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Abstract. An active damping controller based on the switched stiffness technique is developed 
and applied to vibration mitigation in a lightly damped structure. The controller either increases 
or decreases the system stiffness according to a state-dependent rule. A novel stability analysis 
based on the Floquet theory is proposed and employed to analyze the mathematical model of a 
one-degree-of-freedom system where the friction forces are taken into account. This novel 
analysis allows us to prove the exponential stability of the system origin, to establish a tuning 
procedure for the controller gain, to solve an optimization problem and to show the controller 
robustness against parameter uncertainties. Experimental verification is conducted to validate the 
effectiveness of the controller, and it is shown that the controller is feasible for vibration control 
problems. 
Keywords: switchable stiffness, periodic control, Floquet theory. 

1. Introduction 

The stiffness modification is a well-known semi-active control technique for the vibration 
mitigation in structures and it was first introduced by Chen [1] and studied extensively by Onoda 
[2, 3]. This technique is achieved by semi-active devices whose stiffness is changed according to 
a state-dependent control rule. The most employed rule corresponds to switch the device between 
a maximum and minimum stiffness value, i.e., the semi-active device performs a switched 
stiffness control strategy [4]. 

Over the years, an enormous amount of research has been devoted to the implementation and 
experimental verification of the switched stiffness technique through developing semi-active 
stiffness devices. For instance, in [2] a piezoelectric actuator is implemented, while in [5] a spring 
with a mechanical arrangement is used to switch the stiffness. In [6] a valve is used as a semi-
active device, while in [7] an electromagnetic device is developed, and recently a magnetostrictive 
transducer is developed in [8], to name a few. 

Although a considerable body of research has been done in developing semi-active stiffness 
devices, few attempts have been made to investigate the relation between the device parameters 
and their performance for vibration control in structures. Pioneer work was done in [9] where it is 
performed a characterization of the parameters of the semi-active devices by introducing a 
dimensionless parameter that relates the maximum and minimum stiffness. In the same work, it is 
found the optimal parameter value for which the damped response is improved. However, in 
practical terms, such optimal value cannot be handled by the switched stiffness devices. 
Consequently, the limitations of the switched stiffness technique are increasingly apparent. 

This study aims to extend the applicability of the switched stiffness technique by considering 
that the control action is applied actively via an actuator. For illustrative purposes, the active 
damping of a one-degree-of-freedom system is analyzed considering the free vibration case. That 
is, consider the physical realization of the one-degree-of-freedom system given by the mass-spring 
system shown in Fig. 1, then the switched stiffness technique is applied actively by the force 𝑢 
defined by 𝑢 ൌ −𝑘௖sgnሺ𝑥̅𝑥̅ᇱሻ𝑥̅, where 𝑘௖ is the controller gain. The control action 𝑢 increases or 
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decreases the system stiffness at the specific instants. 
Thereupon, our main goal is to determine the effectiveness of active control for vibration 

mitigation in structures considering a switched stiffness technique. Also, we conduct experimental 
verification of the approach. 

 
Fig. 1. Actuated mass-spring system with friction 

This paper is organized as follows. The Section 2 is dedicated to problem formulation and 
some fundamental ideas underlying the main problem are presented, while Section 3 details our 
theoretical findings based on the application of the Floquet theorem, to clarify our results, 
background information about the theory is briefed in the appendix. The Section 4 provides 
numerical and experimental results that support our findings and some final comments on the 
results are given in the conclusion Section 5. 

2. Problem formulation 

Consider the one-degree-of-freedom system given by the lightly damped mass-spring system 
shown in Fig. 1. The body slides on a surface with friction, and we assume that the dissipative 
phenomenon due to the friction force 𝑓௦ can be approximated by a linear viscous damping force 𝑏𝑥ሶ , where 𝑏  is the damping coefficient. In practice, this assumption provides mathematical 
tractability and simplicity, besides the damping coefficient can be estimated by well-known 
techniques [10, 11]. The characterization of the involved dissipative forces as a linear viscous 
damping force is a proven approximation and is feasible for a neighborhood around the origin. 
Accordingly, the mathematical model of the system is given by: 𝑚𝑥̅ᇱᇱ ൅ 𝑏𝑥̅ᇱ ൅ 𝑘𝑥̅ ൌ 𝑢, (1)

where 𝑚 is the mass, 𝑘 is the stiffness, 𝑢 is the control law, the prime denotes differentiation with 
respect to time 𝜏 and ሺ𝑥̅ሺ0ሻ, 𝑥̅ᇱሺ0ሻሻ ൌ ሺ𝑥̅଴, 𝑥̅଴ᇱ ሻ are non-zero initial conditions. The control law 𝑢 
is defined by: 𝑢 ൌ −𝑘௖sgnሺ𝑥̅𝑥̅ᇱሻ𝑥̅, (2)

where 𝑘௖ is the controller gain and 𝑠𝑔𝑛ሺ⋅ሻ denotes the standard sign function. 
Let us define the non-dimensional parameters: the damping ratio 𝜉 ൌ 𝑏 ൣ2√𝑘𝑚൧⁄ , the natural 

frequency 𝜔଴ଶ ൌ 𝑘/𝑚 and 𝜔௖ଶ ൌ 𝑘௖/𝑚. Thus, the time scale 𝑡 ൌ 𝜔଴𝜏 and the variable change  𝑥 ൌ 𝑥̅/𝐿, where 𝐿 is a constant, transform Eq. (1) into: 𝑥ሷ ൅ 2𝜉𝑥ሶ ൅ ሺ1 ൅ 𝜀sgnሺ𝑥𝑥ሶ ሻሻ𝑥 ൌ 0, (3)

where the dots denote differentiation with respect to time 𝑡, the initial conditions are reduced to ሺ𝑥଴, 𝑥ሶ଴ሻ ൌ ሺ𝑥̅଴/𝐿, 𝑥̅଴ᇱ/ሾ𝜔଴𝐿ሿሻ and the tuning parameter 𝜀 is defined by 𝜀 ൌ 𝜔௖ଶ/𝜔଴ଶ ൌ 𝑘௖/𝑘, hence, 
the controller gain is given by: 𝑘௖ ൌ 𝜀𝑘. (4)

When the viscous damping is not present, Eq. (3) is known as the Reid equation which has 
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been used to describe the hysteretic damping occurred intrinsically in materials [12, 13].  
Therefore, it is said that the switched stiffness technique induces a nonlinear dissipative 
phenomenon related to the hysteretic damping [14, 15]. For the analysis of this equation, several 
nonlinear analysis techniques have been broadly applied. For instance, in [14] the solution is 
approximated by the harmonic balance technique and its stability is determined by the variational 
equation, in [16] an extended analysis is done using perturbation techniques and the  
multi-degree-of-freedom case is studied in [17], while in [15, 18] a piecewise analytic approach 
is carried out, in [19] the phase plane method is developed and applied and [9] applies an 
approximation technique based on method of variation of parameters. A novel approach using 
linear techniques was also developed in [20]. 

From Eq. (3) written as state space model: ቂ𝑥ሶ𝑥ሷ ቃ = ൤ 0 1−(1 + 𝜀sgn(𝑥𝑥ሶ)) −2𝜉൨ ቂ𝑥𝑥ሶ ቃ = 𝐟(𝑥)𝐱, (5)

we deduce that the origin is an isolated equilibrium point, and the existence and uniqueness of the 
solution of Eq. (5) are guaranteed because the function 𝐟 satisfies the Lipschitz condition, it is 
bounded and piecewise continuous at 𝐱 and it admits a limited number of finite discontinuities 
[21]. 

In general, the semi-active control technique posses inherent stability as it is pointed out in 
[22]. Notwithstanding, for Eq. (3), the main question is about under what circumstances of the 
parameters its origin is stable. The stability of the origin can be established by the Lyapunov 
theorem as follows.  

Consider the candidate Lyapunov function 𝑉(𝐱) = ଵଶ 𝑥ଶ + ଵଶ 𝑥ሶ ଶ, then, its derivative along the 
trajectories of Eq. (5) yields: 𝑉ሶ (𝐱) = −(2𝜉𝑥ሶ ଶ + 𝜀|𝑥𝑥ሶ |) ≤ 0, (6)

which is negative semi-defined, then by the Lyapunov theorem the trivial solution of Eq. (3) is 
stable. However, applying the Young inequality 𝑥𝑦 ≤ ఢ೛௣ 𝑥௣ + ଵఢ೜௤ 𝑦௤, ∀𝜖 > 0, ଵ௤ + ଵ௣ = 1 to Eq. (6) 
yields: 𝑉ሶ (𝐱) < −൬𝜀 ൬12 𝑥ଶ + 12 𝑥ሶ ଶ൰ + 2𝜉𝑥ሶ ଶ൰, (7)

where for 𝜀 > 0  and 𝜉 ≥ 0 , the function 𝑉ሶ < 0  is negative defined and the origin is 
asymptotically stable. 

From the above result, it is shown that the Lyapunov analysis delimits the parameter range to 
ensure asymptotic stability. However, in general, there is not a procedure to choose an 
appropriated tuning parameter 𝜀 neither its optimum value, given a prescribed performance index. 
To illustrate this issue, consider the numerical solutions of Eq. (3) plotted in Fig. 2 for different 
values of the tuning parameter 𝜀, along with the corresponding switching functions. From Fig. 2 
we deduce several facts: first, the trajectories converge to zero as it was proved by Lyapunov 
analysis; second, the settling time of the response in the second case is shorter than the first case. 
Accordingly, a tuning methodology must be devised. 

In Fig. 2, one more remarkable fact takes place, the switching function 𝑝(𝑥, 𝑥ሶ) = sgn(𝑥𝑥ሶ) 
seems to behave periodically in time, at this point it is important to point out that we claim that 
the sign function of the product 𝑥𝑥ሶ  behaves periodically in time. This fact allows us to perform a 
stability analysis treating Eq. (3) as a linear periodic equation instead of a nonlinear differential 
equation. The principal advantage of doing this is that for linear systems several well-known 
mathematical tools can be employed instead of nonlinear approximation techniques. The main 
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mathematical tool for periodic linear systems is the Floquet theory which for reference is briefed 
in the appendix to clarify our findings. In the following sections, the application of the Floquet 
theory shall allow us to prove the exponential stability of the origin, to establish a tuning procedure 
for the controller gain, to solve an optimization problem and to prove the controller robustness. 

 
a) 

 
b) 

Fig. 2. Numerical solutions of Eq. (3) with initial conditions (𝑥଴, 𝑥ሶ଴) = (1.25,0.25):  
a) when 𝜉 = 0.15 and 𝜀 = 0.1 and b) when 𝜉 = 0.15 and 𝜀 = 0.45  

3. Main results 

The damped Reid equation Eq. (3), illustrates the case when the dissipative forces, which are 
ubiquitous in real-world systems, are taken into account. In this work, they are characterized and 
quantified by a viscous damping force, this assumption is feasible for a neighborhood around the 
origin [23]. We recall that in the absence of damping, Eq. (3) is reduced to the well-known Reid 
equation which has been broadly studied employing nonlinear analysis techniques, such studies 
in some cases are cumbersome and approximated. 

We apply the Floquet theory to analyze the damped Reid equation. This approach is novel and 
simple, and it provides analytic results without employing approximations. 

To apply the Floquet theory, it is necessary to rewrite the nonlinear differential equation Eq. (3) 
as a linear periodic differential equation, that is, we must prove that the function sgn(𝑥𝑥ሶ) has a 
fixed period 𝑇 which must be independent of the initial conditions. 

Recall that Fig. 2 suggests that switching function sgn(𝑥𝑥ሶ) behaves periodically in time. In 
order to corroborate this fact, the set of arbitrary initial conditions (𝑥଴, 𝑥ሶ଴) = (𝑥̅଴/𝐿, 𝑥̅଴ᇱ/ሾ𝜔଴𝐿ሿ) of 
Eq. (3) are nondimensionalized and split into two sets in the following way: if 𝐿 = 𝑥̅଴ and 𝑥̅଴ᇱ = 0 
then the nondimensionalized initial conditions (𝑥଴, 𝑥ሶ଴) = (1,0) along with Eq. (3) allow us to 
define the initial position problem, while if 𝐿 = 𝑥̅଴ᇱ/𝜔଴ and 𝑥̅଴ = 0 then the nondimensionalized 
initial conditions (𝑥଴, 𝑥ሶ଴) = (0,1) along with Eq. (3) defined the initial velocity problem. In this 
manner, we define a set of linearly independent initial conditions. 

For the initial position and velocity problem above defined, their solutions 𝑥௣ and 𝑥௩, along 
with the corresponding switching functions are plotted in Fig. 3(a) and Fig. 3(c) respectively. The 
plots reveal two remarkable facts: in both cases, the switching function sgn(𝑥𝑥ሶ)  behaves 
periodically in time as we expected and its period 𝑇 is fixed, and the second is that solutions 
approach asymptotically to the trivial solution with the same and fixed period. In this case the 
system described by Eq. (3) is said to be an asymptotically isochronous system, for a rigorous 
definition and examples see [24]. To prove the periodicity of the function, we must provide an 
analytic expression for the period 𝑇  by calculating the switching instants of the solutions as 
follows. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 3. Numerical solutions Eq. (3) when 𝜉 = 0.25 and 𝜀 = 0.15: a) solution for the initial velocity 
problem and its phase portrait b), c) solution for the initial position problem and its phase portrait d) 

3.1. Periodicity 

The phase portraits of the corresponding solutions 𝑥௩  and 𝑥௣  are plotted in Fig. 3(b) and 
Fig. 3(d) respectively. To calculate the switching instants 𝑡௜, we examine both solutions at each 
quadrant of their respective phase portraits, where the function sgn(𝑥𝑥ሶ) is well-defined, and  
hence, Eq. (3) is solvable and has analytic solutions. 

3.1.1. Initial velocity problem 

For the initial velocity problem the quadrants are named as in Fig. 3(b). At each quadrant we 
have the following: 

I. At the first quadrant sgn(𝑥𝑥ሶ) = 1, then Eq. (3) is reduced to: 𝑥ሷଵ + 2𝜉𝑥ሶଵ + (1 + 𝜀)𝑥ଵ = 0, (8)

under the initial conditions (𝑥଴, 𝑥ሶ଴) = (0, 1). Its characteristic polynomial is 𝑠ଶ + 2𝜉𝑠 + 1 + 𝜀 =0 whose roots are 𝑠 = −𝜉 േ ඥ−(1 − 𝜉ଶ + 𝜀) for a oscillatory response 1 − 𝜉ଶ + 𝜀 > 0, then, 𝑠 = −𝜉 േ 𝑖𝜔௛, where 𝜔௛ = ඥ1 − 𝜉ଶ + 𝜀. Thus, the solution is given by 𝑥ଵ(𝑡) = 𝑐ଵ𝑒(ିకା௜ఠ೓)௧ +𝑐ଶ𝑒(ିకି௜ఠ೓)௧, where 𝑐ଵ and 𝑐ଶ are found applying the initial conditions, that is, the solution is 𝑥ଵ(𝑡) = ଵఠ೓ 𝑒ିక௧sin𝜔௛𝑡  and its derivative 𝑥ሶଵ(𝑡) = 𝑒ିక௧ ቀcos𝜔௛𝑡 − కఠ೓ sin𝜔௛𝑡ቁ . At the first 

switching instant 𝑡 = 𝑡ଵ  we have 𝑥ሶଵ(𝑡ଵ) = 0,  i.e, cos𝜔௛𝑡ଵ − కఠ೓ sin𝜔௛𝑡ଵ = 0  then  𝑡ଵ = ଵఠ೓ arctanఠ೓క  and 𝑥ଵ(𝑡ଵ) yields 𝑥ଵ଴ = 𝑥ଵ(𝑡ଵ) = 𝑒ିక௧భ ଵටకమାఠ೓మ. 

II. At second quadrant the relation sgn(𝑥𝑥ሶ) = −1 holds, then Eq. (3) yields: 𝑥ሷଶ + 2𝜉𝑥ሶଶ + (1 − 𝜀)𝑥ଶ = 0, (9)

where (𝑥ଵ଴, 𝑥ሶଵ଴ = 0) . The roots of the characteristic polynomial are complex 𝑠 = −𝜉𝜔଴ േ
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ඥ−(1 − 𝜉ଶ − 𝜀) if (1 − 𝜉ଶ) − 𝜀 > 0, thus 𝑠 = −𝜉𝜔଴ ± 𝑖𝜔௟ where 𝜔௟ = ඥ1 − 𝜉ଶ − 𝜀. Then, the 
solution is 𝑥ଶ(𝑡) = 𝑐ଵ𝑒(ିకା௜ఠ೗)௧ + 𝑐ଶ𝑒(ିకି௜ఠ೗)௧ , where 𝑐ଵ  and 𝑐ଶ  are integration constants 
applying the initial conditions, the solution is 𝑥ଶ(𝑡) = ௫భబ௘ష഍೟ఠ೗ (𝜔௟cos𝑡𝜔௟ + 𝜉sin𝑡𝜔௟)  and its 

derivative yields 𝑥ሶଶ(𝑡) = −௫భబ௘ష഍೟(కమାఠ೗మ)ఠ೗ sin𝑡𝜔௟. At the switching instant 𝑡ଶ we have 𝑥ଶ(𝑡ଶ) = 0, 

that is, 𝜔௟cos𝑡ଶ𝜔௟ + 𝜉sin𝑡ଶ𝜔௟ = 0  then 𝑡ଶ = ଵఠ೗ (arctan(−ఠ೗క ) + 𝜋),  and 𝑥ሶଶ(𝑡ଶ)  yields  

𝑥ሶଶ଴ = 𝑥ሶଶ(𝑡ଶ) = −௫భబ௘ష഍೟మఠ೗ (𝜉ଶ + 𝜔௟ଶ)sin𝑡ଶ𝜔௟ = 𝑒ିక(௧భା௧మ) ටకమାఠ೗మටకమାఠ೓మ. 

III. At the third quadrant sgn(𝑥𝑥ሶ) = 1, then Eq. (3) is reduced to 𝑥ሷଷ + 2𝜉𝑥ሶଷ + (1 + 𝜀)𝑥ଷ = 0 
with the initial conditions (𝑥ଶ଴ = 0, 𝑥ሶଶ଴) . The solution 𝑥ଷ  and its derivative are given by  𝑥ଷ(𝑡) = ௫ሶమబఠ೓ 𝑒ିక௧sin𝜔௛𝑡 and 𝑥ሶଷ(𝑡) = 𝑥ሶଶ଴𝑒ିక௧ ቀcos𝜔௛𝑡 − కఠ೓ sin𝜔௛𝑡ቁ respectively. At 𝑡ଷ we have 

𝑥ሶଷ(𝑡ଷ) = 0, that is, 𝑡ଷ = ଵఠ೓ arctanఠ೓క , and 𝑥ଷ(𝑡ଷ) yields 𝑥ଷ଴ = 𝑒ିక(௧భା௧మା௧య) ටకమାఠ೗మకమାఠ೓మ . 

IV. In the last quadrant sgn(𝑥𝑥ሶ) = −1, then 𝑥ሷସ + 2𝜉𝑥ሶସ + (1 − 𝜀)𝑥ସ = 0 under the initial 
conditions (𝑥ଷ଴, 𝑥ሶଷ଴ = 0). The solution is 𝑥ସ(𝑡) = ௫యబఠ೗ 𝑒ିక௧(𝜔௟cos𝜔௟𝑡 + 𝜉sin𝜔௟𝑡) and its derivative 

is 𝑥ሶସ(𝑡) = −𝑥ଷ଴ ௘ష഍೟ఠ೗ (𝜉ଶ + 𝜔௟ଶ)sin𝑡𝜔௟ . At 𝑡ସ  the solution obeys 𝑥ସ(𝑡ସ) = 0,  that is, 𝑡ସ =ଵఠ೗ (arctan(−ఠ೗క ) + 𝜋), and 𝑥ሶସ଴ = 𝑥ሶସ(𝑡ସ) = −௫యబ௘ష೟ర഍ఠ೗ (𝜉 + 𝜔௟ଶ)sin𝑡ସ𝜔௟ = 𝑒ିక(௧భା௧మା௧యା௧ర) కమାఠ೗మకమାఠ೓మ.  

From the above analysis, the switching function sgn(𝑥𝑥ሶ)  can be written as the periodic 
function 𝑞௩(𝑡): 

𝑞௩(𝑡) = ⎩⎨
⎧1, 𝑡 ∈ ሾ0, 𝑡ଵሿ,−1, 𝑡 ∈ (𝑡ଵ, 𝑡ଵ + 𝑡ଶሿ,1, 𝑡 ∈ (𝑡ଵ + 𝑡ଶ, 𝑡ଵ + 𝑡ଶ + 𝑡ଷሿ,−1, 𝑡 ∈ (𝑡ଵ + 𝑡ଶ + 𝑡ଷ,𝑇ሿ,  (10)

where the period 𝑇 is the sum of all the switching instants deduced above, i.e., 𝑇 = ∑ସ௜ୀଵ 𝑡௜, then: 

𝑇(𝜀, 𝜉) = 2𝜔௛ arctan𝜔௛𝜉 + 2𝜔௟ ൬arctan ൬−𝜔௟𝜉 ൰ + 𝜋൰, (11)

where 𝜔௟ = ඥ1 − 𝜉ଶ − 𝜀 and 𝜔௛ = ඥ1 − 𝜉ଶ + 𝜀. 
The value of the trajectory at the period 𝑇 is given by: 

ሾ𝑥௩(𝑇) 𝑥ሶ௩(𝑇)ሿ୘ = ሾ0 𝑥ሶସ଴ሿ୘ = ൤0 𝑒ିక் 1 − 𝜀1 + 𝜀൨୘, (12)

where the values of 𝜔௛, 𝜔௟ and 𝑇 were substituted. 
Notice that conditions 1 + 𝜀 − 𝜉ଶ > 0  and 1 − 𝜀 − 𝜉ଶ > 0  are imposed to guarantee the 

periodicity of the switching function. 

3.1.2. Initial position problem 

Regarding the initial position problem, Fig. 3(c) shows that switching instants are different 
from those of the initial velocity problem, that is, the switching function sgn(𝑥𝑥ሶ) for the initial 
position problem commutes at different instants. Following the above procedure can be shown 
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that the period of the function remains as in Eq. (11). Thus, the switching function is written as 
the periodic function 𝑞௣(𝑡) = 𝑞௣(𝑡 + 𝑇), and the value of the trajectory at 𝑇 is: 

ሾ𝑥௣(𝑇) 𝑥ሶ௣(𝑇)ሿ୘ = ൤𝑒ିక் 1 − 𝜀1 + 𝜀 0൨୘. (13)

From the previous analysis, we deduce that for the initial velocity and initial position problems, 
the corresponding switching function can be written by either the 𝑇-periodic function 𝑞௩(𝑡) or 𝑞௣(𝑡) respectively, where the period is equal to Eq. (11). This result is formalized in the following 
theorem. 

Theorem 1. The system Eq. (3) can be written as a linear periodic system: 𝑥ሷ + 2𝜉𝑥ሶ + (1 + 𝜀𝑞(𝑡))𝑥 = 0. (14)

where 𝑞(𝑡) = 𝑞(𝑡 + 𝑇) is a periodic function with period 𝑇 given by the relation Eq. (11).  
To clarify the above result, the function 𝑞(𝑡) is provided by either the functions 𝑞௩(𝑡) or 𝑞௣(𝑡) 

respectively, hence, its definition depends on which set of standard initial conditions is chosen. 
However, the Floquet theorem requires only the knowledge of the period 𝑇, thus, the definition of 𝑞(𝑡)  is not necessary to be provided explicitly. Therefore, the period and the value of the 
trajectories 𝑥௣ -𝑥௩  at 𝑇  given by Eq. (12-13) allow us to determine the stability through the 
monodromy matrix. 

3.2. Stability analysis 

The stability of periodic system desribed by Eq. (14) is determined by the monodromy matrix 𝚽(𝑇) = 𝐖(𝑇)𝐖ିଵ(0), where 𝐖 is the Wronskian matrix. The matrix 𝐖 is given by the linearly 
independent solutions 𝑥௩ and 𝑥௣. Therefore, 𝚽(𝑇) yields: 

𝚽(𝑇) = 𝐖(𝑇) = ቈ𝑥௣(𝑇) 𝑥௩(𝑇)𝑥ሶ௣(𝑇) 𝑥ሶ௩(𝑇)቉ = 𝑒ିక் ൦1 − 𝜀1 + 𝜀 00 1 − 𝜀1 + 𝜀൪, (15)

where column vectors are given by Eqs. (12-13). The multipliers 𝜇 are the eigenvalues of the 
monodromy matrix: 𝜇(𝜀, 𝜉) = 𝑒ିక் 1 − 𝜀1 + 𝜀, (16)

the multiplier corresponds to a double semi-simple eigenvalue. While the relation Eq. (24) 
provides the Floquet exponent 𝜌: 

𝜌(𝜀, 𝜉) = 1𝑇 ln ൬1 − 𝜀1 + 𝜀൰ − 𝜉. (17)

From the above results allow us to state the following stability criterion  
Corollary 1. The origin of the system Eq. (3) is asymptotically stable if 𝜀 < 1.  
Proof 1. The Floquet multiplier Eq. (16) satisfies 𝜇 < 1  when 𝜀 < 1 . Therefore, by the 

Floquet theory the origin is asymptotically stable.  
The representation of Floquet exponent Eq. (17) is unique since 𝜇 < 1 and by corollary 4 the 

Floquet factors are real. 
The Floquet theorem guarantees asymptotic stability. However, exponential stability can 
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actually be proved. For that aim, Eq. (3) is reduced to a linear system with constant coefficients  
Corollary 2. The system Eq. (3) is reducible to the linear system with constant coefficients: 𝐲ሶ(𝑡) = 𝐊𝐲(𝑡), (18)

where the solution is given by 𝑦(𝑡) = 𝑒ఘ௧𝑦଴, hence, the origin of system Eq. (3) is exponentially 
stable. 

Proof 2. The Lyapunov transformation 𝐱 = 𝐅(𝑡)𝐲 transforms the system Eq. (3) into 𝐲ሶ = 𝐊𝐲, 
where the matrix 𝐊 = ቀଵ்ቁ ln𝚽(𝑇) is real and the monodromy matrix 𝚽(𝑇) is given by Eq. (15). 
Applying the lemma 1 (see Appedix) the trivial solution of Eq. (3) is exponentially stable.  

Notice that the present analysis provides analytic closed expressions in terms of the system 
parameters for determining the stability, also, to establish a controller design procedure and to 
solve an optimization problem based on a performance index, as follows. 

3.3. Controller design 

By the Floquet theorem the exponent 𝜌 given in Eq. (24) provides a stability criterion, that is, 
the exponent meets |𝜌| < 1 when the tuning parameter and the damping ratio satisfy 0 < 𝜉 < 1 
and 0 < 𝜀 < 1 respectively. The damping ratio is bounded because we consider a lightly damped 
structure and 𝜀 by its definition and the stability analysis. Consider the parameter space (𝜀, 𝜉) 
restricted to these bounds, then Floquet exponent in terms of the parameters is numerically 
calculated and plotted as the contour plot given in Fig. 4. Notice that for some values (𝜀, 𝜉) the 
period 𝑇 given by Eq. (11) is complex, such complex values do not have a physical meaning. 

 
Fig. 4. Contour plot of the Floquet exponent 𝜌(𝜀, 𝜉) 

The plot provides the stability chart in the parameter space for which |𝜌| ≤ 1  avoiding 
complex values. The white region represents the values (𝜀, 𝜉) for which the period 𝑇 is complex, 
while the region in color represents those real values for which the trivial solution of the system 
is exponentially stable. 

The gain 𝑘௖ = 𝜀𝑘 of the controller is determined using the stability chart by considering the 
estimated value of the equivalent damping ratio 𝜉 and choosing an appropriated value for the 
tuning parameter 𝜀. For instance, consider the estimated damping ratio 𝜉 ≈ 0.0932 and the value 𝜀 = 0.4. In Fig. 4 the corresponding point (𝜀, 𝜉) label as 𝑃ଵ. 

A greater distance from the poles to the imaginary axis allows a faster convergence to zero of 
the system response. For this reason, it is important to find parameter setting that maximizes this 
distance. Regarding the optimal 𝜀, it is possible to state an optimization problem considering the 
root loci of the poles 𝜌(𝜀, 𝜉)  of the reduced linear system described in Eq. (18), that is, an 
appropriate stability margin can be provided by maximizing the distance between the poles and 
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the imaginary axis. 
The maximum distance is accomplished when the derivative of the pole is equal to zero, that 

is when 𝑑𝜌/𝑑𝜀|క = 0. Notice that such derivative exits and corresponds to a Frechet derivative 
because the Floquet exponent is semi-simple [25]. 

Therefore, for a damping ratio 𝜉 ∈ [0,1], the derivative 𝑑𝜌/𝑑𝜀|క = 0 yields a transcendental 
equation which is solved for the optimal value 𝜀௢௣ applying the Newton-Rapson method. The 
result of this iterative procedure is shown in the contour plot by the set of points denoted by 𝑑𝜌/𝑑𝜀 = 0. Therefore, the set of points (𝜀௢௣, 𝜉) are the values where the distance between the 
poles and the imaginary axis is maximized. 

On the other hand, the tuning procedure employs the stability chart to choose the tuning 
parameter 𝜀 for a given damping ratio 𝜉. As expected, this design procedure entails some source 
of uncertainty, mainly in the identification process of the damping ratio. Therefore, it is natural to 
ask what about the uncertainty of the parameters; hence, we shall perform a sensitivity analysis to 
study the effects of parameter variations on the Floquet exponent. 

3.4. Sensitivity analysis 

Let consider that 𝜉଴ and 𝜀଴ are the nominal values, then the nominal Floquet exponent is given 
by 𝜌଴ = 𝜌(𝜉଴, 𝜀଴), we wish to measure the change of 𝜌଴ as the parameters 𝜉 and 𝜀 change from 
their nominal values. For that aim, let Δ𝜀 = 𝜀 [௖]ଵ଴଴% denotes a change in 𝜀, where [𝑐] represents 
percent changes, for example, [𝑐] = 1, 5, 10 %, etc. For a change in 𝜀 the Floquet exponent yields 𝜌୼ఌ = 𝜌(𝜉଴, 𝜀଴ + Δ𝜀) , then, Δ𝜌 = 𝜌଴ − 𝜌୼ఌ  measure the variation with respect to 𝜀  and let  ቂ୼ఘఘబቃ = 100 ୼ఘఘబ denotes the percent change. 

Consider 𝑑𝜌 = ௗఘௗఌ 𝑑𝜀 = 𝑆ఌఘ𝑑𝜀, where 𝑆ఌఘ = ௗఘௗఌ is known as the sensitivity function of 𝜌 with 

respect to 𝜀, see [26]. Then, Δ𝜌 ≈ 𝑆ఌఘΔ𝜀 and the relation ቂ୼ఘఘబቃ yields: 

൤Δ𝜌𝜌଴ ൨ఌ = 𝑆ఌఘ 𝜀𝜌଴ [𝑐]%. (19)

Eq. (19) measures the change in 𝜌 as 𝜀 varies. However, the parameter 𝜉 may also vary then: 

൤Δ𝜌𝜌଴ ൨క = 𝑆కఘ 𝜉𝜌଴ [𝑐]%, (20)

where 𝑆కఘ = ௗఘௗక. The above expression measures the change in 𝜌 as 𝜉 varies. In addition, 𝜌 can 
also vary when both parameters 𝜌 and 𝜉 have variations then: 

൤Δ𝜌𝜌଴ ൨ఌ,క = 𝑆ఌఘ 𝜀𝜌଴ [𝑐ଵ]% + 𝑆కఘ 𝜉𝜌଴ [𝑐ଶ]%. (21)

Notice that the sensitivity functions 𝑆ఌఘ and 𝑆కఘ are well-defined since the Floquet exponent is 
semi-simple, and hence their respective derivative corresponds to a Frechet derivative [25]. 

When the tuning parameter corresponds to the optimal value 𝜀௢௣ the sensitivity function 𝑆ఌఘ is 
approximately equal to zero since 𝑑𝜌/𝑑𝜀|ఌ೚೛ ≈ 0. Then, we can deduce that the controller is 
robust against small changes in the parameters. 
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4. Numerical and experimental results 

In this section, we carry out the simulation and experimental verification of the switched 
stiffness active controller. The numerical simulation of the mass-spring system is based on the 
system parameters of the experimental model depicted in Fig. 5. 

 
Fig. 5. Mass-spring car system: 1 – actuator, 2 – optical encoder, 3 – mass-spring car,  

4 – rack-and-pinion gear-set, 5 – scale of ±3.0 cm 

4.1. Numerical results 

The dynamics of the experimental mass-spring system can be described by Eq. (1), whose 
parameters correspond to: 𝑚 = 1.2 kg, 𝑏 = 4.5 N/m and 𝑘 = 487.8 Ns/m respectively, where the 
estimated damping ratio is equal to 𝜉 = 0.0932. The methodology to estimate the damping ratio 
is shown in a later section. Based on these parameter we carry out the simulation of controller. 

4.1.1. Simulation 

The controller gain is 𝑘௖ = 𝑘𝜀 = 487.8𝜀 and the tuning parameter 𝜀 is chosen arbitrarily as 
example as in the stability chart of Fig. 4. As illustrative example, the point  𝑃ଵ(𝜉, 𝜀) = (0.0932,0.4) in the stability chart is selected, thus, the controller gain is 𝑘௖ ≈ 195. 

The numerical solution 𝑥ො௣  of the controlled system Eq. (1) for the initial condition  𝑥ො௣(0) = 2.0 cm is plotted in Fig. 6, along with the control law Eq. (2) and the switching function. 
The mass-spring system under the action of the controller becomes a linear periodic system, 

whose multiplier 𝜇 and Floquet exponent 𝜌 are calculated by Eq. (16-17), that is, 𝜇 = 0.224682 
and 𝜌 = −0.215485 respectively. To validate our predictions, the Floquet exponent may roughly 
be estimated from the numerical solution using the logarithmic decrement technique. From 
Fig. 6(a) the logarithmic decrement 𝜌෤ ≈ ଵଶగ log ଶ଴.ସସ଻ସ = 0.2383  approximates the Floquet 
exponent. The error in the approximation is because the actual system response can not the 
approximated by the oscillatory response of the second-order linear system as the logarithmic 
decrement technique intends to do. 

Notice the amount of stiffness introduced into the system is given by relation 𝑘௖sgn(𝑥̅𝑥̅ᇱ). On 
the other hand, the design procedure of the controller entails some sources of uncertainty, due 
mainly to the damping ratio identification. To overcome this disadvantage and to show the 
robustness of the controller against parameter uncertainty, a sensitivity analysis is carried out in 
the following. 

4.1.2. Robustness analysis 

The nominal parameters are (𝜉଴, 𝜀଴) = (0.0932,0.4) and the corresponding Floquet exponent 
is 𝜌଴ = 0.215485. We consider that both parameters vary, then Eq. (19) is used to tabulate, in 
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Table 1, the sensitivity analysis results. The table relates the percent variations of the Floquet 
exponent 𝜌଴ due to variations of the parameters (𝜉଴, 𝜀଴). 

 
Fig. 6. Numerical solution of the control system Eq. (1) where 𝑚 = 1.2 kg, 𝑏 = 4.5 N/m, 𝑘 = 487.8 Ns/m 

and 𝑘௖ = 195: a) position 𝑥ො௣, b) corresponding control law 𝑢, c) switching function 

The data in Table 1 is interpreted as follows. For instance, consider a variation of 25 % of the 
parameter 𝜉 with no variations in 𝜀, then from the table 1 the percent variation is [Δ𝜌 𝜌଴⁄ ]ఌ = 
14 %. As second example, now consider a variation in both nominal parameters, for instance, 𝜉 
with 20 % and 𝜀 with 10 %, then Floquet exponent has a variation of [Δ𝜌 𝜌଴⁄ ]ఌ,క = 15 %. In both 
examples, the corresponding results are pointed out in table 1 by the color text.  

Table 1. Percent variation [Δ𝜌 𝜌଴⁄ ] of the Floquet exponent 𝜌଴ = 0.215485 as parameters vary  
from their nominal values (𝜉଴, 𝜀଴) = (0.0932,0.4) ∆𝜉, % ∆𝜀, % 

0 5 10 25 30 
0 0 3 6 14 17 
10 5 8 11 19 22 
20 9 12 15 23 26 
30 13 16 19 27 30 
50 21 24 27 35 38 

To visualize the effect of parameters variation on the system response, two examples are 
plotted in Fig. 6(a). The corresponding solutions of Eq. (1) that shows Δ𝜉 = 25 %  with no 
variation in 𝜀 (bolded) and a variation in both parameters as Δ𝜀 = 10 %, Δ𝜉 = 20 % (blue). 

In addition, the Euclidean norm of the solution may be used as a quantitative measure for 
validate the robustness of the controller, i.e., for the nominal solution ฮ𝑥ො௣ฮଶ = 0.1823, and for 
the present examples ฮ[𝑥ො௣]୼కୀଶହ%ฮଶ = 0.1725  and ฮ[𝑥ො௣]୼ఌୀଵ଴%,୼కୀଶ଴%ฮଶ = 0.1721 
respectively. From the above sensitivity analysis, one deduces that the controller is robust against 
parameter uncertainty. 

4.2. Experimental model 

The experimental model is comprised of the mass-spring car which is constrained to move 
horizontally on a rail, an optical encoder which measures mass motion, a DC servomotor with a 
rack-and-pinion gear-set adaptation which provides the control action; notice that the distance 
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traveled by the mass is ±3 cm. Besides, Fig. 7 shows the fully assembled experimental setup. The 
dSPACE data acquisition platform is used to register the experimental data and to implement the 
control law in real-time by using the block diagram formulation through the Matlab/Simulink 
software, where the sample time of the data acquisition is 𝑇௦ = 1 ms. 

 
Fig. 7. Experimental rig: 1 – power supply, 2 – dSPACE computer, 3 – PC with Matlab/Simulink,  

4 – ECP rectilinear plant model 201, 5 – dSPACE panel connector 

The mass-spring car experiments a friction force during its motion. For practical purposes, we 
assume that such force can be quantified by a linear viscous damping force, where the logarithmic 
decrement technique is applied to estimate the damping coefficient. 

To apply the technique, the free vibration response 𝑥෤௣  is experimentally determined 
considering the initial position 𝑥෤௣(0) = 2.0 cm. and zero initial velocity. The period of the free 
vibration response is found as 𝑇 ≈ 0.3130 seg. and a second peak amplitude 𝐴 ≈ 1.05. From the 
logarithmic decrement we have ଵଶగ log ଶଵ.଴ହ = 𝜉ඥ1 − 𝜉ଶ, then, solving for the damping ratio yields 𝜉 ≈ 0.0932. 

The stiffness and damping parameters are calculated by the relations 𝜔଴ = 2𝜋/ൣ𝑇ඥ1 − 𝜉ଶ൧, 𝑘 = 𝜔଴ଶ𝑚 and 𝑏 = 2𝜉√𝑚𝑘, where the mass is equal to 𝑚 = 1.2 Kg. Thus, the parameters are 
approximately equal to 𝑘 = 487.7952 N/m and 𝑏 = 4.51 Ns/m respectively. 

4.3. Experimental verification 

A crucial step in the controller implementation is to calculate the switching function  𝑧 = sgn(𝑥𝑥ሶ) since the velocity 𝑥ሶ  must be obtained. Therefore, the controller performance is based 
on which technique is used to calculate the velocity. One common technique is the numerical 
differentiation of the position, but this approach may yield a velocity contaminated by noise. A 
second approach is the use of state observers, but this approach depends on an appropriate choose 
of the observer and the tuning of its gains. Nevertheless, in this paper, we developed a novel and 
heuristic approach to calculate the switching function without velocity measurement, where we 
take into account the dynamics of the mass during its motion. 

4.3.1. Switching function calculation 

To explain how we calculate the switching function without velocity measurement, we 
compare our approach to the position differentiation approximation scheme. The state observer 
formulation is not considered in the following comparison. 

Fig. 8 shows the Matlab/Simulink block diagram for the experimental implementation of both 
approaches. The orange block calculates the switching function by differentiating the position 
while the cyan block executes the algorithm to calculate the switching function without the 
velocity measurement. The yellow block explained in the appendix corresponds to the 
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input-output data acquisition relations of the experiment setup. The block diagram is converted to 
computer code and loaded into the dSPACE real-time platform which runs at a sample time of 𝑇௦ = 1.0 ms. 

 
Fig. 8. Block diagram for calculating the switching function sgn(𝑥𝑥ሶ) without measure the velocity 

The experiment results of both approaches are shown in Fig. 9. Where Fig. 9(a) shows the 
position 𝑥෤௣ of the mass and its velocity, which has been calculated by numerical differentiation, 
for illustrative purposes, the velocity is scaled by the natural frequency, that is, 𝑥෤ሶ௣𝜔଴ . The 
corresponding switching function based on numerical differentiation is plotted in Fig. 9(b). 

Even when, in this particular case, the numerical differentiation scheme provides quite good 
agreement with our approach, it is well-known that it may be susceptible to be contaminated by 
noise and; and, in general, it is avoided. 

We base our approach on the motion of the mass. The approach determines when the position 𝑥෤௣ crosses the zero and when it is decreasing, these operations yield the two logic signals plotted 
in Fig. 9(c) and Fig. 9(d) respectively. The exclusive OR logic operation between these signals 
yields the signal plotted in Fig. 9(e), and finally the signal conditioning yields the switching 
function plotted in Fig. 9(f) this signal is the same of Fig. 9(b). Therefore, our approach does not 
require velocity measurement, in this way the control law is implemented. 

 
Fig. 9. Time history of the signals used for calculating the switching function 

4.3.2. Experimental results 

Fig. 10 shows the block diagram to implement the controller, the blue block calculate the 
switching function. The experimental results of the control law 2 are shown in Fig. 11, for control 
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gain 𝑘௖ = 195 used in the numerical simulation. For comparative purposes, in Fig. 11 we plot the 
experimental response 𝑥෤௣ and the numerical simulation 𝑥ො௣. 

 
Fig. 10. Block diagram of the controller implementation for the mass-spring system 

Notice that there is a discrepancy between the experimental result and the solution. This fact 
is due mainly to the action of additional dynamics not taken into account in the model like the dry 
friction, the backlash of the rack-and-pinion gear-set, and the induced dynamic by the DC 
servomotor. Nevertheless, the controller is robust and can handle these drawbacks. 

 
Fig. 11. Experimental result of the control system with 𝑘௖ = 195 

5. Conclusions 

The switched stiffness technique is a semi-active vibration control technique achieved by 
semi-active stiffness devices to change the total system stiffness to mitigate the vibration in 
structures. The system response depends on the parameters of the involved semi-active device, 
however, in real-world situations, the semi-active device cannot handle the optimal values that 
improve the system response. Consequently, the limitations of the switched stiffness technique 
are increasingly apparent. 

To tackle this issue, the authors developed a feasible controller to vibration mitigation of a 
single-degree-of-freedom system where the dissipative phenomenon is considered. We show that 
the vibration control system behaves periodically in time, this remarkable fact allows us to analyze 
the system as a periodic differential equation, where the Floquet theory is applied to establish 
closed analytic expression for stability conditions in terms of parameters system instead of linear 
approximations. This allows us to prove the exponential stability of the system, to provide a tuning 
scheme for the controller gain, to perform an optimization process and to show the robustness of 
the controller by carrying out a sensitivity analysis. 

Besides, the conducted experimental verification shows good agreement with the theoretical 
analysis and supports and validates our approach. The controller can be extended to be used for 
shock isolation. 
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Appendix 

Floquet theory brief. For the analysis of linear periodic systems, the Floquet-Lyapunov 
theory is broadly applied. The following results are stated without proof, for further details refer 
to [27]. 

Consider the system: 𝐱ሶ = 𝐀(𝑡)𝐱, (22)

where 𝐱 ∈ ℝ௡, 𝐀(𝑡) = 𝐀(𝑡 + 𝑇) ∈ ℝ௡×௡ ∀𝑡 is a piecewise-continuous periodic matrix function, 𝑇 is the period and 𝐱(0) = 𝐱଴ is the initial condition. 
Let 𝚽(𝑡) be a fundamental matrix Eq. (22), i.e., 𝐱(𝑡) = 𝚽(𝑡)𝐱(0). When the fundamental 

matrix 𝚽(𝑡) satisfies 𝚽(0) = 𝐈, then, it is known as the matrizant, see [27]. While 𝚽(𝑇) is known 
as monodromy matrix and its eigenvalues 𝜇 are called the multipliers. 

The matrizant may be written in terms of the Wronskian matrix 𝐖, i.e., let 𝐱௜  be a set of 
state-variable linearly independent solutions of Eq. (22), such that 𝐖(𝑡) = [𝐱ଵ 𝐱ଶ ⋯ 𝐱௡], 
thus, 𝚽(𝑡) = 𝐖(𝑡)𝐖ିଵ(0) . The main property of the matrizant is established in the 
Lyapunov-Floquet theorem. 

Theorem 2 (Lyapunov-Floquet). The matrizant 𝚽(𝑡) of the system Eq. (22) may be written 
as: 𝚽(𝑡) = 𝐅(𝑡)𝑒௧𝐊, (23)

where 𝐅(𝑡)  is a non-singular, piece-wise continuous 𝑇 -periodic matrix function, and 𝐊  is a 
constant logarithm matrix given by 𝐊 = ቀଵ்ቁ ln𝚽(𝑇). 

The eigenvalues 𝜌 of the logarithm matrix 𝐊 are called Floquet exponents and they are related 
to the multipliers by the relation: 𝜌 = 1𝑇 ln𝜇. (24)

In consequence, the solution 𝐱 can be written as 𝐱(𝑡) = 𝐅(𝑡)𝑒௧𝐊𝐱(0), where its behavior is 
determined by either the Floquet exponents or the multipliers of the system, as it is stated in the 
following corollary.  

Corollary 3 (Stability criterion). The behavior of the solution 𝐱  of system Eq. (22) is 
determined by the nature of the multipliers described bellow: 

– ‖𝐱‖ → 0 if and only if |𝜇௜| < 1, ∀𝑖…𝑛. 
– ‖𝐱‖ ≤ 𝑀 if and only if |𝜇௜| ≤ 1 and the ones with |𝜇௞| = 1 have simple elementary divisors, 

where 𝑀 is a constant. 
– ‖𝐱‖ → ∞  if and only if |𝜇௜| ≥ 1  and the ones with |𝜇௞| = 1  have multiple elementary 

divisors. 
Accordingly, the Floquet theorem states that the fundamental matrix has the factorization 𝚽(𝑡) = 𝐅(𝑡)𝑒௧𝐊, which may be a non-real factorization when the matrix 𝐊 is complex. However, 

in practical cases, it is desirable to count with real Floquet factors. The following result ensures a 
real Floquet factorization, see [18]. 

Corollary 4 (Real Floquet Factorization). The matrix logarithm 𝐊 is real if and only if either 
the multipliers of the system satisfy 𝜇௜ < 1 , ∀𝑖…𝑛  or the matrix 𝐊  satisfies the relation  𝐊 = ℜቄቀଵ்ቁ ln𝚽(2𝑇)ቅ.  
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The corollary 3, when the case i) holds the Floquet theory formally states that the origin of 
system Eq. (22) is asymptotically stable. Nevertheless, this result can be extended to show that the 
exponential stability of the origin meets. For that aim, two useful definitions are given next. 

Definition 1. The trivial solution of Eq. (22) is said to be exponentially stable if there exist 
positive constants 𝛾 and 𝜆 such that ‖𝚽(𝑡)‖ ≤ 𝛾𝑒ିఒ௧ for 𝑡 > 0. 

The following variable change is applied to reduce any linear system with periodic coefficients 
to a linear system with constant coefficients [27]:  

Definition 2. The transformation 𝐱 = 𝐋(𝑡)𝐲  is called a Lyapunov transformation if the 
function 𝐋(𝑡) satisfies: 𝐋 ∈ 𝐶ଵ[0,∞), 𝐋,𝐋ିଵ,𝐋ሶ  are bounded for 𝑡 ≥ 𝑡଴.  

The Floquet theorem ensures the existence of a Lyapunov transformation such that the Eq. (22) 
is reduced to 𝐲ሶ = 𝐁𝐲, where 𝐁 = 𝐋ିଵ𝐀(𝑡)𝐋(𝑡) − 𝐋ିଵ𝐋ሶ (𝑡) is a constant matrix. 

Corollary 5 (Lyapunov reducibility). Let 𝐱 = 𝐅(𝑡)𝐲 be a Lyapunov transformation which 
transforms the system Eq. (22) into the linear system with constant coefficients 𝐲ሶ = 𝐊𝐲, where 
the matrix 𝐊 = ቀଵ்ቁ ln𝚽(𝑇). 

Thus, the exponential stability of system Eq. (22) may be deduced employing the Lyapunov 
transformation definition. 

Lemma 1 (Exponential stability). Let 𝐱 = 𝐅(𝑡)𝐲 be a Lyapunov transformation, then the 
system Eq. (22) is exponentially stable if 𝐲ሶ = 𝐊𝐲 is exponentially stable. 

Block diagram. The block diagram in Fig. 12 shows the input-output relations of the dSPACE 
experimental setup.  

 
Fig. 12. Yellow block of block diagram 
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