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Abstract. With the development of concepts of industry 4.0, condition monitoring techniques are 
changing. Large amounts of generated data require diagnostic procedures to be automated, which 
drives the need for new and better methods of autonomous interpretations of vibration condition 
monitoring data. However, if new methods are to be operational, they need to be verified under 
real industrial conditions and compared with well-established expert-based diagnostic techniques. 
This article introduces the novel algorithm of data preprocessing for the nearest-neighbor-based 
anomaly detection. This approach is validated on real industrial machinery in a series of case 
studies. The population of over-hung centrifugal fans, employed in the same industrial process, 
were monitored continuously according to the proposed methodology for an extended time period. 
Piezoceramic accelerometers were used to register time-domain vibration data. The data were 
processed to extract several signal features to serve as inputs to the anomaly detection algorithm. 
The novel solution is compared to the well-established condition monitoring approach. Presented 
data include not only the intact state of machinery but also a machine breakdown case and serious 
deterioration of the machine condition. The influence of maintenance work is also presented in 
the article. Authors show the data-driven approach to condition monitoring, which can be used as 
one of many predictive maintenance techniques. 
Keywords: anomaly detection, condition monitoring, vibro-diagnostics, bearing damage, nearest 
neighbor. 

1. Introduction 

The fourth industrial revolution (also known as industry 4.0) influences condition monitoring 
(CM) techniques more and more nowadays [1-3]. Cyclic vibration measurements on rotating 
machines provide a basis for maintenance strategies in plants. Those, in case of vibration 
measurements, are mostly based on the comparison of collected data to ISO standards. This 
approach can be enhanced by the usage of machine learning (ML) algorithms like anomaly 
detection (AD) [4]. Especially on-line monitoring systems with electronic edge devices, collecting 
measurements continuously in maintenance applications, need solutions from fields of big data 
and machine learning. 

The growing trend of usage of electronic devices on a wide scale in CM has been triggered by 
the rapid growth of cloud services and concepts of the Industrial Internet of Things (IIoT), which 
enables management and analytics of CM data on a big scale. Once an estimate of a measured 
signal is sent to a database (local or remote), several types of analyses can be performed [5]. In 
the case of vibration measurements acquired for rotating machinery monitoring, the simplest of 
these employ a comparison of the statistics of the measured signals with warning and alert 
thresholds provided by international standards [6]. Although this approach neither provides a 
meaningful description of the faults developed in the structure nor is sensitive enough to detect 
damage at an early stage of its growth, due to its simplicity, it is broadly employed in the majority 
of industrial condition monitoring systems. 
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In cases when historical data for the specific machine are available, the process of setting 
thresholds can be improved. Information about machine states in the past can be used to customize 
the existing thresholds proving the method to be more sensitive. This type of fault detections is 
presented in the literature either in the form of trend analysis - when vibration signal statistics are 
plotted against time for the whole monitoring history of the specific machine; or in the 
multidimensional anomaly or novelty detection - where newly acquired data are compared against 
a historical dataset to assess whether it exhibits any unexpected properties, which could be treated 
as a premise of damage. The latter of the approaches is usually deemed more sensitive to small 
damage, yet it is also more difficult in the configuration.  

Three significant issues limit the practical application of anomaly detection systems. The first 
of them is the challenge of proper selection of warning thresholds for the system – if no 
information about the possible faults is present prior to the system configuration. The second one 
requires handling of large amounts of data. Finally, the third one deals with the non-uniform 
distribution of data into clusters, which hinders the operation of many typical anomaly detection 
algorithms. In order to solve these issues, this study presents the new algorithm for rotating 
machinery monitoring based on the identification of the most representative dataset (MRD) 
inspired by the optimal baseline reduction algorithm for the guided-wave-based monitoring [7]. 
The identified set is used as a source of data for the nearest-neighbor algorithm [8, 9]. The 
approach is validated using a large set of practical, industrial data acquired for a population of 
centrifugal fans. Four case studies are performed. The insight provided by the anomaly detection 
(AD) approach is compared with well-established classical diagnostic techniques [10] and the 
feedback from the maintenance crew. The proposed approach allows for a significant reduction of 
stored data, autonomous selection of warning thresholds, and is insensitive to non-uniform 
distribution of data into clusters. 

The organization of the paper is as follows: in Section 2, an anomaly detection algorithm based 
on the nearest-neighbor method is explained. The algorithm for the reduction of the full dataset to 
MRD is also described in this Section. Section 3 presents the data acquisition setup, industrial 
background, and case studies. Finally, Section 4 summarizes and concludes the paper. 

2. Anomaly detection algorithm 

2.1. The nearest-neighbor (NN) method 

An anomaly or novelty is a deviation from a well-defined normal state. In general, anomaly 
detection requires a collection of normal data, that is: data representing an intact state of the 
machine, preferably acquired under all possible operational conditions. These data are then used 
to define a normal region in feature space – with which all of the future measurements should be 
compared. Samples that would not fall into this region would be considered as anomalies. 

An anomaly in the condition monitoring does not necessarily have to be an indication of 
damage. However, it is a sign that something new is happening to the machine, and it requires a 
maintenance decision: usually either to stop the machine for maintenance, perform a detailed 
diagnostic on-line or to continue operations marking the new unknown samples as normal ones. 
The latter case is often employed when the cause for abnormal data is known, e.g. when a new 
operational state was deliberately introduced to the system. An advantage of using the anomaly 
detection lies in a variety of features that can be included simultaneously in the anomaly 
computation. Therefore, an anomaly may be found not only in values of separate features but also 
in their mutual relationship. Although the method is designed to operate using only data of the 
intact state, its main advantage is also its drawback, as it is often difficult to provide an 
interpretation of the AD system output. In other words, a detected anomaly might represent a near-
catastrophic state as well as a slightly deteriorated one.  

A novelty detection is broadly employed not only in CM but also in other fields [11-14]. Good 
reviews of anomaly detection methods were provided by [15] and [16, 17]. In general, the methods 
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can be divided into several categories according to the approach to the normal region definition. 
In the hereby paper, a method from the distance-based category is used. The distance-based 
methods are built on the idea that distances between new and known samples in feature space are 
good indicators of how typical or novel the sample is. There are many methods incorporating this 
principle (e.g. [18-22]). 

In this study the nearest-neighbor method is used. It is arguably one of the simplest approaches 
in ND, and definitely one of the easiest to implement and understand. Its main disadvantages lie 
in poor scaling to high-dimensional spaces and poor behavior under non-uniform data distribution. 
Its main advantage is its straightforward configuration: the method has just one meta-parameter 
to set up and thus does not require a difficult optimization step, and due to that, it is often preferred 
in industrial conditions instead of other more advanced and more capable methods. The principle 
of its operation is depicted in Fig. 1. 

 
Fig. 1. Nearest-neighbor anomaly detection principle 

Prior to the operational stage, distances to the closest neighbors 𝑑  of each 𝑖-th data sample in 𝑁-element of a normal class are calculated. These distances are then used to set up a threshold – 
usually equal to the mean of all closest distances plus three times its standard deviation. For each 
new data sample, a distance 𝑑  to the nearest neighbor belonging to the normal class is 
calculated. If it is smaller than the threshold, that is if 𝑑 < �̅� + 3𝜎  the sample is classified 
as normal. Otherwise, it is considered an anomaly. The rationale behind such a threshold choice 
is as follows: if data fall into the Gaussian distribution, the 3σ-threshold provides a correct 
classification for 99.9 % of normal data samples.  

In practical situations, however, the distribution is rarely Gaussian, as usually the normal 
region is defined by more than one cluster of data. What is more, clusters usually drift through the 
feature space due to variations of environmental and operational conditions as well as due to an 
accumulation of structural wear. Since any change in the data distribution might trigger the novelty 
detection, thresholds need to be set up manually to avoid false-positive indications. What is more, 
the algorithm requires all the normal samples to be stored in its memory – which becomes a 
problem if the dataset is either very large from the very beginning or if new data are acquired 
continuously over an extended time. The typical solution of this problem is reducing the amount 
of data by taking into consideration only a randomly selected subset of the whole data available. 
Such an approach, in turn, causes another problem: practical data are often organized in clusters 
that vary in size by several orders of magnitude. For instance, data representing a normal operation 
of rotating machinery with its nominal speed may be represented by 99.9 % of the available 
samples, while the remaining 0.1 % might encompass the run-up or run-down of the machinery. 
In such case, the reduction of data would likely result in preserving only the nominal-speed-related 
cluster. AD performed on such a set would yield false alarms every time the machine is stopped. 
An illustration of this issue is provided in Fig. 2. An artificial dataset is generated randomly in 
such way that three clusters of data are generated. Clusters contain 10000, 1000, and 100 data 
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samples, respectively. Next, three stages of data reduction are performed by a random selection 
of 10 %, 1 %, and 0.1 % of data samples. The obtained results do not reflect initial cluster shapes 
– with less dense clusters disappearing from the distribution entirely. Consequently, any 
distance-based novelty detection algorithm trained on the reduced dataset would generate false 
alarms for all the data samples included in the erased clusters. 

 
Fig. 2. A multi-cluster normal data set and cluster erased phenomenon due to a random selection of a 

subset of data. Background color refers to the distance from the nearest sample  
on the basis of which the distance-based anomaly detection would operate in 

2.2. The most representative dataset (MRD) 

In order to solve the issue, the authors propose a reduction method for the normal data that 
preserve borders of clusters by the selection of samples, which are the most representative for the 
given case. The idea of the algorithm is based on the approach used for compensation of the 
temperature influence in Lamb-wave-based monitoring – in which a set of most representative 
baselines was found to cover all typical temperature-induced changes in the received Lamb wave 
signals [8]. A scheme in Fig. 3 presents a general flow of data in the algorithm.  

 
Fig. 3. The flow of data in the algorithm  

The procedure starts with the selection of a random sample from the normal region. Then, the 
sample is stored in the MRD. For each iteration of the algorithm, all the samples are compared 
against all data already included in the MRD. The sample for which distance to the nearest 
neighbor from the MRD is the biggest, is added to the MRD. The procedure continues until the 
desired amount of samples in the MRD is reached. The scheme of the 𝑛-th iteration of the loop is 
presented in Fig. 4. The result of the algorithm for the same multi-cluster dataset, as presented in 
Section 2.1, is provided in Fig. 5. It is worth to note that small data clusters are represented as 
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single points in the MRD. Therefore, the spatial density of the MRD remains dependent mostly 
on the dimensionality of the data and not on the fact of whether they are arranged into one or many 
clusters. The small clusters do not get discarded during data reduction. Another interesting feature 
of the algorithm is that if there are many clusters of data in close proximity – which might indicate 
that data are acquired under many different operational conditions, the algorithm tends to merge 
them together – which provides a protection from an unexpected cluster drift or slightly changed 
operational conditions. The threshold for the NN algorithm can be derived straightforwardly from 
the MRD dataset – using the 3𝜎 threshold. Since the MRD already covers data that are the most 
representative for a given scenario, the threshold is usually much more robust and allows the 
method to be operational without a manual fine-tuning of the 3𝜎 based choice. In the example 
provided in Fig. 5 this choice allows for 100 % efficiency in the case of 100x data reduction and 
only for 17 misclassified samples (0.15 % of the whole dataset) in the case of 1000x data  
reduction. The suitability for handling large amounts of data makes this algorithm an interesting 
alternative for all other distance-based methods. 

 
Fig. 4. The 𝑛-th iteration of the MRD selection algorithm. There are already n samples stored  
in the MRD. For all N-k remaining samples, a minimum 𝑑 , of all the k closest distances,  

is calculated. A maximum 𝑑 ,  of all the N-k minimal distances is calculated,  
and the corresponding sample is stored in the MRD 

a) 
 

b) 
Fig. 5. The result of the operation of the MRD selection algorithm a) and normal regions set up  

on the basis of 3𝜎 rule b) by the threshold distance to nearest MRD point. MRD calculated  
based on 10 % of data samples is omitted due to clarity of the display 
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2.3. Time-domain results aggregation 

Most of the data acquired under real industrial conditions contain outliers, which are caused 
by transient changes in external conditions or other environmental factors that cannot be identified 
or monitored. Despite this fact, the system is not allowed to generate large numbers of false alarms 
as each of them should be investigated by the qualified staff. On the other hand, diagnostic 
information that can be derived from acquired signals usually remains similar over many 
consecutive periods of signal acquisitions. Therefore, to increase the reliability of the system and 
reduce the number of false alarms, a time-domain aggregation of the obtained diagnose was 
performed. For each week of monitoring, the median AD indication was calculated. These values 
served as a final damage index and were displayed for the maintenance crew during the whole 
monitoring period. 

3. Case studies 

Many different features can be calculated from raw vibration signals. Some of them are  
general, some designed for a detection of particular faults [23-26], some require advanced 
pre-processing of the signals, including envelope [27] analysis, spectral kurtosis calculation [28], 
cyclo-stationary analysis [29], wavelets [30] or others [31-33]. In this study, however, the 
illustration of the method is based on probably the simplest - yet the most popular - features listed 
in Table 1. The rationale behind this choice was to keep the method as general as possible and to 
avoid tuning it for detection of particular defects without an apriori knowledge of the expected 
faults since it might bias the research. The four selected features are used as inputs to the NN 
algorithm (i.e. distances are calculated in four-dimensional feature space). The purpose of this 
approach is also to give a tool for the phase of condition monitoring which is the fault detection. 
It is not for localization, classification, assessment or prediction (see [34]). So, in other words, the 
purpose is to present the novelty detection algorithm which can be a first notification in the real 
work system of changes that occur at the machine. The list of features can be extended, what 
would be a very interesting aspect of performing further analyses within this field. 

Table 1. Features used in the anomaly detection analysis. 𝐴 is an acceleration feature where 𝑦   
is a sample of an acceleration signal. 𝑉 is a velocity feature where 𝑥  is a sample  

in velocity waveform integrated from acceleration time waveform, 𝑛 refers to signal length 
Feature Formula 

Acceleration RMS 𝐴 = ∑ 𝑦  

Acceleration kurtosis 𝐴 = ∑ 𝑦 − 𝑦  

Acceleration peak to peak (pk-pk) 𝐴 = 𝑚𝑎𝑥 𝑦 −𝑚𝑖𝑛 𝑦  

Velocity RMS 𝑉 = ∑ 𝑥  

Each feature selected for the anomaly detection has its own interpretation in the condition 
monitoring practice and can be used separately to trend and analyze different kinds of fault 
conditions present in the machine. The acceleration RMS (Root Mean Square) represents the 
energy of a raw signal that amplifies high frequencies, which are appropriate to investigate e.g. 
bearing problems. Kurtosis reflects a peakiness of a signal and allows for a detection of impulses. 
Peak-to-peak is a feature that amplifies variations of an amplitude. The velocity RMS represents 
frequency range, which is sensitive to basic rotor dynamics faults like imbalance, misalignment, 
bearing frequencies, etc. Time domain features presented in the article are calculated from 
5-second long acceleration time waveforms. 

All presented case studies follow a similar pattern: the section presenting AD analysis of the 
monitored periods is followed by in-depth analysis of signals using a spectrum-based standard 
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diagnostic procedure. The feedback from the maintenance crew is also discussed in each case 
study. All four represent performance of the anomaly detection algorithm in different real 
industrial situations. Four cases are to show the wide variety of situations which can occur in the 
monitoring of centrifugal over-hung fans, and the reaction of the algorithm for those. Two of the 
most problematic and often occurring defects (according to descriptions of maintenance crew), at 
the mentioned over-hung fans are described in the article (unbalance and rolling element bearing 
defect). The performance of the algorithm is in both cases very promising. Only those two 
situations show the usability and practicability of this algorithm. The intact state monitoring shows 
the behavior of an algorithm when none abnormal situation occurs. The simulation approach 
shows that interpretation of the results must be always done because the detected anomaly does 
not necessary mean a deterioration of the machine. Presented case studies show a wide spectrum 
of possible applications for the described algorithm and its applicability as the first detection of 
changes in the machine. 

Results are aggregated into weeks. For the sake of simplicity, only the RMS velocity and 
acceleration peak-to-peak are presented in figures. 

The AD indications and diagnostic features are presented in the form of box plots. The box 
extends from Q1 to Q3 quartile values of the data with a line at the median Q2. The position of 
the whiskers is set to 1.5∙IQR (IQR – inter-quartile range). Outlier points are indicated past the 
end of the whiskers. This way of presenting the data gives also basic statistical information about 
the data range, outliers, variance, etc. Presented data constitute not a single point but an 
aggregation of all measured data points in a week, so this covers also - to some extent - the topic 
of the research uncertainty. 

3.1. Data source 

The data presented in the paper are acquired with an on-line monitoring system installed on a 
population of over-hung centrifugal fans participating in the same manufacturing process. Three 
of them are analyzed (fan #1, #2, and #3). Machines stand next to each other, indoors, in a plant. 
Each fan contains a 12 blade impeller being driven by a two-pole pairs induction motor. Each 
motor shaft is directly connected to a fan rotor. The shaft and impeller are supported only on the 
motor NDE (Not Drive End) and DE (Drive End) rolling element bearings placed inside the motor. 
The motor itself is supported on a metal frame vibro-isolated from the ground. Fans operate with 
a nominal speed of 1465 RPMs. Motors are powered from a supply line of 50 Hz frequency. Fans 
work 24 hours a day and are stopped only for maintenance works or due to a breakdown. For the 
sake of meaningful comparison between the monitored fans, sensors were placed at machines in 
analogous places. Vibration signals are collected with a sampling frequency of 31250 Hz. 
Accelerometers used in the study are unidirectional sensors measuring vibration at each fan in a 
radial direction. All the measurements were collected with the CTC sensors and the information 
about measurement uncertainty can be found on the technical sheet provided by the producer [35]. 
An image of a fan with sensor placement is presented in Fig. 6. 

 
Fig. 6. Photo of a monitored centrifugal over-hung fan with a sensor placement marked by a green arrow 
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3.2. Case study I (Fan#1) growth of imbalance 

The anomaly detection analysis starts with establishing a normal region in multi-feature space, 
that represents the machine in its intact state. The first case study presented in Fig. 7 is performed 
on fan #1 just after the maintenance work. The DE bearing had to be replaced. Data for the training 
phase (in green) are selected from the first four weeks after the replacement of the bearing. Both 
training and operation phases are marked in Fig. 7. The normalized distance for weeks from no. 5 
to no. 22 does not exceed the 3𝜎-threshold set for the AD algorithm. Only a few outliers between 
weeks 15 and 20 appeared to go beyond the threshold. The AD result changes at week no. 23 when 
the measurements start to move toward the established threshold. After the appearance of outliers 
in the week no. 23 a median also goes over the AD threshold in week 24. Then for the next  
6 weeks, the results fluctuate on the edge of the threshold. From week no. 24 the median for every 
week till the end of the monitoring time stays over the AD threshold. Anomaly detection results 
are followed in Fig. 7 by the velocity RMS and acceleration peak to peak values also presented in 
the form of box plots. The time when the anomaly detection result changes from state OK (below 
the threshold) to NOK (above the threshold) is also followed by a change in the velocity RMS. 
Acceleration peak to peak stays for the whole monitoring time within the range of 0.8 to 1 g and 
does not change its state. 

 
Fig. 7. Anomaly detection, velocity RMS and acceleration peak-to-peak in a form  
of a box plots for CS I. A – intact state, B – fault condition C – machine turned off 

The monitoring period can be divided into three phases from the condition monitoring point 
of view. They are presented in Fig. 7 and listed in Table 2. From the AD perspective, monitoring 
time can be divided into two periods: training and testing. 

Table 2. Description of phases for case study I 
Approach Phase Week no. 

Anomaly detection Training 1-4 
Operation (testing) 4-42 

Condition monitoring 
Intact state of the machine (A) 1-23 

Fault condition detected at the fan (B) 24-42 
Maintenance work on other machines, machine turned off (C) 30-31 
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A raise in the velocity RMS may suggest many different types of fault conditions. Therefore, 
the frequency domain analysis of the signals is performed in Fig. 8 The velocity signal in the 
frequency domain is presented in a range between 0 and 1000 Hz. For each spectrum, the dominant 
frequency is 1X (rotational speed frequency). The second amplitude in every spectrum, which is 
also visible, is 12X (Blade Pass Frequency). 

 
Fig. 8. Waterfall diagram representing velocity spectra.  

1X – rotational speed, 12X – Blade pass frequency for CSI, fan #1 

Change in the velocity RMS between week no. 23 and 24 corresponds with the raise of 1X 
amplitude. Other frequencies do not change their amplitudes significantly during the monitoring 
period. Distance increase detected by the AD algorithm (week no. 24) is caused by the raise of the 
rotational speed frequency amplitude. This kind of change in over-hung fans could be a reliable 
indicator of imbalanced growth, which in this case occurred due to uneven mass distribution at 
the rotor blades. Such fault condition is very common at monitored fans, and early information 
about growing imbalance helps to plan suitable maintenance works. In this case, AD performed 
similarly to the velocity RMS indicator what was the correct behavior of the algorithm. A fault 
was recognized as an anomaly in the same time as 1X (and velocity RMS) started to grow. 
Although AD in this form is not designed to interpret the data, it is a handy tool to raise an early 
alarm, which should be followed by an expert analysis of spectra and historical data. The 
maintenance crew confirmed the findings of both analyses. It is worth to mention that in this case 
thresholds set as default from the ISO standard (red and yellow dashed lines in Fig. 7) happens to 
be too high. There would be no diagnostic information from the system about the unbalance 
change without the anomaly detector. If maintenance procedure (in this case cleaning blades of 
the fan) are introduced early enough, it can prevent further deterioration of the machine and 
significantly extend its remaining useful life. 

3.3. Case study II (Fan#2) deterioration of DE bearing 

In the second case study, fan #2 was selected to perform the anomaly detection analysis. The 
first four weeks of monitoring time were chosen as a source of training data. In hindsight, the 
requirement that the machine was intact during the definition of a normal region was violated. It 
could be observed that the bearing fault was probably already present in the machine from the 
very beginning of its monitoring. The indications of the system are presented in Fig. 9. In the 
second week of its operation (past the end of the training period), the AD algorithm exceeded the 
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threshold and returned anomaly indications until the end of the monitoring time. 
The time-domain features collected within 42 weeks for fan #2 are presented below the AD 

results in Fig. 9. There are four phases of fan conditions marked in Fig. 9 with letters A, B, C, and 
D. From the beginning of the phase, the acceleration peak-to-peak indicator grew. This kind of 
trend can be the energy growth indicator in a high-frequency range, indicating some possible 
bearing problems. The velocity RMS also grew but not as fast as acceleration. Velocity RMS hits 
the apex at 21st week of monitoring. Acceleration peak to peak signal reaches the maximum value 
in the week no. 24. Afterward, all the indicators decreased slightly. Phase C starts with shutting 
down of the fan due to maintenance reasons. During the maintenance, the balancing procedure 
was performed at the rotor, and the DE bearing was replaced. A balanced rotor was installed in 
the machine again, and the velocity RMS went higher than before the maintenance procedure. To 
explain this unexpected behavior, the machine was turned off, and the balancing was performed 
again. Phase D represents measurements after the second balancing of the rotor. Features values 
in this phase are steady and low what was expected after the properly done maintenance work. All 
of the vibration parameters in phase D reach the minimal values within the data collection time. 
States of machine conditions for CSII and AD phases are listed in Table 3. 

 
Fig. 9. Anomaly detection, velocity RMS and acceleration peak-to-peak in a form of a box plots for CS II 

Table 3. Description of phases for case study II 
Approach Phase Week 

no. 
Anomaly 
detection 

Training 1-4 
Operation 5-42 

Condition 
monitoring 

Development of bearing fault condition (A) 1-29 
Maintenance work: first balancing and bearing replacement (B) 30-31 

Machine operation after the first maintenance (C) 32-39 
Second balancing (corrected) and machine operation afterwards (D) 40-42 

It is worth to note that the intact state (phase D) of the machine is also recognized as an 
anomaly. This particular example proves that the anomaly detection approach shows the change 
but does not give information about whether the machine condition improved or decreased. For 
that reason, the anomaly indications appearing after the maintenance should be carefully 
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investigated as they might mean that either the maintenance was not successful (as in between 
phases A and C) or that – while being successful – it resulted in a new normal state (as in between 
phases A and D). In the latter case, the system should be retrained prior to a further usage. Phase 
A and C are below the warning limit from ISO 10816-3 standard. Data after the second balancing 
procedure fall below the green line which means that maintenance procedures were done correctly. 

An in-depth analysis of the phenomena occurring during case study II is performed based on 
velocity spectra. The spectra are presented in Fig. 10 in the form of a waterfall diagram. 

 
Fig. 10. Waterfall velocity spectra in monitoring period in case study II. BPFO is ball pass frequency  

of outer race. 2x and 4x are second and fourth harmonics of BPFO 

The growth of the velocity RMS in phase A is related to an increase in energy within the 
frequency range between 200 and 600 Hz. Dominating amplitudes in this frequency band grow 
from week no. 1 to 21 and fall down at week 22. These frequencies are harmonics of rotational 
speed frequency and fault frequencies, which can be associated with BPFO of DE (Drive End) 
bearing. Harmonics of 1X and the existence of BPFO indicate a problem with the bearing and 
possible looseness issue. The first order vibration (1X) amplitude within phase A stays steady. 
Frequencies in the range between 200 and 600 Hz decrease significantly in phases C and D. Due 
to the incorrect balancing procedure, the amplitude for rotational speed frequency increased in 
phase C. For this reason, the balancing procedure was performed once again and in the phase D 
all components characteristic for the fault condition decreased significantly in the spectrum. 

3.4. Case study III (Fan #2) wrong balancing procedure (simulation approach) 

Another approach to AD is based on data presented in CS II from the monitoring period of 
fan #2. AD was trained on data from the time when the machine was improperly balanced (weeks 
32-39). It is rather the simulation approach because the operation phase is not only after the 
training phase but also before it. The results of this trial are presented in Fig. 11. The monitoring 
period is the same as in case study II, but the training phase is done in different weeks.  

All measurements that were collected outside C phase are recognized anomalies. Furthermore, 
data from D phase (intact state of the machine) are also recognized anomalies. This case study 
shows that the data interpretation must follow anomaly detection applications. It gives information 
about the change that occurred in the system but does not necessarily mean that it had to be a fault 
condition. 
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Fig. 11. CS III at fan #2, AD trained in weeks no. 34-37 

3.5. Case study IV (Fan #3) intact state monitoring 

In the last case study, data gathered on fan #3 are presented in Fig. 12.  

 
Fig. 12. AD, velocity RMS and acceleration peak-to-peak results for CS IV, no fault at the fan #3 

Since no problems with the operation of the machine were detected, only two phases are 
marked in figures. Phase A is the operation phase, and phase B represents the time when fan #3 
was turned off due to maintenance works done on the other fans. There are weeks when single 
anomalies are detected, but a median indication for a week did not cross the AD threshold. There 
is no clear change of the state in case of fan #3. Since the state of the machine was known to be 
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intact, all of AD indications can be treated as false positives. Therefore, the method exhibits a 3 % 
false-positive rate measurement-wise and 0 % false-positive rate week-wise. 

Fig. 13 presents velocity spectra according to weeks of the monitoring. There are two 
significant frequencies in Fig. 13, and both are described with an arrow (1X and 12X). The 
rotational speed frequency oscillates within the monitoring period, but it cannot be associated with 
a new state of machine condition as easily as in CSI-III. Those changes are rather effects of 
different operational conditions within the monitoring time. They might be caused by such factors 
like temperature, transient changes at the machine, or industrial process. These findings are 
consistent with the feedback from the maintenance crew – state of Fan #3 was deemed OK for the 
whole monitoring period and well after the end of it. Up to the date of this paper submission, no 
faults were detected in Fan #3. 

 
Fig. 13. Waterfall diagram for fan #3, CS IV. 1X – rotational speed frequency, 12X – blade pass frequency 

4. Summary and conclusions 

4.1. Results discussion 

The new anomaly detection algorithm for rotating machinery was proposed in the hereby 
article. The algorithm, inspired by optimal baseline selection techniques and the nearest-neighbor 
principle, was validated in four industrial case-studies. Four signal features were used as inputs to 
the algorithm. The learning dataset consisted of 2880 measurement points. The reduction of the 
training dataset to MRD containing 50 data samples, reduced the number of computations for 
every point in the testing (operational) dataset by 57.6 times. Data for growing imbalance, 
maintenance changes, intact state, and slowly increasing deterioration of a bearing were analyzed. 
The MRD-NN algorithm correctly labeled all of the cases. Classical time and frequency domain 
analyses proved to be appropriate for the interpretation of states recognized as anomalies. Once 
the anomaly detection method was trained on the intact state of the machine, the normalized 
distance to the normal region reflected the severity of the faults. The threshold from the AD 
algorithm was - in all cases - more sensitive to the change at the machine than thresholds applied 
from ISO standards. The proposed method proved to be operational and allowed for an efficient 
data reduction. The selection of a threshold using a 3𝜎 rule employed for MRD was correct, as 
the number of false positives after week-wise data aggregation was 0 %, while still allowing for 
an efficient damage detection. The presented AD does not give interpretation to all possible fault 
conditions which might occur at the machine. On the other hand, it is a handy tool to inform about 
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the change of the machine state. A strong advantage of this algorithm constitutes a fact that the 
feedback given from a combination of features is more robust, in terms of detection of faults, than 
the analysis of each feature individually. 

4.2. Future work 

This research has potential limitations. These limitations together with aspects, which can be 
developed in more detail in the future work on the subject are listed below: 

– Monitoring period presented in the paper could be longer for this kind of machines to see the 
long-term trend of a deterioration in data. 

– Performance of the algorithm on other kinds of defects e.g. related to the electric motor is 
one of interesting options for the next research steps. 

– Further research in the field of a larger number of features included in the anomaly detector. 
Those can be related not only to vibrations but also to performance indicators such as: load, flow, 
temperature, etc. That would be especially valuable for IIoT applications. 

– There is a lot of potential in looking for information that can be transferred within the same 
type of machines. Thus, the population based approach would be for sure also a very strong point 
to consider in the future research of the subject.  

4.3. Conclusions 

The most important findings of the work are as follows: 
– The AD algorithm can be also used in cases when the initial machine state is already 

damaged, provided that the damage severity grows over time. This feature does not apply for cases 
when the machine state is not correct from the maintenance point of view but does not contain any 
structural damage - as seen in Case study III. 

– The reduction of source data to MRD does not reduce the efficiency of the algorithm. It also 
provides an intuitive way of the threshold selection. 

– The algorithm does not generate excessive false positive indications which allows its usage 
in practical industrial scenarios. 

– The usage of MRD in the case of a four-week training dataset decreases the number of 
computations 57 fold. 

– Thresholds from AD algorithm based on 3𝜎 rule were more sensitive to changes in the 
machine condition than limits from ISO standard. 
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