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Abstract. Aiming at the problem of operating state prediction of generator bearing, a prediction 
method based on quantum particle swarm optimization (QPSO) and united least squares support 
vector machine (ULSSVM) is proposed. Firstly, the time least squares support vector machine 
(TLSSVM) model is established in accordance with the change law of characteristic parameters 
over time. Space least squares support vector machine (SLSSVM) model is established in 
accordance with the law of mutual influence between characteristic parameters. Secondly, the 
QPSO algorithm is used to optimize the parameters of each least squares support vector machine 
(LSSVM) model. When the difference between the predicted value and the measured value 
reaches the minimum, the optimal LSSVM parameter set is output. Then the improved 
Dempster-Shafer (D-S) theory is used to determine the weights of TLSSVM and SLSSVM. A 
united model of time LSSVM and space LSSVM is established. The characteristic parameters are 
predicted. The prediction results and the reference matrix are fused and reduced in dimension. 
Finally, the generator bearing operating status is predicted based on the location of the prediction 
results. The results show that the proposed method is helpful to realize the operating state 
prediction of the wind turbine bearing. 
Keywords: generator bearing, least squares support vector machine, state prediction, 
characteristic parameter. 

1. Introduction 

Wind turbine has been in a rapid growth mode since the 20th century. This rapid growth also 
affects the performance of wind turbines. The generator is one of the key components of the wind 
turbine [1]. Bearings are used in generators. The operating state of the bearing is not only related 
to the normal operation of the generator, but also related to the stable operation of the wind turbine 
[2]. The damaged bearings are often the leading cause of machine downtime and huge economic 
loss [3, 4]. Effectively predicting the operating status of the wind turbine generator can reduce 
downtime and economic loss. 

Data prediction is significant for operating state prediction. Least squares support vector 
machine (LSSVM) is a commonly used method in data prediction [5-7]. However, this method 
often only considers the trend of a single characteristic parameter with time and does not consider 
the interaction between various characteristic parameters. In the prediction process, there are often 
correlations among various characteristic parameters. The change of a certain characteristic 
parameter will reflect or affect the change of other characteristic parameters to a certain extent. 
Aiming at this problem, a prediction method based united least squares support vector machine 
(ULSSVM) is proposed. ULSSVM method combines time least squares support vector machine 
(TLSSVM) model and space least squares support vector machine (SLSSVM) model. The 
TLSSVM model is established based on the law of characteristic parameters changing with time. 
The SLSSVM model is established based on the relationship between the characteristic  
parameters. In the training phase of the model, the original data sequence is used as input. The 
TLSSVM model and the SLSSVM model are obtained separately through training. The weight 
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value of each model is also essential. Then, the weight values need to be determined. The 
TLSSVM model and the SLSSVM model are combined. The ULSSVM prediction model is 
obtained. If the weight values are obtained through experience, it will produce great subjectivity 
and uncertainty. Dempster-Shafer (D-S) has advantages in dealing with uncertainties caused by 
unknowns. It does not require prior probability and is easy to calculate. Therefore, it is widely 
used in data information fusion processing [8-10]. The traditional D-S theory has great limitations 
when dealing with conflicting information. The improved D-S theory can avoid this problem. 

Parameter selection directly affects the prediction effect of LSSVM. In order to obtain the 
optimal parameters, the optimization method is generally used to optimize LSSVM parameters 
[11]. [12] utilized an adaptive cuckoo search method to optimize the kernel parameter and the 
penalty parameter of the LSSVM model. Compared with no parameter optimization, the mean 
absolute percentage error is reduced by nearly 30 %. Recently, there are many methods for 
LSSVM parameter optimization, such as particle swarm optimization (PSO), improved PSO, 
hybrid particle swarm optimization, and niche particle swarm optimization [13-16]. PSO method 
is suitable for LSSVM parameter optimization and is widely used. It is easy to implement, but it 
is slow for global convergence. Quantum particle swarm optimization (QPSO) is proposed based 
on PSO [17]. This model assumes that particles have quantum behavioral characteristics. The 
algorithm can search in the entire feasible area. So that the global search ability of QPSO is better 
than PSO. 

In this research, an operating state prediction method for wind turbine bearings based on united 
LSSVM and QPSO is proposed. United LSSVM includes time LSSVM model and space LSSVM 
model. QPSO is used for parameter optimization of the models. The weights of time LSSVM and 
space LSSVM are determined by the improved D-S theory. The proposed method can improve 
the accuracy of the predicted values. The mean absolute error, the mean absolute percentage error, 
and the root mean squared error can be reduced. A case study shows that the prediction results 
based on this method can realize the prediction of the operating state of the wind turbine bearing. 

2. Basic theory 

2.1. Outline of LSSVM 

LSSVM is an improved algorithm based on support vector machine (SVM). Equalization 
constraints and least squares loss function methods are introduced. The optimization problem 
becomes a linear equation. Quadratic programming problems are avoided. The complexity of the 
algorithm is reduced. The calculation speed of LSSVM is faster than SVM [18-20]. The detailed 
steps are as follows: 

(1) Construct the linear equation: According to the basic principle of Structural Risk 
Minimization (SRM), the final training target can be expressed by the following: 

min 12 ‖𝜔‖ + 12 𝛾 𝑒 ,s.t.   𝜔 𝜙 𝑥 + 𝑏 + 𝑒 = 𝑦      𝑖 = 1, . . . , 𝑙, (1)

where 𝜔 is the weight vector. 𝛾 is the regularization parameter that controls the degree of penalty 
for errors. 𝜙 𝑥  is the kernel function. 𝑏 is the offset. 𝑒  is the variable representing the error. 

(2) Construct Lagrange function: 𝛼  is introduced as a Lagrange multiplier, 𝛼 ∈ 𝑅 × . 
Lagrange polynomial which is dual to Eq. (1) is constructed as: 

𝑚𝑖𝑛 𝐽 = 12 ‖𝜔‖ + 12 𝛾 𝑒 − 𝛼 𝜔 𝜙 𝑥 + 𝑏 + 𝑒 − 𝑦 . (2)
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(3) Determine the kernel function: The prediction model of generator bearing characteristic 
parameters has serious nonlinear characteristics. Therefore, the radial basis function (RBF) is 
selected as the kernel function. It can be expressed as: 

𝐾 𝑥, 𝑥 = exp −‖𝑥 − 𝑥 ‖2𝜎 , (3)

where 𝜎 is the kernel width. 
(4) Calculate the regression model: The offset 𝑏 and the support vector coefficient 𝛼  can be 

calculated. The regression model corresponding to the least squares support vector machine can 
be deduced as: 

𝑓 𝑥 = 𝛼 𝐾 𝑥, 𝑥 + 𝑏. (4)

For more detailed information about LSSVM, readers can refer to [18-20]. 

2.2. Quantum particle swarm optimization  

In order to improve the accuracy of the characteristic parameter prediction model and avoid 
the blindness of parameter selection, the quantum particle swarm optimization algorithm is used 
to optimize the kernel parameter and the penalty parameter of the LSSVM model. This process is 
a multi-parameter global optimization problem. QPSO is a probability optimization algorithm 
based on the principle of quantum computing. In quantum space, the properties of particles have 
changed in essence. This allows the algorithm to search in the entire feasible area. Therefore, the 
global search capability of QPSO is far superior to PSO. The detailed steps are as follows: 

(1) Set the initial parameters: Including number of iterations, number of quantum particle 
groups, dimension and optimization range, etc. The particle position vector is randomly initialized 
according to the defined range. 

(2) Calculate the fitness values: The fitness value of each particle is calculated by Eq. (5). The 
calculated fitness values of the particles are used as the local optimal fitness values 𝑝 𝑖 ,  𝑖 = 1, 2, ..., 𝑁. The minimum value in 𝑝 𝑖  is selected as the global optimal fitness value 𝑔 : 𝑓 𝛾,𝜎 = 𝑌 − 𝑌 ,s. t.  𝛾 ∈ 𝛾 , 𝛾 ,𝜎 ∈ 𝜎 ,𝜎 , (5)

where 𝑌  is the output value of the 𝑖-th known sample. 𝑌  is the model prediction output value of 
the 𝑖-th sample. 

(3) Update the optimal fitness values: The position of each particle is updated by Eq. (6). The 
fitness value of each particle is recalculated. When the obtained local optimal fitness value 𝑝 𝑖  is better than the previous generation, the corresponding 𝑝 𝑖  is updated. When the 
obtained global optimal fitness value 𝑔  is better than the previous generation, 𝑔  is updated: 

𝑥(𝑡+1) = 𝑃 ± 𝛽 𝑃𝑁 − 𝑥(𝑡) ln 1𝜐 , (6)

where 𝑡 is the current number of iterations. 𝑃  is 𝑝  of the 𝑖-th particle. 𝑁 is the number of 
particle groups. 𝑥(𝑡) is the particle position equation at 𝑡. 𝜐 is a random number in the range of 
0-1. The probability of ± taking + or - is 50 % respectively. 𝛽 is the contraction and expansion 
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coefficient.
 (4) Verify whether meet the end condition: If the number of iteration steps reaches the preset 

number of iterations, the optimization results of the kernel parameter and the penalty parameter 
are output. If not, go back to step (2) for further computations until meeting the termination 
conditions. 

2.3. Improved dempster-Shafer 

D-S theory is very effective for most data and information fusion, but when the evidence 
information is highly conflicting, it will produce results that are contrary to intuition. In response 
to this limitation, an improved D-S is proposed. The new method first assigns a weight to each 
evidence and uses the “discount rate” to adjust the basic credibility of all propositions in the 
identification framework. Then the traditional D-S is used for synthesis. This method preprocesses 
the evidence. It draws on the paradox elimination thought of adjusting reliability assignment.  

The weight of the evidence is determined by the data information itself. The weight of the 
evidence is determined based on the distance between the evidence and the mean evidence. The 
original data is adjusted and fused. The conflict coefficient between multiple data information is 
effectively reduced. The detailed steps are as follows: 

(1) Generate mean evidence: The generation of mean evidence can be realized by eliminating 
paradox thought in the literature [21]. The mean evidence is represented by 𝑀 . The 𝑖-th element 
of 𝑀  can be obtained by Eq. (7): 

𝑀 = 1𝑝 𝑚=1 (𝜃 ),    (𝑖 = 1,2,⋯ ,𝑛,    𝑘 = 1,2,⋯ ,𝑝), (7)

where 𝑝 is the number of information sources. 𝜃  is the singleton of the identification framework Θ = 𝜃 ,𝜃 , … ,𝜃 .
 (2) Calculate the distance between each evidence and the mean evidence: The distance between 

the 𝑘-th evidence and the mean evidence is represented by 𝐷 . It can be calculated by Eq. (8): 

𝐷 = 1𝑛-1 𝑚 (𝜃 ) −𝑀 ,     (𝑖 = 1,2,⋯ ,𝑛,      𝑘 = 1,2,⋯ ,𝑝). (8)

(3) Calculate the minimum distance to the mean evidence: The evidence with the minimum 
distance from the mean evidence is selected 𝐷 = 𝑚𝑖𝑛𝐷  (1 ≤ 𝑘 ≤ 𝑝). 

(4) Calculate the weight of each evidence: The weights are assigned based on the distance 
between each evidence and the mean evidence. The smaller the distance, the higher the reliability 
and the greater the weight. The weight of the 𝑘-th evidence is represented by 𝜔  (𝑘 = 1,2,⋯ ,𝑝). 
It can be obtained by Eq. (9): 𝜔 = 𝐷𝐷 ,     (𝑘 = 1, 2,⋯ ,𝑝). (9)

(5) Recalculate the basic probability assignment: The “discount rate” of the basic probability 
of the evidence is represented by 𝛼 =1 − 𝜔  (𝑘 = 1, 2,⋯ ,𝑝) . It is used to adjust the basic 
probability by Eq. (10). The uncertainty subset Ω is added to the identification framework, and its 
basic probability is calculated by Eq. (11): 𝑚 (𝜃 ) = (1 − 𝛼 )𝑚 (𝜃 ),     (𝑖 = 1, 2, ⋯ ,𝑛,     𝑘 = 1, 2,⋯ ,𝑝), (10)
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𝑚 (Ω)=1 − 𝑚 (𝜃 ). (11)

(6) D-S synthesis: The traditional D-S is used for evidence synthesis. 

3. Proposed parameter prediction scheme 

If the time least squares support vector machine is used to predict the characteristic parameter, 
the historical test data of this parameter is used to predict the value of the parameter at a certain 
time in the future. The characteristic parameter set is expressed as 𝑉 = 𝑣 ,𝑣 , … , 𝑣 . 
Specifically, part of the test data 𝑥 , , 𝑥 , , . . ., 𝑥 ,  of the characteristic parameter 𝑣  before 
time 𝑡 is obtained. 𝑚 is the preset embedding dimension. Then the LSSVM is used to get the 
fitting function 𝑓 . The value of the characteristic parameter 𝑣  at time 𝑡 + 1 is predicted by 𝑓 . 
The interrelation is depicted by the term: 𝑥 , = 𝑓 𝑥 , , 𝑥 , , . . . , 𝑥 , . (12)

Traditional prediction models only consider the trend of the characteristic parameters over 
time. It cannot reflect the mutual influence and interrelationship among various characteristic 
parameters. In practical applications, the change of one parameter will affect the change of other 
parameters. In complex equipment systems, the correlation between different parameters cannot 
be ignored. In order to improve the prediction accuracy, the correlation between the parameters 
must be fully considered. Therefore, the traditional LSSVM modeling process needs to be 
improved. Incorporating the correlation between the parameters, a space LSSVM is proposed. 
Specifically, the test data 𝑥 , , 𝑥 , , … , 𝑥 ,  of the characteristic parameter set 𝑉  at time 𝑡  is 
obtained. Then the space LSSVM is used to get the fitting function 𝑓 . The value of parameter 𝑣  
at time 𝑡 + 1 is predicted by 𝑓 . The interrelation is depicted by the term: 𝑥 , = 𝑓 𝑥 , , 𝑥 , , … , 𝑥 , . (13)

TLSSVM prediction model considers the effect of time on the characteristic parameters. 
SLSSVM prediction model considers the interaction between various parameters. In order to 
improve the prediction accuracy, these two prediction models need to be fused reasonably. 
ULSSVM is built as a modified LSSVM. 

When using time LSSVM, the predicted value of the characteristic parameter 𝑣  at time 𝑡 + 1 
is expressed as 𝑥 , . When using space LSSVM, the predicted value of the characteristic 
parameter 𝑣  at time 𝑡 + 1 is expressed as 𝑥 , . Based on the above two predicted values of 𝑥 ,  and 𝑥 , , a combined function can be constructed: 𝑥 , = 𝑓 𝑥 , , 𝑥 , . (14)

The weighted form of the combined function is obtained by the following: 𝑥 , = 𝜔 , 𝑥 , + 𝜔 , 𝑥 , , (15)

where 𝜔 ,  is the weight of the TLSSVM prediction model. 𝜔 ,  is the weight of the 
SLSSVM prediction model. Improved D-S theory is used to obtain the weight values. Select 
samples from test samples for evidence fusion analysis. Samples with close working condition 
data are preferred. A flowchart of the proposed parameter prediction scheme is shown in Fig. 1.  

Take the prediction process of a certain characteristic parameter 𝑣  as an example. The 
concrete steps of the parameter prediction scheme based on ULSSVM, QPSO and improved D-S 
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are as follows: 
(1) The test data of the characteristic parameter 𝑣  in a period of time before 𝑡 is collected, and 

the collection results are represented by 𝑥 , , 𝑥 , , . . . , 𝑥 , . TLSSVM is used to obtain the 
fitting map 𝑓 . 𝑓  is used to predict the value of 𝑣  at 𝑡 + 1 by Eq. (12). QPSO algorithm is used 
to optimize the kernel parameter and the penalty parameter of the LSSVM model. The prediction 
result is represented by 𝑥 , . 

(2) Collect the test data of all characteristic parameters at time 𝑡. The collection results are 𝑥 , , 𝑥 , , … , 𝑥 , . SLSSVM is used to obtain the fitting map 𝑓 . 𝑓  is used to predict the value of 𝑣  at 𝑡 + 1 by Eq. (13). QPSO algorithm is used to optimize the kernel parameter and the penalty 
parameter of the LSSVM model. The prediction result is represented by 𝑥 , . 

(3) The predicted value 𝑥 ,  and the predicted value 𝑥 ,  are used to construct a 
combined function in the form of Eq. (15). 

(4) The weight values 𝜔 ,  and 𝜔 ,  in Eq. (15) are determined according to the actual 
measured value of the characteristic parameter 𝑣  at 𝑡 + 1. 

(5) According to the calculation results, the final prediction model is determined.  
The final prediction model will be used to predict the value of 𝑣  at time 𝑡 + 2. 

 
Fig. 1. Flowchart of the proposed parameter prediction scheme 

4. Bearing parameter prediction based on ULSSVM 

In order to verify the effectiveness of the proposed parameter prediction method, it is used for 
parameter prediction of bearing vibration signals and compared with actual measured values. 
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4.1. Data acquisition 

Vibration signals of rotating machinery often contain rich operating status information [22-25]. 
Collect a set of bearing vibration signals under working conditions every 15 days. A total of 205 
sets of vibration signal test data have been recorded. The sampling frequency is 20000 Hz, and 
the number of sampling points is 20480. 1-170 sets of vibration signal test data are used for 
training and learning. 171-205 sets of vibration signal test data are used for prediction and 
comparison. 

The original data is difficult to reflect the operating state of the bearing. It is necessary to 
extract the characteristic parameters representing the operating state [26, 27]. There are many 
parameters that can be used to describe the operating state of the bearing [28, 29]. According to 
the existing research results of the bearing state prediction, 10 characteristic parameters are 
selected to represent the operating state of the bearing. The 10 parameters are mean value, rectified 
mean value, variance, root mean square (RMS), kurtosis, form factor, peak-to-average ratio  
(PAR), kurtosis factor, impulse factor and margin factor. These 10 parameters form a matrix  𝑉 = 𝑣 ,𝑣 ,𝑣 , 𝑣 ,𝑣 , 𝑣 ,𝑣 , 𝑣 ,𝑣 , 𝑣 . 𝑣  is the mean value. 𝑣  is the rectified mean value. 𝑣  
is the variance. 𝑣  is RMS. 𝑣  is the kurtosis. 𝑣  is the form factor. 𝑣  is PAR. 𝑣  is the kurtosis 
factor. 𝑣  is the impulse factor. 𝑣  is the margin factor. 

The mean value is the average value of all signal amplitudes. It can be expressed as: 

𝜇 = ∑ 𝑥𝑛 , (16)

where 𝜇 is the mean value. 𝑛 is the number of sampling points. 𝑥  is the amplitude of the 𝑖-th 
sampling point. 

The rectified mean value is the average of the absolute values of all amplitudes. It can be 
expressed as: 

𝜇 = ∑ |𝑥 |𝑛 . (17)

The variance is the average of the square of the difference between the amplitude of each signal 
and the average of all signal amplitudes. It represents the dynamic component of signal energy. It 
can be expressed as: 

𝜎 = 1𝑛 𝑥 − 𝜇 . (18)

The RMS calculation process is to sum the squares of all signal amplitudes and take their 
average. Then take the square root of the calculation result. The root mean square is also called 
the effective value. It can be expressed as: 

𝑋 = ∑ 𝑥𝑛 . (19)

The kurtosis is used to describe the sharpness of the waveform. It can be expressed as: 

𝐾 = 𝐸 𝑥 − 𝜇𝑋 . (20)

The form factor is the ratio of the RMS to the rectified mean value. It can be expressed as: 
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𝑆 = 𝑋𝜇av . (21)

PAR is the ratio of the peak value to the RMS. It represents the extreme degree of peaks in the 
waveform. It can be expressed as: 

𝐶 = 𝑋𝑋 , (22)

where 𝑋  is the peak value of the signal. 
The kurtosis factor is used to describe the smoothness of the waveform. It is the distribution 

of variables. It can be expressed as: 

𝐾 = ∑ 𝑥𝑛𝑋 . (23)

The impulse factor is the ratio of the peak value to the rectified mean value. The difference 
between impulse factor and PAR is the denominator. For the same group of signals, the rectified 
mean value must be less than its effective value, so the impulse factor must be greater than the 
PAR. The impulse factor can be expressed as: 

𝐼 = 𝑋𝜇av . (24)

The margin factor is the ratio of the peak value to the square root amplitude. It is similar to 
PAR. The square root amplitude and the RMS are corresponding. It can be expressed as: 

𝐶𝐿 = 𝑋1𝑛∑ |𝑥 | . (25)

All state characteristic parameters of 205 sets of test data are calculated separately, including 
mean value, rectified mean value, variance, RMS, kurtosis, form factor, PAR, kurtosis factor, 
impulse factor, and margin factor. To reduce the complexity of the calculation, two characteristic 
parameters are selected as the prediction parameters, including the kurtosis and the impulse factor. 
The calculation results of the kurtosis are shown in Fig. 2(a). The calculation results of the impulse 
factor are shown in Fig. 2(b). It shows that the change regularities of the characteristic parameters 
are complicated. 

 
a) 

 
b) 

Fig. 2. Characteristic parameters of bearing vibration signal: a) the kurtosis and b) the impulse factor 
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4.2. Comparison of prediction methods 

To evaluate the effectiveness and exhibit the superiority of QPSO ULSSVM algorithm in the 
prediction of characteristic parameters, the kurtosis and the impulse factor are predicted.  
TLSSVM, SLSSVM, ULSSVM and QPSO ULSSVM are used to predict the characteristic 
parameters separately. The mean absolute error 𝜎 , the mean absolute percentage error 𝜎 , 
and the root mean squared error 𝜎  are selected to evaluate these four methods. The 
expressions are as follows: 𝜎 = 1𝑛 |𝑦(𝑖) − 𝑦(𝑖)|=1 , (26)𝜎 = 1𝑛 𝑦(𝑖) − 𝑦(𝑖)𝑦(𝑖)=1 × 100 %, (27)

𝜎 = 1𝑛 𝑦(𝑖) − 𝑦(𝑖)=1 , (28)

where 𝑛 is the number of samples. 𝑦(𝑖) is the measured value. 𝑦(𝑖) is the prediction value. 
TLSSVM is used to predict the kurtosis. The kurtosis 𝑣  of 171-205 data sets are predicted 

based on 1-170 data sets. 𝜎 , 𝜎 , and 𝜎  are calculated based on TLSSVM predicted 
results and measured results.  

SLSSVM is used to predict the kurtosis. The kurtosis 𝑣  of the 171-th data set is predicted 
based on all state characteristic parameters of the 170-th data set. 𝑣  of the 172-th data set is 
predicted based on all state characteristic parameters of the 171-th data set. 𝑣  of the 𝑛-th data set 
is predicted based on all state characteristic parameters of the (𝑛 − 1)th data set. 171-205 data sets 
are predicted by using the same method. 𝜎 , 𝜎 , and 𝜎  are calculated based on 
SLSSVM predicted results and measured results.  

ULSSVM is used to predict the kurtosis. The kurtosis 𝑣  of 171-205 data sets are predicted 
based on 171-205 prediction results of TLSSVM and SLSSVM, respectively. Weight values are 
determined by the improved D-S theory. ULSSVM predicted results are output based on weight 
values, TLSSVM prediction results, and SLSSVM prediction results. 𝜎 , 𝜎 , and 𝜎  are 
calculated based on ULSSVM predicted results and measured results.  

QPSO ULSSVM is used to predict the kurtosis. TLSSVM and SLSSVM are optimized by 
QPSO. The kurtosis 𝑣  of 171-205 data sets are predicted based on optimized TLSSVM and 
SLSSVM, respectively. Then the weight values are calculated and the prediction results are  
output. 𝜎 , 𝜎 , and 𝜎  are calculated based on QPSO ULSSVM prediction results and 
measured results. The impulse factor 𝑣  is predicted by using the same method. The prediction 
results are shown in Fig. 3. It shows that the predicted values based on QPSO ULSSVM are closest 
to the actual measured values. 

Table 1. Evaluation values of the prediction results 

Parameter Method Evaluation index 𝜎  𝜎  𝜎  

Kurtosis 

TLSSVM 0.2331 0.0725 1.1245 
SLSSVM 0.3791 0.1175 1.8344 
ULSSVM 0.1860 0.0576 0.8488 

QPSO ULSSVM 0.1143 0.0351 0.5756 

Impulse factor 

TLSSVM 0.8372 0.0712 3.9071 
SLSSVM 1.3896 0.1183 6.5391 
ULSSVM 0.5981 0.0505 2.8265 

QPSO ULSSVM 0.5718 0.0487 2.6752 
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The evaluation values of the prediction results are shown in Table 1, which can show that all 
of the four prediction methods can predict the characteristic parameters. This demonstrates that 
the bearing characteristic parameters have specific variation trend and could be predicted. 
Furthermore, the method based on QPSO ULSSVM yields the best accuracy, significantly higher 
than TLSSVM, SLSSVM, and ULSSVM. This will provide help for operating state recognition. 

 
a) 

 
b) 

Fig. 3. Predicted results of characteristic parameters: a) kurtosis and b) impulse factor 

5. Case study 

To verify the proposed method, bearing fault prediction is implemented. The vibration signal 
collection of the generator bearing is shown in Fig. 4. It is collected in the wind turbine nacelle. 
The acceleration sensor is installed on the bearing saddle. The vibration signal is collected 
periodically. Rolling bearings have four main states: normal, inner race fault, outer race fault, and 
ball fault. Collect 50 sets of vibration data for bearings of the same model in these four states, 
respectively. These data are called reference data. 10 characteristic parameters of each set of 
vibration data are calculated, respectively. The results of each state can be formed into a  
50×10 matrix. This matrix is used as the reference matrix. 

The vibration data of the same model bearing to be predicted is collected. Data is collected 
once a week. The total number of the collections is 20. The group number of each set of data is 
arranged from small to large according to time. These data are called test data. 10 characteristic 
parameters of each set of vibration data are calculated, respectively. The order of the 10 
characteristic parameters is consistent with the reference matrix. Set the sequence number of the 
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characteristic parameters: mean value is 1, rectified mean value is 2, variance is 3, RMS is 4, 
kurtosis is 5, form factor is 6, PAR is 7, kurtosis factor is 8, impulse factor is 9, margin factor is 
10. Combine all calculation results into a matrix. The number of the row represents the time. The 
number of the column represents the sequence number of the characteristic parameter. It can be 
expressed as: 𝑥 , 𝑥 , … 𝑥 ,𝑥 , 𝑥 , … 𝑥 ,⋮ ⋮  ⋮𝑥 , 𝑥 , … 𝑥 , . (29)

 
Fig. 4. Data acquisition test device 

QPSO ULSSVM is used to predict the characteristic parameters of the next moment. Take the 
mean value as an example. The mean values of 1-19 sets of test data are extracted as Eq. (30). The 
10 characteristic parameters of 19-th set of test data are extracted as Eq. (31). LSSVM is used to 
fit the fitting function 𝑓 . 𝑓  is required to meet Eq. (32). LSSVM is used to fit the fitting function 𝑓 . 𝑓  is required to meet Eq. (33). The weight values of 𝑓  and 𝑓  are determined by using 
improved D-S theory. The weight values are 𝜔 ,  and 𝜔 , , respectively. The mean value at the 
next moment 𝑥 ,  is predicted by Eq. (34). The other 9 parameters are rectified mean value, 
variance, RMS, kurtosis, form factor, PAR, kurtosis factor, impulse factor, and margin factor. The 
prediction method is the same as that of the mean value. The 10 characteristic parameters are 
predicted by using QPSO ULSSVM: 𝑥 , 𝑥 , ⋯ 𝑥 , , (30)𝑥 , 𝑥 , ⋯ 𝑥 , , (31)𝑥 , = 𝑓 𝑥 , 𝑥 , ⋯ 𝑥 , , (32)𝑥 , = 𝑓 𝑥 , 𝑥 , ⋯ 𝑥 , , (33)𝑥 , = 𝜔 , 𝑓 𝑥 , 𝑥 , ⋯ 𝑥 , + 𝜔 , 𝑓 𝑥 , 𝑥 , ⋯ 𝑥 , . (34)

The parameter reference matrices of the four states are subjected to Laplacian eigenmaps (LE) 
dimensionality reduction processing. The feature vectors obtained by dimensionality reduction are 
fused. The feature vectors of the first three dimensions are extracted. The three-dimensional 
visualization of the reference matrix is obtained as shown in Fig. 5. The four states are well 
distinguished. The prediction results of 21-th set of data and the parameter reference matrices form 
a new matrix. This new matrix is reduced in dimension by LE. The feature vectors are fused and 
the first three dimensions of the feature vectors are extracted. The calculation result is expressed 
in the form of a three-dimensional image, as shown in Fig. 6. The prediction data and the normal 
state data are distributed in the same area of the space. The prediction result is that the bearing 
state is normal at the next moment. The bearing is working normally after a week.  
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Fig. 5. Three-dimensional classification diagram of the four states 

 
Fig. 6. Three-dimensional classification diagram of the prediction result based on QPSO ULSSVM 

 
Fig. 7. Three-dimensional classification diagram of the prediction result based on LSSVM 

As a comparison, the characteristic parameters prediction method uses TLSSVM. The 10 
characteristic parameters of 21-th set of data are predicted by using traditional TLSSVM. The 
prediction results and the parameter reference matrices form a new matrix. This new matrix is also 
reduced in dimension by LE. The first three feature vectors are extracted. The calculation result is 
expressed in the form of a three-dimensional image, as shown in Fig. 7. The prediction data, the 
outer race fault data, and the normal state data are partially overlapped. The result is not certain. 
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This shows that the accuracy of state parameter prediction is related to generator bearing’s 
operating state prediction. QPSO ULSSVM improves the accuracy of characteristic parameters 
prediction. The realization of the generator bearing’s operating state prediction is based on QPSO 
ULSSVM. 

6. Conclusions 

In this paper, ULSSVM and QPSO is used to predict the operating status of the wind turbine 
bearing. The observations and conclusions of the study are summarized as follows:  

1) ULSSVM, a novel parameter prediction method, is proposed to effectively predict the 
operating state parameters. The results show that the new method is better than the TLSSVM and 
SLSSVM methods.  

2) ULSSVM combines the time LSSVM and the space LSSVM. Improved D-S method is used 
to determine the weight of each model. It helps ULSSVM achieve better results in the parameter 
prediction of wind turbine bearing. 

3) The novel strategy of utilizing combined ULSSVM and QPSO to parameter prediction in 
wind turbine bearing is developed, and the algorithm is proved reliable to predict the working state 
of wind turbine bearing. It was provided an effectual way for the operating state prediction of 
wind turbine bearing to combine ULSSVM and QPSO. 
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