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Abstract. This article considers lateral vibration of an automobile in a so-called quasi-planar 
model where both the loss of contact and road deformation are taken into account. The automobile 
with dependent suspension is modeled as a vibration system which has two masses and four 
degrees of freedom. The deformed road is modeled as an elastic beam which has uniform 
rectangular cross-section, is simply supported at the two ends and lies on the Kelvin's visco-elastic 
ground. The loss of contact and the change in dimensions of contact areas are considered. The 
differential equations of motion of the vehicle-road coupled system which contains a partial 
differential equation are transformed into a set of all ordinary differential equations by applying 
the Bubnov-Galerkin’s method. A procedure for numerically solving the transformed differential 
equations of motion is proposed. Some illustrating results coming from numerical consideration 
are also presented in the paper. 
Keywords: automobile, lateral vibration, loss of contact, wheel separation, quasi-planar model, 
road deformation, Bubnov-Galerkin’s method. 

1. Introduction 

Vibration of automobiles while moving on rough roads appears naturally and frequently. 
Among components of vibration, the ones which cause vertical vibration of points on the 
automobile are more considerable. When the level of vibration exceeds a definite threshold, one 
or more wheels may separate from the road surface and the state of contact between the wheels 
and the road surface is broken. This phenomenon is called as the loss of contact, or wheel 
separation. The loss of contact reduces controllability of the automobile in both velocity and 
direction, therefore, the safety of movement. For this reason, it is needed to take the loss of contact 
(wheel separation) into account while considering vibration of automobiles. 

Without wheel separation, the vehicle dynamics attract a lot of attention from the researchers. 
In [1, 2], the road damage caused by heavy commercial vehicles is investigated using a 
quarter-vehicle model with two degree of freedom (DOF) or a half vehicle with four DOF. Using 
a four DOF model, the dynamics of vehicles with nonlinear spring and damping element is 
considered by Zhu and Ishitobi in [3]. The researches on vehicle-track and vehicle-bridge 
interaction have developed rapidly, in which the vehicle and the road are linked by the tire forces. 
In [4], a vibration seven DOF model of heavy vehicle-road coupled system with independent 
suspensions is presented, where the pavement-foundation is modeled as a double-layer plate on a 
linear viscoelastic foundation. Using the Galerkin’s method and quick direct integral method, the 
dynamical behaviour of the vehicle-pavement-foundation coupled system is numerically 
investigated. Li et al. [5] analyzed nonlinear responses of a seven DOF vehicle moving along a 
simply supported double-layer rectangular plate on a nonlinear viscoelastic foundation. The 
effects of system parameters on vertical acceleration of vehicle body and pavement displacements 
are also studied.  

However, wheel separation has still appeared in very few researches on dynamics of 
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vehicle-road coupled system. Cheng et la [6] investigated the vehicle-bridge interaction taking 
into account the effects of separation and impact on re-establishment of contact between the 
moving vehicle and bridge. The dynamic response of a stationary structure made of several 
Timoshenko beams under moving oscillator with the separation and reattachment phenomena is 
studied by Baeza and Ouyang in [7]. Stăncioiu et al. [8] inspected the vibration of a continuous 
beam resting on elastic supports excited by a moving two-axle system with separation. The 
dynamic response of the system can be very different from the case of not taking separation into 
account. Base on linear complementary relation linking relative displacement and interaction force 
between the wheel and the bridge at contact points, Zhu et al. [9] established a model to consider 
separation in a vehicle-bridge system. The influence of velocity, the vehicle to bridge mass ratio 
and the road roughness on separation is studied. A two DOF quarter-car model and a simply 
supported Euler beam representing the bridge to analyze dynamic interaction of vehicle-bridge 
system with separation are used in [10]. In addition, a nonlinear multiple-spring tire is modeled to 
describe the contact surface of tire and road instead of a point and the form of governing equations 
does not change whatever the tire separates from the bridge or not. 

Vibration of automobiles with wheel separation taken into account has been also considered 
in some different models by the own authors of this paper. The quarter-car models without and 
with road deformation have been considered in [11, 12]. Vehicle vibrations in half-car models can 
be considered in two types, longitudinal and lateral vibrations. In [13], the authors investigated 
the longitudinal vibration of two-axle automobiles with wheel separation, but road deformation 
was ignored. Vibration of two-axle automobiles in spatial (full-car) model without taking road 
deformation has been considered in [14].  

The lateral vibration is a common component of vehicle vibration in general and has a 
significant effect on the passenger’s ride comfort and safety of vehicles. In fact, this component 
of vibration even occurs more frequently than the longitudinal one. As a continuation of our 
researches, this paper deals with the lateral vibration of automobiles in half-car model with road 
deformation and wheel separation considered. The automobile with dependent suspension is 
modeled as a vibration system which has two masses and four degrees of freedom, while the 
deformed road is modeled as an elastic beam which has uniform rectangular cross-section and is 
simply supported at the two ends and lies on the Kelvin's viscoelastic ground. Although 
movements of the masses in the physical model take place in a vertical plane, the model is still 
called as a quasi-planar model because the change in lengths of rectangular contact areas takes 
place in the direction of movement that is perpendicular to the moving plane, and so does the 
change in pressure distribution law. The differential equations of motion of the vehicle-road 
coupled system including a partial differential equation are transformed into a set of all ordinary 
differential equations by applying the Bubnov-Galerkin’s method. Some illustrating results 
obtained from a numerical example are also presented to confirm the occurrence of separation and 
the difference of dynamic response of vehicle with taking and not taking wheel separation. 

2. Vibration model and differential equations of motion 

2.1. Assumptions 

The lateral vibration model of automobile with dependent suspensions is created with the 
following assumptions: 

– Body and axle of the automobile are assumed to be absolute rigids. 
– Each wheel can be represented by a spring - damper couple and behavior of all spring – 

damper couples in the model is linear. 
– Deformed road can be modeled as an elastic beam on Kelvin’s visco-elastic ground and the 

middle cross-section of the beam passes through the two centers of gravity. 
– Lines of action of the elastic and damping forces in the same spring – damper couple coincide 

and perpendicular to the nominal road surface. 
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– Each wheel has the width unchanged while loaded and the wheel circumference part off the 
contact area is still round in the process of vibration. 

– The contact area between each wheel and road surface (if exists) is a rectangle whose width 
is unchanged and equal to the original width of the wheel. 

– The road profiles at two wheel tracks and the form of pressure distribution in the contact 
areas can be described mathematically. 

– Kinematic excitation from the road upward to each wheel is calculated with using vertical 
fluctuation of the center point of the contact area only (not using other points). 

– Automobile moves in line with a constant velocity. 

2.2. Vibration model of the mechanical system 

Fig. 1 shows lateral vibration model of an automobile where road deformation is taken into 
account. The automobile with dependent suspensions has two masses (body 1 and axle 2) whose 
centers of gravity are 𝑆௕, 𝑆௖ and the inertial characteristics are (𝑀௕, 𝐽௕), (𝑀௖ , 𝐽௖), respectively. 
Deformed road is modeled as an elastic beam which lies on the Kelvin's visco-elastic ground and 
is simply supported at the two ends. 

 
Fig. 1. Lateral vibration model of automobile taking account of road deformation (viewed from the front) 

The beam with uniform rectangular cross-section has the dimensions 𝐿஻௡, 𝑏஻௫ and ℎ஻ for the 
length, the width and the height, respectively. Material of the beam is assumed to be identical, 
isotropic and has the mass density 𝜌  and Young’s module 𝐸 . The stiffness and damping 
coefficient per an area unit of the ground are 𝑘ௌ and 𝑐ௌ, respectively. 

Two suspension spring-damper couples are denoted by the notations for their stiffness and 
damping coefficients as ( 𝑘் , 𝑐் ). Similarly, two wheel spring-damper couples are denoted  
as (𝑘௅, 𝑐௅). 

The points numbered as 1, 2, 1', 2', 1", 2" are the mounting points of the spring- damper couples 
on the body and the axle while points 𝐷ଵ and 𝐷ଶ are the centers of the contact areas in cases the 
loss of contact does not appear. 

The effect of movement on vibration of the system is expressed by the changes in height and depth 
of the two centers of the contact areas (𝑟஽ଵ, 𝑟஽ଶ) and their derivatives with respect to time (𝑟ሶ஽ଵ, 𝑟ሶ஽ଶ). 
Deformation of the road is represented by the displacement function of the beam. 

Vibration of the automobile and the elastic beam are expressed in terms of the following 
functions of time as 𝑢௕ ൌ 𝑢௕ሺ𝑡ሻ, 𝜓௕ ൌ 𝜓௕ሺ𝑡ሻ, 𝑢௖ ൌ 𝑢௖ሺ𝑡ሻ, 𝜓௖ ൌ 𝜓௖ሺ𝑡ሻ and 𝑤 ൌ 𝑤ሺ𝑦, 𝑡ሻ those 
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correspond to the displacements which are measured from the so-called natural position where 
both wheels still contact with the nominal road surface while all spring-damper couples in the 
model have no deformation. 

Figure 1 also presents two typical geometrical parameters of the automobile as 𝑏 and 𝑐, and 
the y-coordinates of points 𝐷ଵ and 𝐷ଶ. 

2.3. Forces acting on the vibration system 

Vertical displacements of mounting points of the spring-damper couples in the system (points 
numbered as 1, 2, 1', 2', 1", 2" in Fig. 1) can be determined as follows: 𝑢ଵ ൌ 𝑢௕ − 𝑐𝜓௕ ,   𝑢ଶ ൌ 𝑢௕ ൅ 𝑐𝜓௕ ,𝑢ଵᇱ ൌ 𝑢௖ − 𝑐𝜓௖ ,   𝑢ଶᇱ ൌ 𝑢௖ ൅ 𝑐𝜓௖ ,𝑢ଵᇱᇱ ൌ 𝑢௖ − 𝑏𝜓௖ ,   𝑢ଶᇲᇲ ൌ 𝑢௖ ൅ 𝑏𝜓௖ . (1)

 
Fig. 2. Force diagrams of body and axle of the automobile 

After freeing the body and the axle of automobile from the spring-damper constraints, we get 
their force diagrams as shown in Fig. 2. 

In the diagrams, ሼ𝐺௕,𝐺௖ሽ  – forces of gravity, ሼ𝐹்ଵ,𝐹்ଶ,𝐹௅ଵ,𝐹௅ଶሽ  – resultant forces in four 
spring-damper couples, subscripts "1" and "2" imply the forces corresponding to the wheels on 
the left and the right side, respectively. 

Resultant forces in two suspension spring-damper couples can be determined as: 𝐹்ଵ ൌ 𝑘்ሺ𝑢ଵᇲ − 𝑢ଵሻ ൅ 𝑐்ሺ𝑢ሶ ଵᇲ − 𝑢ሶଵሻ,𝐹்ଶ ൌ 𝑘்ሺ𝑢ଶᇲ − 𝑢ଶሻ ൅ 𝑐்ሺ𝑢ሶ ଶᇲ − 𝑢ሶ ଶሻ. (2)

Vertical deformations of the wheels in case the loss of contact does not appear can be 
calculated as: Δ𝑧௅ଵ ൌ 𝑤஽ଵ ൅ 𝑟஽ଵ − 𝑢ଵᇲᇲ ,       Δ𝑧௅ଶ ൌ 𝑤஽ଶ ൅ 𝑟஽ଶ − 𝑢ଶᇲᇲ , (3)

where 𝑤஽ଵ, 𝑤஽ଶ – vertical displacements of the representing beam at the center points (𝐷ଵ, 𝐷ଶ) of 
the contact areas; 𝑟஽ଵ, 𝑟஽ଶ – the heights or depths (with respect to nominal surface of the road) of 𝐷ଵ and 𝐷ଶ. Basing on Fig. 1, we can determine the y-coordinates of points 𝐷ଵ, 𝐷ଶ and quantities 𝑤஽ଵ, 𝑤஽ଶ as follows: 𝑦஽ଵ ൌ 0.5𝐿஻௡ − 𝑏,   𝑤஽ଵ ൌ 𝑤ሺ𝑦, 𝑡ሻ||௬ୀ௬ವభ ൌ 𝑤ሺ𝑦஽ଵ, 𝑡ሻ,𝑦஽ଶ ൌ 0.5𝐿஻௡ ൅ 𝑏,   𝑤஽ଶ ൌ 𝑤ሺ𝑦, 𝑡ሻ||௬ୀ௬ವమ ൌ 𝑤ሺ𝑦஽ଶ, 𝑡ሻ. (4)

The resultant forces in the wheel spring-damper couples (equal to the contact forces) can be 
calculated according to the following formulas [11-14]: 
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𝐹௅ଵ ൌ 𝑠ଵሾ𝑘௅ሺ𝑤஽ଵ ൅ 𝑟஽ଵ − 𝑢ଵᇲᇲሻ ൅ 𝑐௅ሺ𝑤ሶ ஽ଵ ൅ 𝑟ሶ஽ଵ − 𝑢ሶଵᇲᇲሻሿ,𝐹௅ଶ ൌ 𝑠ଶሾ𝑘௅ሺ𝑤஽ଶ ൅ 𝑟஽ଶ − 𝑢ଶᇲᇲሻ ൅ 𝑐௅ሺ𝑤ሶ ஽ଶ ൅ 𝑟ሶ஽ଶ − 𝑢ሶ ଶᇲᇲሻሿ, (5)

where 𝑠ଵ , 𝑠ଶ are the contact state parameters whose values are determined by the sign of the 
so-called verifying values of contact forces at the two wheels: 𝑄തଵ ൌ 𝑘௅ሺ𝑤஽ଵ ൅ 𝑟஽ଵ − 𝑢ଵᇲᇲሻ ൅ 𝑐௅ሺ𝑤ሶ ஽ଵ ൅ 𝑟ሶ஽ଵ − 𝑢ሶଵᇲᇲሻ,𝑄തଶ ൌ 𝑘௅ሺ𝑤஽ଶ ൅ 𝑟஽ଶ − 𝑢ଶᇲᇲሻ ൅ 𝑐௅ሺ𝑤ሶ ஽ଶ ൅ 𝑟ሶ஽ଶ − 𝑢ሶ ଶᇲᇲሻ. (6)

Particularly, the 𝑗th wheel contacts the road, 𝑄ത௝ ൒ 0 and 𝑠௝ ൌ 1; it separates from the road 
if 𝑄ത௝ ൏ 0 and 𝑠௝ ൌ 0 (𝑗 ൌ 1, 2). 

2.4. Differential equations of motion of the system 

2.4.1. Differential equations of motion of automobile 

The equations of motion of automobile can be obtained by applying the Newton’s second law to 
the body and the axle of automobile using the force diagrams in Fig. 2 and relations Eqs. (2), (3), (5): 𝑀௕𝑢ሷ ௕ ൅ 2𝑐்𝑢ሶ ௕ − 2𝑐்𝑢ሶ ௖ ൅ 2𝑘்𝑢௕ − 2𝑘்𝑢௖ ൌ −𝑀௕𝑔, (7)𝐽௕𝜓ሷ௕ ൅ 2𝑐்𝑐ଶ𝜓ሶ௕ − 2𝑐்𝑐ଶ𝜓ሶ௖ ൅ 2𝑘்𝑐ଶ𝜓௕ − 2𝑘்𝑐ଶ𝜓௖ ൌ 0, (8)𝑀௖𝑢ሷ ௖ − 2𝑐்𝑢ሶ ௕ ൅ ሾ2𝑐் ൅ ሺ𝑠ଵ ൅ 𝑠ଶሻ𝑐௅ሿ𝑢ሶ ௖ − ሺ𝑠ଵ − 𝑠ଶሻ𝑐௅𝑏𝜓ሶ௖ − 𝑠ଵ𝑐௅𝑤ሶ ஽ଵ − 𝑠ଶ𝑐௅𝑤ሶ ஽ଶ       −2𝑘்𝑢௕ ൅ ሾ2𝑘் ൅ ሺ𝑠ଵ ൅ 𝑠ଶሻ𝑘௅ሿ𝑢௖ − ሺ𝑠ଵ − 𝑠ଶሻ𝑘௅𝑏𝜓௖ − 𝑠ଵ𝑘௅𝑤஽ଵ − 𝑠ଶ𝑘௅𝑤஽ଶ       ൌ −𝑀௖𝑔 ൅ 𝑠ଵሺ𝑘௅𝑟஽ଵ ൅ 𝑐௅𝑟ሶ஽ଵሻ ൅ 𝑠ଶሺ𝑘௅𝑟஽ଶ ൅ 𝑐௅𝑟ሶ஽ଶሻ,  (9)𝐽௖𝜓ሷ௖ − 2𝑐்𝑐ଶ𝜓ሶ௕ − ሺ𝑠ଵ − 𝑠ଶሻ𝑐௅𝑏𝑢ሶ ௖   ൅ ሾ2𝑐்𝑐ଶ ൅ ሺ𝑠ଵ ൅ 𝑠ଶሻ𝑐௅𝑏ଶሿ𝜓ሶ௖ ൅ 𝑠ଵ𝑐௅𝑏𝑤ሶ ஽ଵ      −𝑠ଶ𝑐௅𝑏𝑤ሶ ஽ଶ − 2𝑘்𝑐ଶ𝜓௕ − ሺ𝑠ଵ − 𝑠ଶሻ𝑘௅𝑏𝑢௖  ൅ ሾ2𝑘்𝑐ଶ ൅ ሺ𝑠ଵ ൅ 𝑠ଶሻ𝑘௅𝑏ଶሿ𝜓௖      ൅𝑠ଵ𝑘௅𝑏𝑤஽ଵ − 𝑠ଶ𝑘௅𝑏𝑤஽ଶ ൌ −𝑠ଵ𝑏ሺ𝑘௅𝑟஽ଵ ൅ 𝑐௅𝑟ሶ஽ଵሻ ൅ 𝑠ଶ𝑏ሺ𝑘௅𝑟஽ଶ ൅ 𝑐௅𝑟ሶ஽ଶሻ.  (10)

2.4.2. Differential equation of motion of deformed road 

The mentioned equation can be generated by considering the equilibrium of a typical element 
of the beam. The force diagram of the beam element which lies at coordinate 𝑦 and has the axle 
length 𝑑𝑦 is shown in Fig. 3. 

Forces acting on the beam element consist of inertial force (𝑑𝐹௤௧), resultant force of Kelvin’s 
visco-elastic ground (𝑑𝐹ௌ), force of gravity (𝑑𝐺), contact force from the wheels (𝑑𝑄௪), the shear 
forces and the bending moments in the two end cross-section  ሼ𝑄,𝑄 ൅ ሺ𝜕𝑄 𝜕𝑦⁄ ሻ𝑑𝑦,𝑀,𝑀൅ ሺ𝜕𝑀 𝜕𝑦⁄ ሻ𝑑𝑦ሽ. 

 
a) 

 
b) 

Fig. 3. a) Force diagram of a typical beam element, b) the dimension of beam cross-section 

The expressions of four first forces can be written as: 
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𝑑𝐹௤௧ ൌ 𝜌𝑏஻௫ℎ஻ 𝜕ଶ𝑤𝜕𝑡ଶ 𝑑𝑦,   𝑑𝐹ௌ ൌ ൬𝑘ௌ𝑤 ൅ 𝑐ௌ 𝜕𝑤𝜕𝑡 ൰ 𝑏஻௫𝑑𝑦,𝑑𝐺 ൌ 𝜌𝑔𝑏஻௫ℎ஻𝑑𝑦,   𝑑𝑄௪ ൌ   ൝න 𝑝ሺ𝑥,𝑦, 𝑡ሻ𝑑𝑥൫ௗ೎ೕ൯  ൡ 𝑑𝑦,  (11)

where 𝑤 ൌ 𝑤ሺ𝑦, 𝑡ሻ – displacement function of the beam, 𝑑௖௝ – the length of the 𝑗th contact area 
(𝑗 ൌ 1, 2) in the direction of movement, 𝑝ሺ𝑥,𝑦, 𝑡ሻ – function of pressure distribution on the upper 
surface of the beam due to the load coming from the automobile, 𝑔 – gravitational acceleration. 

 
Fig. 4. Description of function 𝑝ሺ𝑥,𝑦, 𝑡ሻ on beam a) and four types of pressure distribution  

in 𝑥-direction (1 – constant, 2 – parabolic, 3 – cosine, 4 – cosine squared) 

The function of pressure distribution 𝑝ሺ𝑥,𝑦, 𝑡ሻ is defined over the whole top surface of the 
beam but really exists in the contact areas of the wheels (Fig. 4). Moreover, this function can be 
taken only based on observing the fact and using assumptions. This paper still applies the 
expression of 𝑝ሺ𝑥,𝑦, 𝑡ሻ which is proposed in [12] and has the form: 

𝑝ሺ𝑥,𝑦, 𝑡ሻ ൌ ቐ𝑃ଵሺ𝑡ሻ𝑈ଵሺ𝑥ሻ,        𝑦ଵ ൑ 𝑦 ൑ 𝑦ଶ,𝑃ଶሺ𝑡ሻ𝑈ଶሺ𝑥ሻ,        𝑦ଷ ൑ 𝑦 ൑ 𝑦ସ,0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  (12)

In Eq. (12), the expression of 𝑝ሺ𝑥,𝑦, 𝑡ሻ is assumed unchanged in y-direction in the domain of 
each contact area, 𝑃௝ሺ𝑡ሻ (𝑗 ൌ 1, 2) are unknown functions of time to be found and 𝑈௝ሺ𝑥ሻ are 
pre-chosen expressions to describe the change of 𝑝ሺ𝑥,𝑦, 𝑡ሻ in 𝑥-direction over the length 𝑑௖௝ of 
each contact area. Hence, the expressions 𝑈௝ሺ𝑥ሻ really represent the laws of pressure distribution 
in the contact areas. 

Four typical types of pressure distribution which can be applied in considering vibration of 
automobiles are proposed in [12] and graphically described in Fig. 4(b). They consist of constant 
(rectangular), parabolic, cosine and cosine-squared distributions. In the coordinate system 𝑂𝑥𝑧 
with the origin coinciding with the center of contact area and the 𝑥-axis being the direction of 
movement, the corresponding expression of 𝑈௝ሺ𝑥ሻ is 1, 1-4൫𝑥 𝑑௖௝⁄ ൯ଶ, cosሺ𝜋𝑥/𝑑௖௝ሻ, cosଶሺ𝜋𝑥/𝑑௖௝ሻ. 

With the expression of function 𝑝ሺ𝑥,𝑦, 𝑡ሻ as taken in Eq. (12), the formula of 𝑑𝑄௪ in Eq. (11) 
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becomes: 

𝑑𝑄௪ =   ൝න 𝑃௝ሺ𝑡ሻ𝑈௝ሺ𝑥ሻ𝑑𝑥൫ௗ೎ೕ൯  ൡ 𝑑𝑦 = 𝑃௝ሺ𝑡ሻ𝐼଴ሺ௝ሻ𝑑𝑦, (13)

where: 𝐼଴(௝) =  න 𝑈௝(𝑥)𝑑𝑥(ௗ೎ೕ) ,      𝑗 =  1, 2. (14)

For the elements which do not lie under the contact areas, we have 𝑑𝑄௪ = 0 because  𝑝(𝑥,𝑦, 𝑡) = 0. 
In case wheel separation does not appear, the values of 𝐼଴(௝)  depend on 𝑑௖௝  and can be 

determined by using the used type of pressure distribution. For the four types of pressure 
distribution mentioned above, the values of 𝐼଴(௝) are 𝑑௖௝, 2𝑑௖௝/3, 2𝑑௖௝/𝜋 and 𝑑௖௝/2, respectively. 

The equilibrium of forces in 𝑧-direction and the moment equilibrium about the center of left 
cross-section of the element lead to these equations: 𝜕𝑄𝜕𝑦 𝑑𝑦 − 𝑑𝐹௤௧ − 𝑑𝐹ௌ − 𝑑𝐺 − 𝑑𝑄௪ = 0, (15)𝑄 = 𝜕𝑀𝜕𝑦 = −𝐸𝐼 𝜕ଷ𝑤𝜕𝑦ଷ , (16)

where 𝑀 = −𝐸𝐼 డమ௪డ௬మ  for Euler-Bernoulli’s beam theory. 
Putting the expression of 𝑄 from Eq. (16) into Eq. (15) and using the expressions Eq. (11) and 

Eq. (13) of forces then taking some needed arrangements, we obtain the differential equation of 
motion of the beam which represents deformed road: 

𝜌ℎ஻ 𝜕ଶ𝑤𝜕𝑡ଶ + 𝑐ௌ 𝜕𝑤𝜕𝑡 + 𝑘ௌ𝑤(𝑦, 𝑡) + 1𝑏஻௫ 𝐸𝐼 𝜕ସ𝑤𝜕𝑦ସ + 1𝑏஻௫ 𝑃௝(𝑡)𝐼଴(௝) = −𝜌𝑔ℎ஻. (17)

The differential equations of motion of the mechanical system are the combination of ordinary 
differential Eqs. (7-10) and partial differential Eq. (17). 

2.5. Simpler cases of differential equations of motion of the system 

a) If the loss of contact is ignored, we can fix 𝑠ଵ = 𝑠ଶ = 1. Eqs. (7), (8) and (17) are unchanged 
while Eq. (9), (10) become: 𝑀௖𝑢ሷ ௖ − 2𝑐்𝑢ሶ ௕ + 2(𝑐் + 𝑐௅)𝑢ሶ ௖ − 𝑐௅𝑤ሶ ஽ଵ − 𝑐௅𝑤ሶ ஽ଶ − 2𝑘்𝑢௕ + 2(𝑘் + 𝑘௅)𝑢௖        −𝑘௅𝑤஽ଵ − 𝑘௅𝑤஽ଶ = −𝑀஼𝑔 + 𝑘௅(𝑟஽ଵ + 𝑟஽ଶ) + 𝑐௅(𝑟ሶ஽ଵ + 𝑟ሶ஽ଶ),  (18)𝐽௖𝜓ሷ௖ − 2𝑐்𝑐ଶ𝜓ሶ௕ + 2(𝑐்𝑐ଶ + 𝑐௅𝑏ଶ)𝜓ሶ௖ + 𝑐௅𝑏𝑤ሶ ஽ଵ − 𝑐௅𝑏𝑤ሶ ஽ଶ − 2𝑘்𝑐ଶ𝜓௕       +2(𝑘்𝑐ଶ + 𝑘௅𝑏ଶ)𝜓௖ + 𝑘௅𝑏𝑤஽ଵ − 𝑘௅𝑏𝑤஽ଶ = −𝑘௅𝑏(𝑟஽ଵ − 𝑟஽ଶ) − 𝑐௅𝑏(𝑟ሶ஽ଵ − 𝑟ሶ஽ଶ). (19)

b) If the deformation of road is not taken into account, we have 𝑤(𝑦, 𝑡) = 0 for every 𝑦 and 𝑡. 
In this situation, it is allowed to set 𝑘ௌ = ∞, 𝑐ௌ = ∞ and Eq. (17) becomes an identity, Eqs. (7) and 
(8) are unchanged while Eqs. (9) and (10) have the new forms as: 
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𝑀௖𝑢ሷ ௖ − 2𝑐்𝑢ሶ ௕ + [2𝑐் + (𝑠ଵ + 𝑠ଶ)𝑐௅]𝑢ሶ ௖ − (𝑠ଵ − 𝑠ଶ)𝑐௅𝑏𝜓ሶ௖ 𝑢௖     −2𝑘்𝑢௕ + [2𝑘் + (𝑠ଵ + 𝑠ଶ)𝑘௅] − (𝑠ଵ − 𝑠ଶ)𝑘௅𝑏𝜓௖       = −𝑀௖𝑔 + 𝑠ଵ(𝑘௅𝑟஽ଵ + 𝑐௅𝑟ሶ஽ଵ) + 𝑠ଶ(𝑘௅𝑟஽ଶ + 𝑐௅𝑟ሶ஽ଶ), (20)𝐽௖𝜓ሷ௖ − 2𝑐்𝑐ଶ𝜓ሶ௕ − (𝑠ଵ − 𝑠ଶ)𝑐௅𝑏𝑢ሶ ௖ + [2𝑐்𝑐ଶ + (𝑠ଵ + 𝑠ଶ)𝑐௅𝑏ଶ]𝜓ሶ௖      −2𝑘்𝑐ଶ𝜓௕ − (𝑠ଵ − 𝑠ଶ)𝑘௅𝑏𝑢௖ + [2𝑘்𝑐ଶ + (𝑠ଵ + 𝑠ଶ)𝑘௅𝑏ଶ]𝜓௖     = −𝑠ଵ𝑏(𝑘௅𝑟஽ଵ + 𝑐௅𝑟ሶ஽ଵ) + 𝑠ଶ𝑏(𝑘௅𝑟஽ଶ + 𝑐௅𝑟ሶ஽ଶ).  (21)

c) If road deformation and wheel separation are ignored, the differential equations of motion 
of the vehicle-road coupled system are reduced to those of only automobile with the addition of 
setting 𝑠ଵ = 𝑠ଶ = 1. In this situation, Eqs. (7) and (8) are still unchanged while Eqs. (9) and (10) 
respectively becomes: 𝑀௖𝑢ሷ ௖ − 2𝑐்𝑢ሶ ௕ + 2(𝑐் + 𝑐௅)𝑢ሶ ௖ − 2𝑘்𝑢௕ + 2(𝑘் + 𝑘௅)𝑢௖         = −𝑀௖𝑔 + 𝑘௅(𝑟஽ଵ + 𝑟஽ଶ) + 𝑐௅(𝑟ሶ஽ଵ + 𝑟ሶ஽ଶ),  (22)𝐽௖𝜓ሷ௖ − 2𝑐்𝑐ଶ𝜓ሶ௕ + 2(𝑐்𝑐ଶ + 𝑐௅𝑏ଶ)𝜓ሶ௖  − 2𝑘்𝑐ଶ𝜓௕ + 2(𝑘்𝑐ଶ + 𝑘௅𝑏ଶ)𝜓௖         = −𝑘௅𝑏(𝑟஽ଵ − 𝑟஽ଶ) − 𝑐௅𝑏(𝑟ሶ஽ଵ − 𝑟ሶ஽ଶ).  (23)

3. Solving the differential equations of motion 

3.1. Transforming the differential equations of motion into ordinary differential equations 

The presence of a partial differential equation does not allow to solve the original differential 
equations of motion of the vehicle-road coupled system until now. In order to overcome this 
difficulty, here the Bubnov-Galerkin’s method is applied to transform those differential equations 
of motion into a system of all ordinary differential equations (ODEs). 

According to the Bubnov-Galerkin’s method, we need to fulfil a succession of operations as 
follows: 

1) Approximating the displacement function of the beam 𝑤(𝑦, 𝑡) with a series of 𝑁 terms as: 

𝑤(𝑦, 𝑡) = ෍ 𝑇௟(𝑡)𝑌௟(𝑦)ே௟ୀଵ = ෍ 𝑇௟(𝑡)sin (2𝑙 − 1)𝜋𝑦𝐿஻௡ே௟ୀଵ , (24)

where 𝑇௟(𝑡) are unknown functions of time to be found, 𝑌௟(𝑦) = sin[(2𝑙 − 1)𝜋𝑦/𝐿஻௡] – shape 
functions satisfying boundary conditions of the beam, 𝑤(𝑦, 𝑡)||௬ୀ଴ = 𝑤(𝑦, 𝑡)||௬ୀ௅ಳ೙ = 0. 

It is important to note that the functions 𝑌௟(𝑦) are linearly independent and have the property 
of orthogonality as: 

න sin (2𝑙 − 1)𝜋𝑦𝐿஻௡ sin (2𝑙′ − 1)𝜋𝑦𝐿஻௡ 𝑑𝑦௅ಳ೙
଴ = ൜0,            𝑙 ≠ 𝑙ᇱ,𝐿஻௡ 2,   𝑙 = 𝑙ᇱ.⁄  (25)

The approximation of function 𝑤(𝑦, 𝑡) as in Eq. (24) allows to define the vector of generalized 
coordinates: 𝑞⃗ = [𝑢௕(𝑡),𝜓௕(𝑡),𝑢௖(𝑡),𝜓௖(𝑡),𝑇ଵ(𝑡),𝑇ଶ(𝑡), … ,𝑇ே(𝑡)]் . (26)

2) Putting the Eq. (24) of 𝑤(𝑦, 𝑡) into Eq. (17) leads to the following equation: 
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𝜌ℎ஻෍𝑇ሷ௟(𝑡)sin (2𝑙 − 1)𝜋𝑦𝐿஻௡ே
௟ୀଵ + 𝑐ௌ෍𝑇ሶ௟(𝑡)sin (2𝑙 − 1)𝜋𝑦𝐿஻௡ே

௟ୀଵ + 𝑘ௌ෍𝑇௟(𝑡)sin (2𝑙 − 1)𝜋𝑦𝐿஻௡ே
௟ୀଵ       + 1𝑏஻௫ 𝐸𝐼෍ (2𝑙 − 1)ସ𝜋ସ𝐿஻௡ସ 𝑇௟(𝑡)sin (2𝑙 − 1)𝜋𝑦𝐿஻௡ே

௟ୀଵ + 1𝑏஻௫ 𝑃௝(𝑡)𝐼଴(௝) = −𝜌𝑔ℎ஻.  (27)

3) Assigning to variable 𝑘 consecutively the values of the set {1, 2, ..., 𝑁}. With each value, 
multiplying Eq. (27) by sin[(2𝑘 − 1)𝜋𝑦/𝐿஻௡] then taking the integration of the two sides with 
respect to variable 𝑦  from 0 to 𝐿஻௡  (over the length of the beam), noting the orthogonality 
Eqs. (25), we obtain a system of 𝑁 ODEs as follows: 

𝜌ℎ஻ 𝐿஻௡2 𝑇ሷ௞(𝑡) + 𝑐ௌ 𝐿஻௡2 𝑇ሶ௞(𝑡) + 𝑘ௌ 𝐿஻௡2 𝑇௞(𝑡)  + 1𝑏஻௫ 𝐸𝐼 𝐿஻௡2 (2𝑘 − 1)ସ𝜋ସ𝐿஻௡ସ 𝑇௞(𝑡)
       + 1𝑏஻௫ න 𝑃௝(𝑡)𝐼଴(௝)sin (2𝑘 − 1)𝜋𝑦𝐿஻௡ 𝑑𝑦௅ಳ೙଴ = − 2𝜌𝑔ℎ஻𝐿஻௡(2𝑘 − 1)𝜋 ,       𝑘 =  1, 2, . . . ,𝑁. (28)

In order to calculate the integration in Eq. (28), it is important to see the form Eq. (12) of 
function 𝑝(𝑥,𝑦, 𝑡) and its description in Fig. 4(a). The values of 𝑦ଵ, 𝑦ଶ, 𝑦ଷ, 𝑦ସ can be expressed in 
terms of the 𝑦-coordinates of points 𝐷ଵ, 𝐷ଶ (centers of contact areas) and the width of the wheels 
as follows: 𝑦ଵ = 𝑦஽ଵ − 0,5𝑏௅, 𝑦ଶ = 𝑦஽ଵ + 0,5𝑏௅, 𝑦ଷ = 𝑦஽ଶ − 0,5𝑏௅, 𝑦ସ = 𝑦஽ଶ + 0,5𝑏௅ ⇒   𝑦ଶ + 𝑦ଵ = 2𝑦஽ଵ , 𝑦ସ + 𝑦ଷ = 2𝑦஽ଶ,𝑦ଶ − 𝑦ଵ = 𝑦ସ − 𝑦ଷ = 𝑏௅.  (29)

The relations in Eq. (29) allow to calculate the integration in Eq. (28) as follow: 

න 𝑃௝(𝑡)𝐼଴(௝)sin (2𝑘 − 1)𝜋𝑦𝐿஻௡ 𝑑𝑦௅ಳ೙଴ = න 𝑃ଵ(𝑡)𝐼଴(ଵ)sin (2𝑘 − 1)𝜋𝑦𝐿஻௡ 𝑑𝑦௬మ௬భ       +න 𝑃ଶ(𝑡)𝐼଴(ଶ)sin (2𝑘 − 1)𝜋𝑦𝐿஻௡ 𝑑𝑦௬ర௬య = 2𝐿஻௡(2𝑘 − 1)𝜋 sin (2𝑘 − 1)𝜋𝑏௅2𝐿஻௡       × ൤𝑃ଵ(𝑡)𝐼଴(ଵ)sin (2𝑘 − 1)𝜋𝑦஽ଵ𝐿஻௡ + 𝑃ଶ(𝑡)𝐼଴(ଶ)sin (2𝑘 − 1)𝜋𝑦஽ଶ𝐿஻௡ ൨       = 12 𝐿஻௡𝑏஻௫ൣ𝛽௞(ଵ)𝑃ଵ(𝑡) + 𝛽௞(ଶ)𝑃ଶ(𝑡)൧, 
(30)

where: 

𝛽௞(ଵ) = 4𝐼଴(ଵ)(2𝑘 − 1)𝜋𝑏஻௫ sin (2𝑘 − 1)𝜋𝑏௅2𝐿஻௡ sin (2𝑘 − 1)𝜋𝑦஽ଵ𝐿஻௡ ,
 𝛽௞(ଶ) = 4𝐼଴(ଶ)(2𝑘 − 1)𝜋𝑏஻௫ sin (2𝑘 − 1)𝜋𝑏௅2𝐿஻௡ sin (2𝑘 − 1)𝜋𝑦஽ଶ𝐿஻௡ . (31)

Substituting the results in Eq. (30) into Eq. (28) leads to the following equation: 

𝜌ℎ஻𝑇ሷ௞(𝑡) + 𝑐ௌ𝑇ሶ௞(𝑡) + ቈ𝑘ௌ + 𝐸𝐼𝑏஻௫ (2𝑘 − 1)ସ𝜋ସ𝐿஻௡ସ ቉   𝑇௞(𝑡) + 𝛽௞(ଵ)𝑃ଵ(𝑡) + 𝛽௞(ଶ)𝑃ଶ(𝑡)= − 4𝜌𝑔ℎ஻(2𝑘 − 1)𝜋 ,       𝑘 =  1, 2, . . . ,𝑁. (32)
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4) Expressing functions 𝑃ଵ(𝑡), 𝑃ଶ(𝑡) and Eq. (32) in terms of generalized coordinates. 
This operation is needed because functions 𝑃ଵ(𝑡) and 𝑃ଶ(𝑡) are generated in the process of 

transforming the partial differential Eq. (17) into ODEs. To reach the purpose, we consider the 
equilibrium of the forces acting on the 𝑗-th wheel (𝑗 = 1, 2) in vertical direction (see Fig. 4(b)): 𝐹௅௝ = 𝑅௝ , (33)

where 𝑅௝  – reaction force from road and 𝐹௅௝  – resultant force in the 𝑗-th wheel spring-damper 
couple. 

The reaction force 𝑅௝ can be calculated based on the pre-chosen pressure distribution function as: 

𝑅௝ = න 𝑝௝(𝑥, 𝑡)𝑏௅𝑑𝑥଴,ହௗ೎ೕି଴,ହௗ೎ೕ = 𝑏௅ න 𝑃௝(𝑡)𝑈௝(𝑥)𝑑𝑥଴,ହௗ೎ೕି଴,ହௗ೎ೕ , 
or: 𝑅ଵ = 𝑃ଵ(𝑡)𝑏௅𝐼଴(ଵ),      𝑅ଶ = 𝑃ଶ(𝑡)𝑏௅𝐼଴(ଶ). (34)

In order to find the expressions of forces 𝐹௅௝, we firstly use Eq. (24) to calculate 𝑤஽ଵ, 𝑤஽ଶ, 𝑤ሶ ஽ଵ, 𝑤ሶ ஽ଶ as: 

𝑤஽ଵ = ෍ 𝑇௟(𝑡)sin (2𝑙 − 1)𝜋𝑦஽ଵ𝐿஻௡ே௟ୀଵ = ෍ 𝜒௟(ଵ)𝑇௟(𝑡)ே௟ୀଵ  , 𝑤஽ଶ = ෍ 𝑇௟(𝑡)sin (2𝑙 − 1)𝜋𝑦஽ଶ𝐿஻௡ே௟ୀଵ = ෍ 𝜒௟(ଶ)𝑇௟(𝑡)ே௟ୀଵ  , 𝑤ሶ ஽ଵ = ෍ 𝑇ሶ௟(𝑡)sin (2𝑙 − 1)𝜋𝑦஽ଵ𝐿஻௡ே௟ୀଵ = ෍ 𝜒௟(ଵ)𝑇ሶ௟(𝑡)ே௟ୀଵ  , 𝑤ሶ ஽ଶ = ෍ 𝑇ሶ௟(𝑡)sin (2𝑙 − 1)𝜋𝑦஽ଶ𝐿஻௡ே௟ୀଵ = ෍ 𝜒௟(ଶ)𝑇ሶ௟(𝑡)ே௟ୀଵ , 
(35)

where: 

𝜒௟(ଵ) = sin (2𝑙 − 1)𝜋𝑦஽ଵ𝐿஻௡ ,       𝜒௟(ଶ) = sin (2𝑙 − 1)𝜋𝑦஽ଶ𝐿஻௡ . (36)

Eqs. (5) and (35) allow to get the expressions of 𝐹௅௝: 
𝐹௅ଵ = 𝑠ଵ ൥𝑘௅ ൭෍𝜒௟(ଵ)𝑇௟(𝑡)ே

௟ୀଵ + 𝑟஽ଵ − 𝑢௖ + 𝑏𝜓௖൱ + 𝑐௅ ൭෍𝜒௟(ଵ)𝑇ሶ௟(𝑡)ே
௟ୀଵ + 𝑟ሶ஽ଵ − 𝑢ሶ ௖ + 𝑏𝜓ሶ௖൱൩ ,

𝐹௅ଶ = 𝑠ଶ ൥𝑘௅ ൭෍𝜒௟(ଶ)𝑇௟(𝑡)ே
௟ୀଵ + 𝑟஽ଶ − 𝑢௖ − 𝑏𝜓௖൱ + 𝑐௅ ൭෍𝜒௟(ଶ)𝑇ሶ௟(𝑡)ே

௟ୀଵ + 𝑟ሶ஽ଶ − 𝑢ሶ ௖ − 𝑏𝜓ሶ௖൱൩ . (37)

Using Eqs. (33), (34), (37) we obtain: 
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𝑃ଵ(𝑡) = 𝑠ଵ𝐼଴(ଵ)𝑏௅ ൤𝑘௅ ൬෍ 𝜒௟(ଵ)𝑇௟(𝑡)ே௟ୀଵ + 𝑟஽ଵ − 𝑢௖ + 𝑏𝜓௖൰      + 𝑐௅ ൬෍ 𝜒௟(ଵ)𝑇ሶ௟(𝑡)ே௟ୀଵ + 𝑟ሶ஽ଵ − 𝑢ሶ ௖ + 𝑏𝜓ሶ௖൰൨ ,𝑃ଶ(𝑡) = 𝑠ଶ𝐼଴(ଶ)𝑏௅ ൤𝑘௅ ൬෍ 𝜒௟(ଶ)𝑇௟(𝑡)ே௟ୀଵ + 𝑟஽ଶ − 𝑢௖ − 𝑏𝜓௖൰
 

      + 𝑐௅ ൬෍ 𝜒௟(ଶ)𝑇ሶ௟(𝑡)ே௟ୀଵ + 𝑟ሶ஽ଶ − 𝑢ሶ ௖ − 𝑏𝜓ሶ௖൰൨. 
(38)

Putting the expressions of 𝑃ଵ(𝑡) and 𝑃ଶ(𝑡) from Eq. (38) into Eq. (32) and taking some needed 
arrangements lead to the following equation: 𝜌ℎ஻𝑇ሷ௞(𝑡) − (𝜇௞(ଵ) + 𝜇௞(ଶ))𝑐௅𝑢ሶ ௖ + (𝜇௞(ଵ) − 𝜇௞(ଶ))𝑐௅𝑏𝜓ሶ௖      +෍ ൣ𝛿௞௟𝑐ௌ + ൫𝜇௞(ଵ)𝜒௟(ଵ) + 𝜇௞(ଶ)𝜒௟(ଶ)൯𝑐௅ ൧ 𝑇ሶ௟(𝑡)ே௟ୀଵ − (𝜇௞(ଵ) + 𝜇௞(ଶ))𝑘௅𝑢௖      +(𝜇௞(ଵ) − 𝜇௞(ଶ))𝑘௅𝑏𝜓௖ + ෍ ൣ𝛿௞௟𝐻௞ + ൫𝜇௞(ଵ)𝜒௟(ଵ) + 𝜇௞(ଶ)𝜒௟(ଶ)൯𝑘௅൧ 𝑇௟(𝑡)ே௟ୀଵ       = − 4𝜌𝑔ℎ஻(2𝑘 − 1)𝜋 − 𝜇௞(ଵ)(𝑘௅𝑟஽ଵ + 𝑐௅𝑟ሶ஽ଵ) − 𝜇௞(ଶ)(𝑘௅𝑟஽ଶ + 𝑐௅𝑟ሶ஽ଶ),      𝑘 =  1, 2, . . . ,𝑁, 

(39)

where: 

𝐻௞ = 𝑘ௌ + 𝐸𝐼𝑏஻௫ (2𝑘 − 1)ସ𝜋ସ𝐿஻௡ସ ,       𝜇௞(ଵ) = 𝑠ଵ𝛽௞(ଵ)𝐼଴(ଵ)𝑏௅ ,        𝜇௞(ଶ) = 𝑠ଶ𝛽௞(ଶ)𝐼଴(ଶ)𝑏௅ , (40)

and 𝛿௞௟ – the Kronecker’s operator defined as 𝛿௞௟ = 1 if 𝑘 = 𝑙, and 𝛿௞௟ = 0 if 𝑘 ≠ 𝑙. 
5) Expressing Eqs. (9) and (10) in terms of the generalized coordinates. This purpose can be 

reached by putting the expressions of functions 𝑤஽ଵ, 𝑤஽ଶ, 𝑤ሶ ஽ଵ, 𝑤ሶ ஽ଶ from Eq. (35) into Eqs. (9), 
(10) as follows: 

𝑀௖𝑢ሷ ௖ − 2𝑐்𝑢ሶ ௕ + [2𝑐் + (𝑠ଵ + 𝑠ଶ)𝑐௅]𝑢ሶ ௖ − (𝑠ଵ − 𝑠ଶ)𝑐௅𝑏𝜓ሶ௖ −෍(𝑠ଵ𝜒௟(ଵ) + 𝑠ଶ𝜒௟(ଶ))𝑐௅𝑇ሶ௟(𝑡)ே
௟ୀଵ        −2𝑘்𝑢௕  + [2𝑘் + (𝑠ଵ + 𝑠ଶ)𝑘௅]𝑢௖ − (𝑠ଵ − 𝑠ଶ)𝑘௅𝑏𝜓௖ −෍(𝑠ଵ𝜒௟(ଵ) + 𝑠ଶ𝜒௟(ଶ))𝑘௅𝑇௟(𝑡)ே
௟ୀଵ        = −𝑀௖𝑔 + 𝑠ଵ(𝑘௅𝑟஽ଵ + 𝑐௅𝑟ሶ஽ଵ) + 𝑠ଶ(𝑘௅𝑟஽ଶ + 𝑐௅𝑟ሶ஽ଶ),

 (41)

𝐽௖𝜓ሷ௖ − 2𝑐்𝑐ଶ𝜓ሶ௕ − (𝑠ଵ − 𝑠ଶ)𝑐௅𝑏𝑢ሶ ௖ + [2𝑐்𝑐ଶ + (𝑠ଵ + 𝑠ଶ)𝑐௅𝑏ଶ]𝜓ሶ௖       +෍ (𝑠ଵ𝜒௟(ଵ) − 𝑠ଶ𝜒௟(ଶ))𝑐௅𝑏𝑇ሶ௟(𝑡)ே௟ୀଵ − 2𝑘்𝑐ଶ𝜓௕  − (𝑠ଵ − 𝑠ଶ)𝑘௅𝑏𝑢௖       +[2𝑘்𝑐ଶ + (𝑠ଵ + 𝑠ଶ)𝑘௅𝑏ଶ]𝜓௖ + ෍ (𝑠ଵ𝜒௟(ଵ) − 𝑠ଶ𝜒௟(ଶ))𝑘௅𝑏𝑇௟(𝑡)ே௟ୀଵ         = −𝑠ଵ𝑏(𝑘௅𝑟஽ଵ + 𝑐௅𝑟ሶ஽ଵ) + 𝑠ଶ𝑏(𝑘௅𝑟஽ଶ + 𝑐௅𝑟ሶ஽ଶ). 
(42)

Now the original differential equations of motion of the mechanical system have been 
transformed into a system of all ordinary differential Eqs. (7), (8), (41), (42) and (39). These 
equations can be called as the transformed differential equations of motion (TDEM). The TDEM 
can be solved numerically because each from them has been expressed in terms of the generalized 
coordinates. 



CONSIDERATION ON LATERAL VIBRATION OF AUTOMOBILES IN QUASI-PLANAR MODEL WITH WHEEL SEPARATION AND ROAD DEFORMATION 
TAKEN INTO ACCOUNT. HAM VU CONG, CUONG PHUNG MANH, DUNG TRAN QUANG 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 267 

3.2. Matrix form of TDEM 

The TDEM can be written in matrix form as: [𝑀]𝑞⃗ሷ + [𝐶]𝑞⃗ሶ + [𝐾]𝑞⃗ = 𝐹⃗, (43)

where 𝑞⃗ – vector of generalized coordinates of the form Eq. (26), 𝐹⃗ – excitation vector; [𝑀], [𝐶], 
[𝐾] – mass, damping and stiffness matrices, respectively. The two vectors have the size as (4 + 𝑁) × 1 while the matrices are all square of order (4 + 𝑁). 

The excitation vector has the form as: 𝐹⃗ = [𝐹ଵ,𝐹ଶ,𝐹ଷ,𝐹ସ,𝐹ହ,𝐹଺, … ,𝐹ସାே]், (44)

where: 𝐹ଵ = −𝑀௕𝑔,       𝐹ଶ = 0,        𝐹ଷ = −𝑀௖𝑔 + 𝑠ଵ(𝑘௅𝑟஽ଵ + 𝑐௅𝑟ሶ஽ଵ) + 𝑠ଶ(𝑘௅𝑟஽ଶ + 𝑐௅𝑟ሶ஽ଶ),𝐹ସ = −𝑠ଵ𝑏(𝑘௅𝑟஽ଵ + 𝑐௅𝑟ሶ஽ଵ) + 𝑠ଶ𝑏(𝑘௅𝑟஽ଶ + 𝑐௅𝑟ሶ஽ଶ),𝐹ସା௞ = − 4𝜌𝑔ℎ஻(2𝑘 − 1)𝜋 − 𝜇௞(ଵ)(𝑘௅𝑟஽ଵ + 𝑐௅𝑟ሶ஽ଵ) − 𝜇௞(ଶ)(𝑘௅𝑟஽ଶ + 𝑐௅𝑟ሶ஽ଶ),    𝑘 =  1, 2, . . . ,𝑁.   (45)

The mass matrix [𝑀] has the diagonal form as: [𝑀] = 𝑑𝑖𝑎𝑔(𝑀௕, 𝐽௕,𝑀௖ , 𝐽௖ ,𝜌ℎ஻,𝜌ℎ஻, … ,𝜌ℎ஻). (46)

The stiffness matrix [𝐾] contains (4 + 𝑁) rows, each of which has (4 + 𝑁) elements and can 
be successively written as follows: ሼ𝐾ଵሽ = ሼ2𝑘் , 0,−2𝑘், 0, [0,0,0, … ,0]ሽ,      ሼ𝐾ଶሽ = ൛0,2𝑘்௖ଶ,଴,−2𝑘்௖ଶ , [0,0,0, … ,0]ൟ, {𝐾ଷ} = {−2𝑘், 0,2𝑘் + (𝑠ଵ + 𝑠ଶ)𝑘௅,−(𝑠ଵ − 𝑠ଶ)𝑘௅𝑏, [−൫𝑠ଵ𝜒ଵ(ଵ) + 𝑠ଶ𝜒ଵ(ଶ)൯𝑘௅,       −(𝑠ଵ𝜒ଶ(ଵ) + 𝑠ଶ𝜒ଶ(ଶ))𝑘௅, … ,−(𝑠ଵ𝜒ே(ଵ) + 𝑠ଶ𝜒ே(ଶ))𝑘௅]}, {𝐾ସ} = {0,−2𝑘்𝑐ଶ,−(𝑠ଵ − 𝑠ଶ)𝑘௅𝑏, 2𝑘்𝑐ଶ + (𝑠ଵ + 𝑠ଶ)𝑘௅𝑏ଶ, ൫𝑠ଵ𝜒ଵ(ଵ) − 𝑠ଶ𝜒ଵ(ଶ)൯𝑘௅𝑏,       (𝑠ଵ𝜒ଶ(ଵ) − 𝑠ଶ𝜒ଶ(ଶ))𝑘௅𝑏, … , (𝑠ଵ𝜒ே(ଵ) − 𝑠ଶ𝜒ே(ଶ))𝑘௅𝑏]}, {𝐾ସା௞} = {0,0,−൫𝜇௞(ଵ) + 𝜇௞(ଶ)൯𝑘௅, ൫𝜇௞(ଵ) − 𝜇௞(ଶ)൯𝑘௅𝑏, [𝛿௞ଵ𝐻௞ + ൫𝜇௞(ଵ)𝜒ଵ(ଵ) + 𝜇௞(ଶ)𝜒ଵ(ଶ)൯𝑘௅,       𝛿௞ଶ𝐻௞ + (𝜇௞(ଵ)𝜒ଶ(ଵ) + 𝜇௞(ଶ)𝜒ଶ(ଶ))𝑘௅, … , 𝛿௞ே𝐻௞ + (𝜇௞(ଵ)𝜒ே(ଵ) + 𝜇௞(ଶ)𝜒ே(ଶ))𝑘௅]},       𝑘 = 1,2, … ,𝑁. 

(47)

The damping matrix [𝐶] has the form similar to that of the stiffness matrix [𝐾] so we can obtain 
matrix [𝐶] from matrix [𝐾] by substituting the notations {𝐻௞, 𝑘்,𝑘௅} with these ones {𝑐ௌ, 𝑐், 𝑐௅}, 
respectively. 

3.3. Initial conditions 

In almost problems on vibration of automobiles moving on horizontal roads, the initial 
conditions commonly relate to the fact that the vehicle is running on a definitely even road surface 
then entering an uneven one. In this situation, theoretically, there is no vibration occurring until 
the initial point of time, so the values of generalized coordinates, velocities, accelerations and all 
quantities concerned can be determined from the static state where the automobile lies on a 
horizontal road with even surface. Therefore, the initial conditions for this situation can be written 
as follows: 
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𝑞⃗ሷ ||௧ୀ଴ = 0, 𝑞⃗ሶ ||௧ୀ଴ = 0, 𝑞⃗||௧ୀ଴ = 𝑞⃗଴. (48)

The value of 𝑞⃗଴ can directly be deduced from Eq. (43) using the data in Eq. (48): [𝐾]଴𝑞⃗଴ = 𝐹⃗଴     ⇒     𝑞⃗଴ = [𝐾]଴ି ଵ𝐹⃗଴, (49)

where [𝐾]଴, 𝐹⃗଴ – the values of the stiffness matrix and excitation vector at the time point 𝑡 = 0. 
At the initial point of time, because the vehicle is running on the even road surface so we have: 𝑠ଵ = 𝑠ଶ = 0,       𝑟஽ଵ = 𝑟஽ଶ = 0,       𝑟ሶ஽ଵ = 𝑟ሶ஽ଶ = 0,       𝜇௞(ଵ) = 𝜇௞(ଶ) = 0. (50)

Putting data Eq. (50) into Eq. (45) we obtain the values of excitation vector at the initial time 
point: 

𝐹⃗ = ൤−𝑀௕𝑔, 0,−𝑀௖𝑔, 0,− 4𝜌𝑔ℎ஻1𝜋 , … ,− 4𝜌𝑔ℎ஻(2𝑁 − 1)𝜋൨. (51)

In order to determine [𝐾]଴ , we firstly generate the static equilibrium equations of the 
automobile and deduce: 𝐹௅ଵ଴ = 𝐹௅ଶ଴ = 12 (𝑀௕ + 𝑀௖)𝑔,      𝐹்ଵ଴ = 𝐹்ଶ଴ = 12𝑀௕𝑔. (52)

Now we can determine the values of quantities concerned with the elements of matrix [𝐾]଴, such 
as static deformations of the wheels (Δ𝑧௅ଵ଴ , Δ𝑧௅ଶ଴ ), the lengths of two contact areas (𝑑௖ଵ଴ , 𝑑௖ଶ଴ ), etc. 

Once the value of 𝑞⃗଴ has been found, we can calculate displacement function of the beam in 
static state by using Eq. (24) as: 

𝑤଴ = ෍ 𝑇௟଴sin (2𝑙 − 1)𝜋𝑦𝐿஻௡ே௟ୀଵ , (53)

where 𝑇௟଴ – elements from 5th to (4+𝑁)-th of vector 𝑞⃗଴. 

3.4. Procedure for numerically solving the TDEM 

Matrix form Eq. (43) of TDEM contains matrices [𝐾] and [𝐶] which continuously change with 
respect to time. Hence, at every step in the process of numerically solving this equation, we need 
to re-calculate the elements of these matrices. A procedure for numerically solving Eq. (43) can 
be proposed as follows: 

1) Assigning the values of quantities concerned with automobile (𝑀௕, 𝐽௕, 𝑀௖, 𝐽௖, 𝑘், 𝑘௅, 𝑐், 𝑐௅ , 𝑏, 𝑐, 𝑟௪ , 𝑏௅), visco-elastic ground (𝑘ௌ , 𝑐ௌ), elastic beam (𝜌, 𝐸, 𝐿஻௡ , 𝑏஻௫ , ℎ஻ , 𝐼), velocity of 
movement (𝑉), number 𝑁 of terms in the series Eq. (24) and acceleration of gravity (𝑔). 

2) Describing road profile as functions of time 𝑟஽ଵ(𝑡), 𝑟஽ଶ(𝑡), 𝑟ሶ஽ଵ(𝑡), 𝑟ሶ஽ଶ(𝑡) and choosing the 
type of pressure distribution function 𝑈(𝑥) for consideration. 

3) Calculating the values of 𝑦஽ଵ, 𝑦஽ଶ, 𝐻௞, 𝜒௞(ଵ),𝜒௞(ଶ). 
4) Setting the initial conditions as in Section 3.3. 
5) Specifying the time interval for consideration [0, 𝑡௠௔௫], the time step of computation Δ𝑡 

and the point of time 𝑡଴ at which the uneven road surface really starts. 
6) Assigning 𝑠ଵ = 𝑠ଶ = 1, 𝑞⃗ሷ଴ = 0, 𝑞⃗ሶ଴ = 0 for the initial point of time and calculating the 

initial value 𝑞⃗଴ of vector 𝑞⃗. 
7) Assigning 𝑖: = 0, 𝑡௜: = 0, 𝑞⃗ሷ ௜: = 𝑞⃗ሷ଴, 𝑞⃗ሶ ௜: = 𝑞⃗ሶ଴, 𝑞⃗௜: = 𝑞⃗଴ for the initial point of computation. 
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8) Determining the values 𝑞⃗ሷ ௜ାଵ, 𝑞⃗ሶ ௜ାଵ, 𝑞⃗௜ାଵ at the time point 𝑡௜ାଵ = (𝑡௜ + Δ𝑡) of the (𝑖 + 1)-th 
point of computation using a suitable method such as Newmark’s, Runge-Kutta’s, etc. 

9) Calculating the values of quantities 𝑤஽௝, 𝑤ሶ ஽௝, 𝑟஽௝, 𝑟ሶ஽௝, 𝑢௝ᇲᇲ, 𝑢ሶ௝ᇲᇲ (𝑗 = 1, 2) at the (𝑖 + 1)-th 
point of computation using Eq. (27), functions 𝑟஽ଵ(𝑡), 𝑟஽ଶ(𝑡), 𝑟ሶ஽ଵ(𝑡), 𝑟ሶ஽ଶ(𝑡) and  the results 
obtained in step 8. 

10) Calculating verifying values of contact forces 𝑄തଵ, 𝑄തଶ according to Eq. (6) and deducing 
the values of quantities 𝑠ଵ, 𝑠ଶ, 𝜇௞(ଵ), 𝜇௞(ଶ). 

11) Determining the values [𝐾]௜ାଵ , [𝐶]௜ାଵ , 𝐹⃗௜ାଵ  of matrices [𝐾 ], [𝐶 ] and vector 𝐹⃗  at the  
(𝑖 + 1)-th point of computation. 

12) Assigning 𝑖: = 𝑖 + 1, 𝑡௜: = 𝑡௜ + Δ𝑡 and repeating the process of computation, starting from 
step 8. The process of computation stops when condition 𝑡௜ ൐ 𝑡௠௔௫ is reached. 

The results directly obtained are functions of time such as generalized coordinates, generalized 
velocities, generalized accelerations, contact forces, the total time of losing contact, etc. which 
reflect vibration response of the automobile in particular conditions which concern with of the 
road profile and the velocity of movement. 

4. Example for illustration 

This section presents some typical results obtained from numerical consideration on vibration 
of the vehicle-road coupled system where the initial conditions mentioned in Section 3.3 are 
applied. The results coming from two cases of taking and not taking wheel separation into account 
are compared to show the differences. 

The situation under consideration is that the automobile successively passes a single bump on 
the right track and another one on the left track after having passed a distance 𝑥଴ measured from the 
initial time point (𝑡 = 0) as seen in Fig. 5. Profiles of the two bumps are chosen as parabolas whose 
lengths and heights are (𝑙ଵ, ℎଵ) and (𝑙ଶ, ℎଶ), respectively. The distance between the two bumps in 
the direction of movement is denoted as 𝑑. 

Fig. 5 is a general description of some cases. If setting ℎଵ = 0 or ℎଶ = 0, the excitation has the 
type of a single pulse on the left or the right track only. If taking 𝑑 ൏ 0, the automobile reaches 
the bump on the left track before reaching the bump on the right one. If assigning 𝑑 = 0, 𝑙ଵ = 𝑙ଶ 
and ℎଵ = ℎଶ, we have the situation of a speed bump which crosses over the whole width of road. 
If choosing 𝑥଴ = 0, the initial point of time (𝑡 = 0) is also the time when the vehicle starts passing 
the left bump. 

 
Fig. 5. Geometrical description of road profile 

The input data for numerical computation are taken as: 
– Parameters concerned with the automobile [15]: 𝑏 = 0.90 m, 𝑐 = 0.60 m, 𝑟௪ = 0.45 m,  𝑏௅ = 0.25 m, 𝑀௕ = 2150 kg, 𝐽௕ = 650 kg.m2, 𝑀௖ = 660 kg, 𝐽௖ = 720 kg.m2, 𝑘் = 250000 N/m, 𝑘௅ = 800000 N/m, 𝑐் = 1500 N.s/m, 𝑐௅ = 62000 N.s/m. 
– Quantities belonging to the ground and the beam [16]: 𝑘ௌ =  48000000 N/m3,  𝑐ௌ = 30000 N.s/m3, 𝐸 = 1.6×109 N/m2, 𝜌 = 2500 kg/m3, 𝐿஻௡ = 15 m, 𝑏஻௫ = 0.45 m, ℎ஻ = 0.50 m. 
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– Excitation data (geometries of bumps): ℎଵ = 0.10 m, 𝑙ଵ = 0.75 m, ℎଶ = 0.12 m, 𝑙ଶ = 0.80 m, 𝑑 = 1.0 m. 
– Velocity of movement of automobile: 𝑉 = 10 km/h. 
– Parameters involved computation: 𝑡௠௔௫ = 5 s, 𝑡଴ = 0.5 s, Δ𝑡 =0.0001 s, 𝑁 = 5 (𝑥଴ = 𝑉𝑡). 
– Type of pressure distribution in contact areas: cosine. 
The obtained results are graphically showed in Fig. 6-9 where the changes in some vibration 

characteristics with respect to time are plotted. Some comparisons between the two cases of taking 
and not taking account of wheel separation are given in Figs. 6, 7 and 8. 

 
Fig. 6. Linear vibration of automobile body 

 
Fig. 7. Angular vibration of automobile body 

 

 
Fig. 8. Vertical acceleration of automobile body Fig. 9. The changes in contact forces at two wheels 

It can be seen from the figures that: 
a) Differences in behaviour of the mechanical system between the two cases of taking and not 

taking account of wheel separation are clearly (see Figs. 6, 7 and 8). 
b) In the situation of consideration, the amplitude of vibration in the case of not taking wheel 

separation is greater than the amplitude in the other case. The reason may concern with the ways 
of transmitting potential energy which has been accumulated by the springs in compressing periods 
to the body in stretching ones. 

c) Wheel separation really occurs in the situation of consideration. This can be identified by 
flat pieces (on the abscissa) of the curves in Fig. 9. The calculated total times of losing contact are 
0.0416 s and 0.0458 s for the right and the left wheels, respectively. 

d) After each period of wheel separation, the contact forces rapidly increase (Fig. 9) due to 
converting kinematic energy of falling into potential energy of the springs. 
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e) Wheel separation is quite easy to occur. This can be recognized by looking at the values of 
the parameters which describe the road profile and especially the small value of velocity of 
movement. 

5. Conclusions 

The article has created a physical model for considering the quasi-planar lateral vibration of 
the automobiles with dependent suspensions where all three wheel separation, road deformation 
and the change in dimension of contact areas have been taken into account. The original 
differential equations of motion of the vehicle-road coupled system with the presence of a partial 
differential equation have been transformed into a set of all ordinary differential equations by 
applying the Bubnov-Galerkin’s method. The authors have also proposed a procedure for 
numerically solving the transformed differential equations of motion. Vibration of automobile, 
according to the model introduced above, has been considered in the case in which an automobile 
moves through two bumps (each bump on one track) of parabolic profiles. The results obtained 
from numerical computation have proved that the difference between taking and not taking wheel 
separation into account is significant and the loss of contact is easy to appear while automobiles 
run on rough roads. Hence, one can affirm the need of taking wheel separation into account in 
considering vertical vibration of automobiles. 
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