ଵ  and 𝑉ଶ  have ranges between zero and one (i.e.,  0 ≤ 𝑉ଵ ≤ 1, and 𝑉ଶ = 1 − 𝑉ଵ ). The parameters 𝛼௫ , 𝛼௬ , 𝛽௫ , 𝛽௬ , 𝜑௫  and 𝜑௬  are design variables 
which control the volume fraction through the FGM plate in-plane directions. The values of these 
parameters must be chosen so that 0 ≤ 𝑉ଵ ≤ 1 . Eq. (1) represents an expansion of the 
trigonometric distribution law proposed in Alshabatat and Naghshineh [40] with application to 
vibrating beams. Examples of the volume fraction profiles based on Eq. (1) are shown in  
Figs. 1-2. As can be seen from Figs. 1 and 2, Eq. (1) provides a flexible description of material 
volume fraction distribution which gives a powerful tool for design optimization as will be shown 
later in this paper. The GA will be used to determine the six-parameters in Eq. (1) that yields 
optimal FGM profiles. 

 
Fig. 1. Volume fraction variation of constituent 1 

(𝛼௫ = 0, 𝛼௬ = 𝛽௬ = 1, and 𝜑௬ = 𝜋/2) 

 
Fig. 2. Volume fraction variation of constituent 1 
(𝛼௫ = 𝛼௬ = 𝛽௫ = 𝛽௬ = 1, and 𝜑௫ = 𝜑௬ = 𝜋/2) 

The local material properties of the FGM are estimated using the Mori-Tanaka method [41]. 
The effective local bulk modulus 𝐾ሺ𝑥,𝑦ሻ  and effective local shear modulus 𝐺ሺ𝑥,𝑦ሻcan be 
calculated by: 
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𝐾ሺ𝑥,𝑦ሻ − 𝐾ଵ𝐾ଶ − 𝐾ଵ = 1 − 𝑉ଵ1 + 3 𝑉ଵሺ𝐾ଶ − 𝐾ଵሻሺ3𝐾ଵ + 4𝐺ଵሻ , (2)𝐺ሺ𝑥,𝑦ሻ − 𝐺ଵ𝐺ଶ − 𝐺ଵ = 1 − 𝑉ଵ1 +  𝑉ଵሺ𝐺ଶ − 𝐺ଵሻሺ𝐺ଵ + 𝑓ଵሻ , (3)

where: 

𝑓ଵ = 𝐺ଵሺ9𝐾ଵ + 8𝐺ଵሻ6ሺ𝐾ଵ + 2𝐺ଵሻ . (4)

Subscripts 1 and 2, in Eqs. (2-4), refer to constituent 1 and constituent 2, respectively. The 
effective Young’s modulus and Poisson's ratio, as functions of 𝑥- and 𝑦-coordinates, can be 
estimated by: 𝐸ሺ𝑥,𝑦ሻ = 9𝐾𝐺3𝐾 + 𝐺, (5)𝜈ሺ𝑥,𝑦ሻ = 3𝐾 − 2𝐺2ሺ3𝐾 + 𝐺ሻ. (6)

The density 𝜌ሺ𝑥,𝑦ሻ can be estimated via the rule of mixture: 𝜌ሺ𝑥,𝑦ሻ = 𝜌ଵ 𝑉ଵ + 𝜌ଶ 𝑉ଶ, (7)

where 𝜌ଵ and 𝜌ଶ are the densities of constituent 1 and constituent 2, respectively. 

2.2. Structural and acoustic analysis 

The FEM is utilized herein in computing the response of the vibrating FGM plates. Every 
element consists of four nodes, and every node has six degrees of freedom (i.e., three translational 
and three rotational degrees of freedom). Each finite element was modeled as a homogeneous 
material with properties assigned according to the FGM effective properties at its centroid. The 
size of the elements is small enough in comparison with the acoustic wave length. The velocity 
vector of the vibrating FGM plate is evaluated by superposition of the normal modes. The velocity 
vector due to the nodal excitation force ሼ𝑓ሽ at a frequency 𝜔 is: 

ሼ𝑣ሽ = ෍ 𝑗𝜔ሼ𝜙௜ሽሼ𝜙௜ሽ்ሼ𝑓ሽ𝜔௜ଶ − 𝜔ଶ + 𝑗𝜂௜𝜔௜ଶ
ே௜ୀଵ , (8)

where 𝑗 = √−1, 𝜙௜, 𝜔௜, and 𝜂௜ are the mass-normalized eigenvector, natural frequency, and loss 
factor corresponding to the 𝑖th mode, respectively, and the total number of modes considered in 
the summation is 𝑁. 

The plate under consideration is placed in an infinite rigid baffle and surrounded by air and it 
vibrates in the out of plane motion. It is assumed that the acoustic medium (fluid) has a low  
density, such as air, to neglect the interaction between the fluid and the structure (i.e., the fluid is 
assumed not to exert any load on the structure). The sound pressure 𝑝ሺ𝑟ሻ due to plate normal 
surface velocity 𝑣௡ can be calculated using Rayleigh integral (see Fig. 3): 𝑝ሺ𝑟ሻ = −𝑗𝜔𝜌௔4𝜋 ඵ𝐺ሺ𝑟, 𝑟௦ሻௌ  𝑣௡ሺ𝑟௦ሻ 𝑑𝑆, (9)
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where 𝜌௔  is the density of air, 𝑣௡ሺ𝑟௦ሻ is the normal velocity of the elemental surface 𝑑𝑆, and 
Green’s function is given by: 𝐺ሺ𝑟, 𝑟௦ሻ = 2𝑅 𝑒௝௞ோ, (10)

where 𝑘 is the wave number, and 𝑅 =  |𝑟 − 𝑟௦|.  

 
Fig. 3. Coordinates of a baffled plate radiator 

The average sound power can be calculated by integrating the sound intensity over plate 
surface as: ∏ = 12ඵ𝑅𝑒 ሼ𝑝𝑣௡∗ሽ𝑑𝑆ௌ , (11)

where 𝑣௡∗ is the conjugate complex of 𝑣௡. The Lumped Parameter Model (LPM) [39] is employed 
herein to estimate the sound power of vibrating FGM plates. In the LPM, the radiated surface is 
divided into elements which are small in comparison with the acoustic wavelength, and assuming 
the elements vibrate as pistons with uniform normal velocities. Therefore, the average sound 
pressure over any element can be described by the elemental volume velocity. The sound power 
based on LPM is given by: 

∏ = 12෍෍ℜఏథ𝑢ఏ∗ே೐
థୀଵ

ே೐
ఏୀଵ 𝑢థ, (12)

where 𝑢ఏ and 𝑢థ are the volume velocity of elements 𝜃 and 𝜙, respectively, 𝑁௘ is the number of 
elements, and ℜఏథ is the surface acoustic resistance which is given by: 

ℜఏథ = 𝑘𝜌௔𝑐4𝜋 𝐺ூ൫𝑟ఏ, 𝑟థ൯, (13)

where 𝑐  is the speed of sound in air, and 𝐺ூ(𝑟ఏ, 𝑟థ)  is the imaginary component of Green’s 
function and is given by: 𝐺ூ൫𝑟ఏ, 𝑟థ൯ = 2𝑟ఏథ sin൫𝑘𝑟ఏథ൯, (14)

where 𝑟ఏథ is the center distance between the elements 𝜃 and 𝜙. The radiated sound is described 

in shape of sound power level as 𝐿∏ =  10log ൬ ∏ ∏ೝ೐೑൰, where ∏௥௘௙. is the reference sound power 
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which equals 10-12 Watt. 

3. Design examples 

In this section, we look at the minimization of radiated sound power from vibrating plates 
using FGM instead of isotropic materials. In the following numerical examples, the FGM plates 
are made out of steel and aluminum with properties summarized in Table 1. The selection of these 
constituents is only for the exhibition of the idea in our case. The fabrication issues of this FGM 
are considered beyond the scope of this paper. 

Table 1. Material properties of FGM constituents 
Property Constituent 1 (Steel) Constituent 2 (Aluminum) 𝐸 (GPa) 200 69.3 𝜌 (kg/m3) 7800 2680 

The validity of the sound power calculations is verified by a comparison between the results 
of our algorithm with results available in [17] for isotropic plate. The plate under consideration is 
aluminum rectangular plate clamped at all edges and has length 𝐿௫ = 0.45 m, width 𝐿௬ = 0.40 m, 
and thickness ℎ = 1 mm. The plate is placed in an infinite baffle and vibrates in air. The damping 
factor is assumed to be 0.001. The plate is exposed to a unit force at its center with a frequency 
range 10-500 Hz. It is divided into 45×40 finite elements and 1886 nodes. The sound power of the 
vibrating plate is displayed in Fig. 4. As shown there’s good agreement between the present results 
and those of Jeon and Okuma [17]. Our simulation is based on LPM, while Jeon and Okuma [17] 
obtained the sound power by integrating the mean square sound pressure over 13 perception points 
distributed uniformly in a hemisphere surrounding the baffled plate. 

 
Fig. 4. Sound power level versus frequency for the validation study 

To show the efficiency of using FGMs rather than isotropic materials in designing plates with 
low sound radiation, three optimal design examples are presented. The first example involves 
minimizing the sound radiation from a FGM plate subjected to a single frequency excitation, the 
second example deals with minimizing the sound power over a frequency band, and the third 
example studies minimizing the sound power at a particular natural frequency. The optimal design 
of the FGM plate is based on the optimization of material distribution throughout plate area (i.e., 
the optimization of material distribution is achieved by optimizing the volume fractions of the 
material constituents). In all the optimization examples, a Genetic Algorithm (GA) is used for 
finding the volume fractions of material constituents which provide the optimal objective 
functions. The GA is a stochastic optimization method that is based on the concept of biological 
evolution. The GA starts its search with a set of individuals (called a population) forming the first 
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generation or iteration. A set of six design parameters in Eq. (1) forms a single individual. The 
objective function or fitness function is evaluated for each individual. The individuals with good 
objective functions are used to generate a new set of individuals by using three basic operators: 
reproduction, crossover and mutation. A new set of individuals forms the second generation or 
iteration. The algorithm continues over many generations until a stopping criterion is met such as 
a time limit, reaching a specified maximum number of generations, or the change in fitness 
function between generations is smaller than a specified tolerance [42]. In this study, the 
population size for each generation is chosen to be 100, and the GA program will stop when the 
change of the sound power level is less than 10-3. The design process is depicted in the flow chart 
shown in Fig. 5.  

The FGM plates under consideration are similar in dimensions and boundary conditions to the 
plate in the validation study, however, the point force is positioned at a location diagonally 
halfway between the center and the corner of the plates (𝑥 =  0.75 𝐿௫ and 𝑦 =  0.75 𝐿௬). The 
place of the excitation force is chosen in order to energize every one of the modes in the frequency 
band under consideration. For all the modes, the loss factor is assumed constant and equals to 0.01. 
Fig. 6 shows the sound power versus frequency for steel and aluminum plates. The crests in this 
plot are the sound power level at plate’s first few natural frequencies. 

 
Fig. 5. Flow chart of design strategy 

3.1. Sound minimization at a single frequency excitation 

In this design example, FGM plate is designed to minimize the radiated sound due to vibration 
at a single frequency. As such we chose to focus on reduction of sound power at a frequency that 
was coincident with the first natural frequency of the homogeneous plate. Our goal was only to 
reduce the sound power level at this frequency. Any shift in the natural frequency of the plate was 
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achieved as a consequence of reduction of sound power at this single frequency. 

 
Fig. 6. Sound power level versus frequency of the isotropic plates 

The optimal design of the FGM plate depends on the proper distribution of the constituents 
throughout in-plane directions. The design variables are 𝛼௫, 𝛼௬, 𝛽௫, 𝛽௬, 𝜑௫ and 𝜑௬ in Eq. (1). The 
optimization problem is defined as: 

Minimize: 𝐿∏หହ଴ୌ୸. 
Subject to: 𝛼୫୧୬ ≤ 𝛼௜ ≤ 𝛼୫ୟ୶, 𝛽୫୧୬ ≤ 𝛽௜ ≤ 𝛽୫ୟ୶, 𝜑୫୧୬ ≤ 𝜑௜ ≤ 𝜑୫ୟ୶, (15)

where 𝑖 = 𝑥 , 𝑦 . In this article, the boundaries of the design variables are selected so that  0 ≤ 𝑉ଵ ≤ 1  (i.e., 𝛼୫୧୬ = 0,  𝛼୫ୟ୶ = +∞,  𝛽୫୧୬ = − ∞,  𝛽୫ୟ୶ = + ∞,  𝜑୫୧୬ = − ∞  and  𝜑୫ୟ୶ = + ∞). The GA is used to find the optimal design variables which provide the minimum 
sound radiation at 50 Hz frequency. At this frequency, the steel and aluminum plates have high 
sound power; 95 dB and 104.4 dB for steel and aluminum plates, respectively. The design strategy 
is shown in Fig. 5. The sound power level versus frequency curve for isotropic plates and optimal 
FGM plate are shown in Fig. 7.  

 
Fig. 7. Sound power level versus frequency of the isotropic plates and the optimal FGM plate at 50 Hz 

The design parameters that minimize the sound power at 50 Hz are listed in Table 2 (case 1), 
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and corresponding steel volume fraction distribution is shown in Fig. 8. The sound power level of 
the optimal FGM plate at 50 Hz is 73.1 dB which is 21.9 dB and 31.3 dB less than the sound 
power level of steel and aluminum plates, respectively. Fig. 7 shows that the main consequence 
of the reduction of sound power level at 50 Hz is the shifting of the first natural frequency 
downward away from the frequency of interest. Note that the shift in the natural frequency was 
not the main target of this minimization but was a consequence of the re-distribution of the 
materials within the plate. Fig. 8 shows that placing heavy material (like steel) at the region of 
large modal displacement reduces the fundamental frequency significantly. 

 
Fig. 8. Steel volume fraction distribution that minimizes the sound power level at 50 Hz 

3.2. Sound minimization over a frequency band 

In this example problem, we demonstrate the efficiency of designing FGM plate for 
minimizing sound radiation over a frequency band. The average sound power over a band of 
frequencies can be estimated by: 

∏௔௩௚ =  1𝑀෍∏௜ெ
௜ୀଵ , (16)

where 𝑀 is the number of frequencies under consideration between 𝑓୫୧୬ and 𝑓୫ୟ୶, and ∏௜ is the 
sound power at the 𝑖 th frequency. The plate under consideration is similar to the one in the 
previous example. In order to reduce the computational cost of sound power in a relatively large 
frequency band, a small frequency band has been selected. This example is similar to the preceding 
example, however, with minimizing the average sound power between 90 Hz and 115 Hz, rather 
than sound power minimization at a single frequency. As shown in Fig. 6, this frequency range 
contains two natural frequencies for the isotropic plates. These are the second (2×1) and the third 
(1×2) modes as depicted in Fig. 9.  

The sound power levels versus frequency for isotropic plates and optimal FGM plate are shown 
in Fig. 10. The average sound power of the steel plate is 75.2 dB, and the average sound power of 
the aluminum plate is 84.3 dB. The optimal design parameters which minimize the sound power 
level between 90 Hz and 115 Hz are listed in Table 2 (case 2), and corresponding steel volume 
fraction distribution appears in Fig. 11. The average sound power level of the optimal FGM plate 
is 71.2 dB which is 4 dB and 13.1 dB less than the average sound power level of steel and 
aluminum plates, respectively. Fig. 11 shows the optimal volume fraction distribution. 
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a) (2×1) mode – 𝑓ଶ = 88.5 Hz 

 
b) (1×2) mode – 𝑓ଷ = 121.2 Hz 

Fig. 9. Illustration of the mode shapes of the plate: a) second mode, b) third mode 

 
Fig. 10. Sound power level versus frequency of the isotropic plates  

and the optimal FGM plate over a frequency band 

 
Fig. 11. Steel volume fraction distribution that minimizes  

the sound power level between 90 Hz and 115 Hz 

At this point, we can make several observations. First, we note that the second and the third 
natural frequencies of the FGM plate (result of the optimization process) have moved out of the 
frequency range of interest. This yields a lower average sound power level over the frequency 
band of interest. Second, we note that the peak sound power levels of the FGM plate at the second 
and third modes are higher than the corresponding values for the steel plate. These values are 
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lower than the corresponding values of the aluminum plate. This is understandable since the FGM 
plate is a combination of steel and aluminum and has a mass that is lower than the steel plate but 
higher than the aluminum plate. 

In order to understand the reason for the change in frequency of the second natural modes, we 
need to pay attention to the plate mode shapes (Fig. 9) and the distribution of the materials in the 
FGM plate (Fig. 11). Fig. 11 shows a material distribution that lowers the second plate mode by 
adding mass along the horizontal centerline of the plate and its two edges (steel is depicted in red). 
The added mass along the horizontal centerline coincides with the max deflections of the second 
mode which then lowers natural frequency for the (2×1) mode.  

Similar comparison can be made in order to explain why the natural frequency of the third 
mode has increased. The added mass falls along the nodal lines of the (1×2) mode. The areas of 
max deflection in the third mode coincide with the areas of lower mass (blue colors). Thus, the 
natural frequency of the third mode is increased. 

3.3. Sound minimization at a specific natural frequency 

Dealing once again with the previously described vibrating clamped plate, we want to 
minimize the sound radiation at the fifth natural frequency (3×1 mode) by using FGM instead of 
isotropic materials. The sound power levels for the steel plate and the aluminum plate at the fifth 
natural frequencies are 91.4 dB and 100.6 dB, respectively. The sound power levels versus 
frequency for steel, aluminum, and FGM optimal plate at the 5th natural frequency are shown in 
Fig. 12. The optimal parameters which minimize the sound power at fifth natural frequency are 
listed in Table 2 (case 3). Fig. 13 shows the steel volume fraction distribution of the presented 
FGM plate. The radiated sound power from the presented FGM plate, at the 5th natural frequency, 
has a level of 71.4 dB which is 20.0 dB and 29.2 dB lower than those of steel and aluminum plates, 
respectively. 

 
Fig. 12. Sound power level versus frequency of the isotropic plates  

and the optimal FGM plate at the 5th natural frequency  

Table 2. The sound power levels of optimal FGM plates and isotropic plates 
 Sound power level (dB) Optimal FGM parameters 
 Steel Aluminum FGM 𝛼௫ 𝛼௬ 𝛽௫ 𝛽௬ 𝜑௫ 𝜑௬ 

Case 1 95.0 104.4 73.1 0.423 0.535 2.106 2.133 1.404 1.403 
Case 2 75.2 84.3 71.2 0.344 1.921 4.136 4.009 1.325 –1.554 
Case 3 91.4 100.6 71.4 2.132 0 3.036 any –3.081 any 

To study the difference in mode shapes between the isotropic and FGM plates, the modal 
assurance criterion (MAC) is used. The MAC value is computed by: 
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𝑀𝐴𝐶ு,ிீெ = (ሼ𝜙ுሽ்ሼ𝜙ிீெሽ)ଶ(ሼ𝜙ுሽ்ሼ𝜙ுሽ)(ሼ𝜙ிீெሽ்ሼ𝜙ிீெሽ), (17)

where ሼ𝜙ுሽ and ሼ𝜙ிீெሽ are the mode shape vectors of the isotropic and FGM plate, respectively. 
A MAC value of unity demonstrates that both mode shapes are the same. Changing the mode 
shapes clearly modifies the attributes of vibrations and influences the sound radiation from the 
plate. In this example, the MAC value between the isotropic plate and the optimal FGM plate is 
0.865. This value indicates that the changes in the mode shape play a critical role in minimizing 
the sound radiation. The mode shapes of the isotropic plates and optimal FGM plate are shown in 
Fig. 14. A comparison of this mode shape with the weak radiator mode shapes given by 
Naghshineh and Koopmann [20] shows a strong resemblance. This indicates that the reduction in 
radiated sound power was the result of altering the plate mode shape to that of a weak radiator 
mode. 

 
Fig. 13. Steel volume fraction distribution that minimizes  

the sound power level at the 5th natural frequency 

 
a) 

 
b) 

Fig. 14. The 5th mode shape of a) isotropic plate, and b) optimal FGM plate 

4. Conclusions 

The main goal of the current study was to show the potential of using functionally graded 
material (FGM) for reducing the radiated sound from vibrating plates. The numerical results 
demonstrate the efficiency of using FGM for minimizing sound radiation. The FGM properties 
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vary through the in-plane directions. A six-parameter law was used to describe the material 
volume fraction distribution and the material properties, at any point in the FGM plate, were 
evaluated utilizing Mori-Tanaka methodology. The design method relies on the finite element 
method for calculating the plate vibration responses, lumped parameter model for calculating the 
sound power, and a Genetic Algorithm as an optimizer.  

Three numerical examples were presented for designing optimal FGM plates. The first 
example investigated the design of FGM plate to minimize the radiated sound at a particular 
excitation frequency. In the second example, the average radiated sound from a vibrating FGM 
plate was minimized over a narrow frequency band containing two modes. The sound power level 
at a particular natural frequency was minimized in the third example. The numerical examples 
suggest that the variation of the material properties, throughout the in-plane directions of a plate, 
plays an important part in control its vibroacoustic characteristics. The suggested material 
distribution law properly provides a flexible description of material volume fraction profiles which 
gives a powerful tool for designing quiet plate structures. The current investigation was limited to 
minimize sound radiation from vibrating plates. Further research is required to account for stress 
failure analysis as well as manufacturing limitations. 
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