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Abstract. An attempt is made to establish the dependence of the timbre of the Sarasvati veena, a 
South Indian string instrument, on its extended bridge. The equation of motion for a plucked string 
vibrating against the extended boundary at the bridge is solved numerically. The solution is 
analyzed for timbre characteristics, which show energy redistribution among the higher 
harmonics, as well as revival of higher harmonics with time. The variation of timbre with bridge 
slope and curvature are analyzed. These results are validated by comparison with corresponding 
analysis of acoustic data gathered from experiments performed on a sonometer, whose knife edge 
is replaced by the bridge of the veena. 
Keywords: acoustics characteristics, timbre, sarasvati veena, plucked string instrument, extended 
bridge. 

1. Introduction 

The Sarasvati veena of South India (Fig. 1) is a classical plucked stringed musical instrument 
of historic precedence. This instrument is a fretted lute mainly carved out of the hard wood of a 
seasoned jackfruit tree. It has a large bowl-shaped resonant chamber (kudam or “pot”), which 
continues into a long hollow neck (dandi). Cylindrical bell-metal frets, 24 in number, are fixed to 
the fretboard on a ledge made of a hardened mixture of beeswax and charcoal powder. The 
positions of the frets are determined by harmonic tuning derived in consonance with string 
vibrations, in contrast to the equitempered scale on western instruments [1]. The veena has four 
main playing strings that are fixed at one end, and stretched over an extended bridge. There is a 
high wooden structure (kudirai or “horse”) topped by a plate made of bellmetal. The strings then 
pass over the frets and finally over a cylindrical metal nut (meru) and are held by wooden tuning 
pegs (birudai). Below the nut, a hollow stand made of fibre or papermache (originally dried 
pumpkin rind called surakkai), is attached, whose purpose is to support the veena in the horizontal 
position. The veena also has three side strings that do not pass over the frets, and are used to 
provide an accompanying drone. 

The veena has played a special role in the development of South Indian music and musicology. 
According to musicology literature such as Sangeeta Ratnakara [2], the timbre of this instrument 
is said to be close to that of the human voice, and its harmonic structure was the basis of 
development of the musical grammar. The distinctive rich and multi-harmonic timbre of this 
instrument has been assumed to be due to the extended bell-metal bridge, round metal frets and 
the wooden resonant chamber. 

Sir C V Raman [3] was the first to attribute the timbre of Indian string instruments to the bridge. 
He suggested that the bridge caused energy transfer from the fundamental to higher harmonics, 
and that this needed further investigation. He also showed the violation of the Young-Helmholtz 
law. So we started a programme aimed at fully characterizing the Sarasvati veena, both 
numerically and experimentally. We wished to characterize the timbre, and to ascertain the 
contribution of the bridge, as well as other structural features such as the resonant cavity and the 
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frets. The Tanjavur veena is traditionally manufactured by artisans who analyze the sound by ear 
and make minor structural adjustments to achieve the desired timbre [4]. In our work, we attempt 
to standardize its construction for a musically perfect instrument. 

 
Fig. 1. The Sarasvati veena 

The current work focuses on how vibrations of a string against the extended bridge of Sarasvati 
veena give rise to the spectral characteristics of this instrument. We performed analysis of acoustic 
data obtained from a string vibrating against the veena bridge installed on one end of a sonometer. 
The main features of the veena timbre were reproduced by the numerical simulation and were 
verified experimentally. Analysis of the timbre variation with change in bridge parameters such 
as slope and curvature showcases the major role played by the bridge in imparting the 
characteristic tonal quality to the veena. Raman’s hypothesis regarding redistribution of energy to 
the higher harmonics, as well as violation of Young-Helmholtz law, is validated. We made a 
preliminary numerical model to try to understand the origin of these effects. We use a parabolic 
boundary on one end for the one-dimensional wave equation and solve it numerically by the finite 
difference method (FDM) implemented on MATLAB [5]. The solutions so obtained are analyzed 
for timbre characteristics. The broad features of the experimental results are corroborated by the 
basic numerical model, which does not incorporate contact forces and sticking between string and 
bridge. Collision of string with the bridge is considered as perfectly elastic. 

Eastern musical instruments like Sitar, Tanpura, Biwa etc. have been studied earlier [6-9]. In 
other work, [10, 11, 8] the effect of an extended bridge on musical instruments such as Sitar and 
Tanpura has been studied. These authors use variational methods to modify the one-dimensional 
wave equation subject to a constraint at one end, whose solution is simulated numerically. In the 
work by [12], the interaction of the string with the bridge has been considered as a collision and 
solutions have been simulated using non-smooth contact dynamics. The acoustic properties of the 
sitar have been studied in the work by [13] using a physical model with special emphasis on the 
non-linearity of string motion due to its interaction with the extended bridge. Wahi et al. [14] have 
theoretically studied the role of curvature in determining characteristics of the string vibrating 
against a doubly curved bridge. They find that this obstacle has a destabilizing effect on the plane 
motion of the string. In work on the piano string by [15], the influence of contact nonlinearity on 
the spectral structure of the vibration is studied numerically. The growth and extension of high 
frequency oscillations are observed and are attributed to the parabolic shape of the capo bar of the 
piano. This simulation also explains the missing modes in the piano. This work, as well as 
Raman’s work has made room for further experimental investigation of the role of a parabolic 
bridge. 

2. Preliminary studies on the Timbre 

In our earlier work [16], we had performed preliminary studies on the timbre of a Tanjavur 
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Sarasvati veena, by studying the acoustic Fourier spectrum. The results showed that the spectrum 
is harmonic in nature. The maximum power is in the harmonic that is closest to the resonant 
frequency of the body. The higher harmonics have significant power, which leads to the richness 
of timbre. We also studied the spectrum under different working conditions: (a) each of the seven 
strings on the instrument, with standard tuning, (b) varying tension in the main string, and 
(c) varying speaking length of the main string, by changing the point of contact with the frets. 
Broadly, the same behavior is observed in each case, which includes all the possible situations 
while playing the instrument. 

Further [17], we had performed acoustic analysis of the veena strings and vibrational analysis 
of the body, to establish the optimum tuning frequency of the instrument, as that which gives the 
richest timbre. A surprising observation was that the optimum tuning frequency was close to half 
the natural frequency of the whole structure, as obtained from impact studies. 

Subsequently, we compared the acoustic spectrum of the veena to that of a simple sonometer 
to identify its unique timbre [18]. We found that the acoustic spectrum has more harmonic content 
as compared to sonometer. Also, some harmonics specially the higher ones show revival after 
some time in case of veena. Study brought us to conclusion that veena has rich and unique timber 
which enhances with the time, this characteristic timber can be related to the presence of extended 
bridge and resonator of Sarasvati veena. 

These observations are to be substantiated by extensive studies of the interaction of the 
vibrating string with the extended bridge and the resonant cavity. In the current work we focus on 
the bridge. The effect of the resonator is studied in another work. 

3. Methodology 

We find numerical solutions to the one-dimensional wave equation for the string, subjected to 
boundary conditions at one end given by the shape of the bridge profile, and fixed at a point on 
the other end. 

In this numerical simulation we assume that the string motion is not subject to any additional 
force at the bridge, such as contact force, sticking etc. The purpose served by the bridge is to 
restrict the region of motion of the string at that end. This implies that the collision of the string 
with the bridge is perfectly elastic. This forms a basic model to guide our numerical study. 
Experimental validation of numerical results requires same physical environment as considered 
during numerical analysis. Experimental analysis is performed on a sonometer with one of its 
knife edge replaced by bridge of Sarasvati veena; this modification helps to study string bridge 
interaction only and eliminating effect of resonator. 

We use standard playing conditions for the purpose of this study. The main playing string is 
considered, with standard material properties of steel. This gives us the tension and the speed of 
wave propagation to be used in the simulation. 

3.1. Modeling the curved bridge 

The bridge of the veena is shown in Fig. 2(a). The equation for the bridge profile was 
experimentally obtained using the Mitutoya Coordinate Measuring Machine (CMM 574). 
Measurements were made across different cross-sections of the bridge and averaged. The best-fit 
curve was given by the following parabolic equation: 𝑦 𝑥 = 𝐴𝑥 + 𝐵𝑥 + 𝐶,      0 ≤ 𝑥 ≤ 𝐵 , (1)

where the curvature is 𝐴 = −0.0037; slope is 𝐵 = 0.1315; intercept with 𝑦-axis 𝐶 = −1.1579, and 
the length of the bridge is 𝐵 = 25.855mm. 
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a) 

 
b) 

Fig. 2. a) Extended bridge of the veena, b) coordinate system 

3.2. Modeling and simulation of string vibrations 

We started with the simple one-dimensional damped wave equation: 𝑐 𝑦 − 𝑏𝑦 − 𝑦 = 0. (2)

Given linear mass density 𝜌 = 0.56 g/m and tension 𝑇 = 48.5 N in the main playing string 
tuned to the frequency of 175 Hz, the wave velocity was calculated to be 𝑐 = 294.315m/s. For our 
system, the equivalent viscous damping coefficient 𝑏  was obtained empirically from the 
logarithmic decrement of the time signal of the acoustic data. 

The coordinate system used for the simulation is shown in Fig. 2(b). 
The veena is normally played by plucking with a metal plectrum at a point close to the extended 

bridge. The plucking action is mainly a vertical displacement by a small amount. These conditions 
are used as initial conditions for our simulation: the string is displaced by 5 mm at a point located 
at 𝑥 = 0.17𝐿 where 𝐿 = 84.5 cm is the total sounding length of the string. The boundary condition 
at the playing side is given by the equation of the bridge, which ensures that the string motion is 
constrained in that region. This boundary condition is incorporated by the following pseudo code: 

for 0 𝑥 𝐵  
      if 𝑦 ≤ 𝑦  
then 𝑦 = 𝑦  
Where, 𝑦  is given by Eq. (1). The effect of constrain at a position and time is propagated to 

the next step, thus there is a position- and time- varying condition at that end of the string. This is 
incorporated at each step of the iteration. The spectrum of the solution obtained numerically was 
then analyzed. 

3.3. Finite difference method scheme 

The Eq. (2) was solved by the explicit method of solving a hyperbolic partial differential equation. 
The explicit scheme is conditionally stable under certain conditions. The wave equation is written 
in terms of discretized displacement 𝑦 labeled by spatial index 𝑖 and time step index 𝑗: 
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𝑐ℎ 𝑦 ,  − 2𝑦 , +  𝑦 , − 𝑏𝑘 𝑦 ,  −  𝑦 , − 1𝑘 𝑦 ,  − 2𝑦 , +  𝑦 , = 0. (3)

If 𝑘  is the time step in sec, ℎ  is the spatial step in m and 𝑐  is the wave velocity in m/s,  𝑟∗ = 𝑐 𝑘 ℎ⁄  then we have: 𝑟∗ 𝑦 ,  − 2𝑦 , +  𝑦 , − 𝑏𝑘 𝑦 ,  −  𝑦 , − 𝑦 ,  − 2𝑦 , +  𝑦 , = 0. (4)

The solution to this equation in the explicit scheme is conditionally stable under the conditions: 0 𝑟∗ ≤ 1. (5)

We have used 𝑟∗ =1 and 𝑐 = 294.315 m/s to get the equation: 

𝑦 , = 𝑦 , + 𝑦 , − 1 − 𝑏𝑘 𝑦 ,1 + 𝑏𝑘 . (6)

Convergence was tested starting with 𝑘 = 0.00001s and we arrived at: 𝑘 = 0.000002 s and ℎ = 0.00058862 m. 
The stencil for the FDM is as shown in Fig. 3. 

 
Fig. 3. Stencil for FDM 

3.4. Model for experimentation 

In order to validate the numerical results, we built an experimental setup that mimics the 
assumptions of the theoretical model. We constructed a simple sonometer (without resonator) with 
a knife edge at one end and the actual veena bridge mounted at the other end. (See Fig. 4). Thus 
we eliminated the effect of the other structural details of the veena. 

 
Fig. 4. Modified sonometer with veena bridge 
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3.5. Experimentation 

We analyzed data gathered for plucked string vibrations on the sonometer with veena bridge. 
Experiments were conducted in a semi-anechoic chamber. We used the standard veena string of 
steel with gauge 31 (diameter 0.3 mm). The string was plucked using a metallic wire plectrum at 
0.17𝐿. We ensured plucking amplitude of around 5 mm in the vertical plane. We measured the 
sound pressure amplitude created near the point of plucking. We used a 1/4” microphone (model 
no. 378C01, PCB Electronics, USA) which has sensitivity of 2.29 mV/Pa. The string was tuned 
to frequency 175 Hz. In accordance with standard experimental methods of acoustics and 
vibrations [19], eight runs were recorded, normalized and averaged for analysis. Data obtained by 
these tests were recorded by Vibration Analyzer (Spider-81, Crystal Instruments, USA) and the 
obtained results were then analyzed using Engineering Data Management Software. 

From the logarithmic decrement of the time signal, the equivalent viscous damping coefficient 
was obtained to be 105.3 Ns/m. This was the value of b used in numerical simulation of Eq. (2). 
For comparison, we gathered similar data under the same conditions for the simple sonometer as well 
as the veena. 

4. Analysis of timbre 

We analyzed the variation of timbre with the following parameters under our control: 
(A) string length and tension, (B) slope of the bridge and curvature of the bridge. 

4.1. Effect of string length and tension on the timber of the Sarasvati veena 

In order to study the dependence of timbre on string tension, we performed acoustic 
experiments on the sonometer, both with knife edge, and with veena bridge. 

For four different string lengths on the sonometer, we adjusted the tension to obtain five 
different fundamental frequencies and analyzed the FFT of the acoustic data. The normalized 
amplitude of the spectrum for each case are plotted for both knife edge and veena bridge in Fig. 5. 
The results show that there is significant redistribution of energy into the higher harmonics for the 
veena bridge, as compared to the sonometer with knife edge, in which most of the energy is 
concentrated within the first four harmonics. We also observe that the greater the tension, more 
the presence of higher harmonics in the case of veena bridge. However, from the musical 
perspective, excessive presence of higher harmonics produces a shriller sound, that is not 
considered favorably (Ayyangar, 1978). Also, for playing the veena, high tension is not preferred 
since it makes it more difficult to play by bending the string. For the numerical simulation, we 
therefore decided to analyze the timbre corresponding to the optimal tuning frequency of  𝑓 = 175 Hz alone, since the veena as a whole responds more richly to this frequency [17]. 

4.2. Effect of presence of Bridge 

The FDM solution to the damped equation of motion (Eq. (2)) is studied for time period of 5 s. 
The presence of the bridge is found to curtail the motion in one direction. The solution settles 
down to a sustain mode after about 2 sec. We analyzed the FFT spectra of the motion of string 
over some selected time periods (picked from preliminary studies [18]) and compared with the 
corresponding periods for the sonometer. This analysis shows how the presence of bridge causes 
harmonics to develop over time. The results are displayed in Fig. 6(b). 

The string motion of the sonometer shows the same behavior over all time intervals. As a 
representative, we display the string motion and FFT for one time period after 0.8 s in Fig. 6(a). 
We see that the FFT of the string with bridge has more harmonic content than that of sonometer. 

Further, as time progresses, the shape of the string becomes more complex, and the energy in 
the spectrum gets redistributed over higher harmonics. This is seen to be a consequence of the 
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mere presence of the bridge. 

 
Fig. 5. Normalized amplitude of FFT as a function of harmonics: comparison of sonometer  

with knife edge vs extended veena bridge, for different tensions and string lengths 

The spectral energy distribution and its variation with time give rise to the typical timbre 
(naada) of the veena. The importance of the bridge in contributing to the desired timbre is often 
stressed by veena makers, who warn the user to take special care of the bridge and not disturb it 
in any way. 

A good way to capture the veena timbre is by its formant structure. We select the three major 
frequency ranges in which energy is concentrated, as forming the three formants for the veena. 
Here we have considered the fundamental and first two harmonics as constituting the first formant, 
the next three harmonics constituting the second formant, and all the higher frequencies are 
clubbed in the third formant. The energy content in each formant is obtained from the power 
spectrum of the acoustic signal, as also from the FFT of the numerical solution. For comparison, 
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the energy distribution in the formants of the veena was also obtained experimentally. 

 
a) 
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b) 

Fig. 6. a) String motion and FFT of simple sonometer: FDM simulation b) string motion against veena 
bridge over one time period, at different times, and corresponding FFT 
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Experimental results from veena are compared with experimental results from simple 
sonometer and numerical results from sonometer with extended bridge. The results are shown in 
Fig. 7. For sonometer most of the energy lies in a first formant, while sonometer with extended 
bridge shows distribution of energy among three formants. For the actual veena, the second 
formant has greater energy than the third formant. This can be attributed to the presence of the 
resonator, and is being further explored. 

 
Fig. 7. Comparison of energy distribution in the three formants for numerical simulation,  

experiment on extended bridge, and Sarasvati veena 

The contribution to the timbre by bridge parameters, i.e. its slope and curvature were further 
explored. In the numerical simulation, we varied the slope 𝐵 and the curvature 𝐴 in the bridge 
Eq. (1). To validate the results experimentally, we could change the 𝐵 value of the bridge. 

We did this by tilting the bridge, by inserting slip gauges of known thickness below one edge 
of the bridge. We then measured the exact slope using CMM. We also used the same values for 𝐵 
in the numerical simulation. 

Experimentally varying the curvature, 𝐴, was not possible since changing curvature means 
involves manufacturing several new bridges. We did not have the material or means for 
manufacturing new bridges. 

4.3. Variation of timbre with bridge slope and curvature 

4.3.1. Effect of varying slope 

We studied the formant structure for five different values of 𝐵 while keeping 𝐴 constant at the 
experimentally measured value of −0.0037. Fig. 8 shows the variation of energy content in three 
formants with varying bridge slope 𝐵, for numerical simulation as well as for experimental acoustic 
data. 

It is found that the effect of the bridge is to redistribute the energy among the three formants. 
We see that this effect reduces as the B value increases or decreases from the value 𝐵 = 0.1315, 
for the veena bridge we used. This indicates how the wrapping and unwrapping of the string over 
the bridge affect its timbre, depending on the slope at the point of contact. 

In our numerical solution of Eq. (2), the energy content is 56.4 % in the first formant, 19.7 % 
in the second formant and 23.9 % in the third formant. Thus, there is substantial energy in the 
higher harmonics. The experimental results show 55.7 % in the first formant, 13.8 % in the second 
formant and 30.5 % in the third formant. Note that the experimental data is acoustic whereas the 
numerical data is of mechanical vibrations. The difference between simulation and experimental 
results may be attributed to the frequency dependence of the structural damping, which we have 
not taken into account in our numerical model [20]. We have also not considered the effect of 
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acoustic dispersion [13]. This is the subject of active investigation currently. 
From these results, we can say that the slope of the bridge has significant effect on the timbre. 

 
Fig. 8. Relation between energy distribution in three formants and value of bridge slope (𝐵) 

4.3.2. Effect of varying curvature 

We varied the curvature 𝐴 from –0.0037 to –0.0047 numerically, while keeping the slope 𝐵 at 
its experimentally measured value of 0.1315. Results are plotted for variation in energy content in the 
three formants with varying bridge curvature. 

It is observed from Fig. 9 that curvature of bridge contribute to the distribution of energy 
among three formants. At 𝐴 = 0.0037 more energy content is distributed in second and third 
formants as compared to other values of bridge curvature. 

 
Fig. 9. Energy distribution in three formants for different values  

of bridge curvature (𝐴), numerical simulation 

5. Results and discussion 

This work attempts to analyze the contribution of the extended bridge to timbre of the Sarasvati 
veena, by numerically as well as experimentally modelling the string vibrations against the veena 
bridge. The numerical solution was found to be harmonic, which was verified experimentally. The 
key features of string vibrations against the veena bridge are captured by our solution. 

The basic harmonic character of the timbre is observed, regardless of the length of the string 
or its tension. So further analysis is restricted to optimal tension value alone. The presence of the 
bridge brings out the higher harmonics in greater strength. This is attributed to the development 
of complex motion of the string over time (Fig. 6(b)). In fact, we find that almost all harmonics 



THE EFFECT OF THE EXTENDED BRIDGE ON THE TIMBRE OF THE SARASVATI VEENA: A NUMERICAL AND EXPERIMENTAL STUDY.  
CHANDRASHEKHAR CHAUHAN, P. M. SINGRU, RADHIKA VATHSAN 

34 JOURNAL OF MEASUREMENTS IN ENGINEERING. MARCH 2021, VOLUME 9, ISSUE 1  

are excited. Odd as well as even harmonics are observed, violating the Young-Helmholtz law, 
which was first pointed out by [3]. 

The characteristic timbre of the veena as described by its formant structure [18] is also 
corroborated in our numerical study, as summarized in Fig. 7. In the sonometer, most of the energy 
lies in the first formant. When the bridge is introduced, this energy is redistributed into second 
and third formants. We observed that for 𝐵 = 0.1315 and 𝐴 = −0.0037, more energy is found in 
second and third formants as compared to other values of B and A respectively. 

Thus, the timbre of the veena can be largely attributed to the extended bridge and it is sensitive 
to the slope and curvature of the bridge. 

6. Conclusions 

Increasing the tension in veena string leads to presence of higher harmonics with stronger 
amplitude, however excessive higher harmonics are undesirable (due to shriller sound). So study 
of effect of extended bridge of Sarasvati veena on its timber was carried out at optimum tuning 
frequency of 175Hz. It was found that slope and curvature and bridge have a major role in the 
timber of an instrument. Slope, 𝐵 = 0.1315 and curvature 𝐴 = –0.0037 of the bridge are found to 
be optimum values to obtain harmonically rich timber out of the veena we used to study.  

Finer details would involve incorporation of dispersion. Further details of the veena spectrum, 
such as the enhancement of the second format, can be attributed to the resonant cavity and other 
structural details of the veena. These form the subject of ongoing study. 
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