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Abstract. This study conducts an analytical investigation of the dynamic response characteristics 
of a two-stage series composite system (TsSCS) with a planetary transmission consisting of 
dual-power branches. An improved incremental harmonic balance (IHB) method, based on the arc 
length extension technique, is proposed. The results are compared with those of the numerical 
integration method to verify the feasibility and effectiveness of the improved method. Following 
that, the multi-scale perturbation (MsP) method is applied to the TsSCS proposed in this paper. 
The frequency response equations of the primary resonance, subharmonic resonance, and 
superharmonic resonance are solved to generate the frequency response characteristic curves of 
the planetary transmission system in this method. A comparison between the results obtained by 
the MsP method and the numerical integration method proves that the former is ideal and credible 
in most regions. Considering the parameters of TsSCS excitation frequency and damping, the 
nonlinear response characteristics of steady-state motion are mutually converted. The effects of 
the time-varying parameters and the nonlinear deenthing caused by the gear teeth clearance on the 
amplitude-frequency characteristics of TsSCS components are studied in this special topic. 
Keywords: two-stage series composite system, dual-power branches, planetary transmission, 
improved incremental harmonic balance method, multi-scale perturbation method, dynamic 
characteristics analysis. 

1. Introduction 

Planetary gears are the most critical underwater components of ships that transfer real-time 
power and time-varying motion. Owing to its compact transmission structure, strong anti-scuffing 
bearing performance, and high transmission precision, the planetary gear transmission is widely 
used in various mechanical systems. The application of the planetary transmission system in the 
underwater military industry has created an urgent demand for lightweight and reliable structures 
[1]. Planetary gears have various dynamic response properties due to their complex inherent 
characteristics [2]. The dynamic behavior analysis of the alternating meshing process is a popular 
area of study in the design and applications of various planetary gear mechanisms and their 
transmission systems [3-5]. Many researchers have been working on new simulation analysis 
methods to gain an in-depth understanding of the dynamic meshing transients of planetary gears 
[6-8]. Numerous studies have been performed on the dynamic behavior analysis method, which 
plays an important role in determining the performance of planetary gears. In addition, the 
machinery industry is paying more attention to the dynamic characteristics of planetary gear drives 
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and the resulting vibrations and noise [9-11].  
A two-stage series composite system (TsSCS), consisting of a planetary transmission system 

with dual-power branches, is a complex and flexible mechanical system that comprises several 
parts [12]. A TsSCS is generally divided into two parts: the transmission system (gear train, 
transmission shaft, and bearing) and the structural system (gearbox, dual-branch composite 
planetary gearbox, dynamometer, and bracket) [13]. The increasing number of studies on the 
vibrations and noise produced by underwater devices, particularly on controlling the noise 
produced by the power rear transmission system of underwater devices, must account for the 
TsSCS and its meshing process, in addition to the real-time dynamic meshing force acting on the 
system. Fig. 1 reveals outline drawing and cutaway view of a certain type of warship TsSCS. 

 
a) Outline drawing of a certain type of TsSCS 

 
b) Cutaway view of a certain type of TsSCS 

Fig. 1. Outline drawing and cutaway view of a certain type of TsSCS 

Few theoretical studies consider the TsSCS with a planetary transmission consisting of 
dual-power branches as a subject [14]. It is important to possess some professional design 
knowledge while studying the unique kinematics and geometric characteristics of a TsSCS 
consisting of a planetary transmission with dual-power branches [15]. The TsSCS, with a 
dual-power branch planetary transmission, is preferred to the horizontal shaft gear deceleration 
system, especially in applications requiring high linear speed power density designs and kinematic 
flexibility to optimize different speed ratios [16-18]. It has been demonstrated that reducing the 
spoke thickness to increase gear flexibility also resolves several internal gear and planetary frame 
errors and operational errors, in addition to making the system lighter [19]. Moreover, a flexible 
internal gear improves the load sharing between planets, which is an important feature if 
manufacturing and assembly related gear and carrier errors are inevitable. Thus, it is difficult to 
quantify the factors that influence the TsSCS with a dual-power branch planetary transmission 
under quasi-static conditions. The research in this subject is TsSCS with a planetary transmission 
consisting of dual-power branches, which uses a translation-torsion coupling model. It is difficult 
to solve the problem of dynamic differential equations by applying existing analytical methods. 
To deeply study the dynamic characteristics of TsSCS, it is necessary to find a suitable new 
method to solve this kind of complex model. This article mainly studies the analytical solution 
method of TsSCS kinetic equation. The translation-torsion coupling dynamic equation of TsSCS 
with a planetary transmission consisting of dual-power branches is non-dimensionalized.  

Modals are the inherent characteristics of gear transmission systems [20-22]. A modal analysis 
is used to determine the vibration characteristics of the designed structure or its transmission 
components. The modal analysis is a part of the structural dynamics analysis and is also the 
starting point for the subsequent transient dynamics, harmonic response, and spectrum analyses 
[23]. Each mode has a corresponding natural frequency, damping ratio, and mode shape [24]. A 
modal analysis is a modern technique that is used to study the dynamic characteristics of a 
transmission system structure, including modal analysis of linear vibration theory and 
experimental modal analysis [25]. An experimental modal analysis can only be carried out after 
the components of the structure have been processed and assembled. However, it has a longer test 
cycle and is more expensive. In addition, it is easily affected by the quality of the processing and 
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assembly steps. Thus, it is difficult to use these results in the design analysis stage [26]. As a result, 
the experimental analysis is used to verify the results of the analysis of the theoretical model and 
modify it accordingly. Various modal parameters, such as the modal frequency, shape, quality, 
stiffness, damping, etc., affect the dynamic load design. 

Since most of the internal, planetary, and sun gears are excluded from these models, it is not 
possible to study the effect of the internal gear thickness on the performance of the TsSCS and its 
effect on the stress acting on the planetary and sun gears and the load sharing between the planets. 
Similarly, it is not possible to accurately predict the shape and deflection of the gears. Although 
the above mentioned studies indicate that the adverse effects of the gear and planet carrier 
manufacturing errors can be minimized by improving the planetary load-sharing characteristics 
under quasi-static conditions, these modifications lead to increased gear contact stress. These 
static analyses alone cannot predict the actual design of the system because the increasing 
flexibility of the TsSCS causes its performance to change only under dynamic conditions. This 
might also lead to an rise in the stress acting on the gear. The current study, thus, studies the 
inherent characteristics of the TsSCS, constructs its dynamic model, and synthetically analyzes its 
inherent and dynamic response characteristics. 

2. Mathematical model of the modal analysis 

The first step of the dynamic calculation is to determine the natural frequency and mode shape 
of the structure while ignoring its damping. These results reflect the basic dynamic characteristics 
of the structure and its response trend under dynamic loads. The double-branch compound 
transmission system test bench is considered to be a single elastic body. The differential equation 
of motion describing the overall vibration of the test bench is given as: 𝑀𝑢ሷ ሺ𝑡ሻ + 𝐶𝑢ሶ ሺ𝑡ሻ + 𝐾𝑢ሺ𝑡ሻ = 𝑄ሺ𝑡ሻ, (1)

where 𝑢ሷ (𝑡), 𝑢ሶ (𝑡), and 𝑢(𝑡) refer to the acceleration, velocity, and displacement vectors of the 
nodes in the vibration system, respectively. 𝑀 , 𝐶 , and 𝐾  represent the mass, damping, and 
stiffness matrices of the vibration system, respectively. 𝑄(𝑡) represents the external force vector 
received by node. Only the inherent characteristics of the vibration system are modeled and solved 
in the modal analysis. The model does not contain external force terms and neglects the damping 
terms that are assumed to have an insignificant impact on the system. The differential equation of 
motion for an undamped free vibration system is given as: 𝑀𝑢ሷ (𝑡) + 𝐾𝑢(𝑡) = 0. (2)

The resonance solution form of the equation is given as: 𝑢(𝑡) = 𝜙sin𝜔௡𝑡, (3)

where 𝑢  is the displacement vector and 𝜙  is the characteristic vector that amplitude of the 
displacement vector𝑢. 𝜔௡ is the natural angular frequency.  

The resonance form of the equation is a key to the numerical solution. It is derived under the 
assumption that all degrees of freedom of the vibrating structure move in a synchronous manner. 
During this process, the basic shape of the structure does not change, only the amplitude varies. 

2.1. Dimensionless differential equation of the second-stage star gear train 

(1) Dimensionless differential equation of the ring gear of the star gear train: 
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⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝑚௥஁𝜔ෝଶ𝑦ሷଵ −෍ ቀ𝜔ෝ𝐶௥௠஁ 𝛿መሶ௥௠஁ + 𝑘௥௠஁ 𝛿መ௥௠஁ ቁ sin𝜓௥௠cos𝛽௕௠ସ௠ୀଵ + (𝜔ෝ𝐶௥஁𝑦ሶଵ + 𝑘௥஁𝑦ଵ) = 0,𝑚௥஁𝜔ෝଶ𝑦ሷଶ + ෍ (𝜔ෝ𝐶௥௠஁ 𝛿መሶ௥௠஁ + 𝑘௥௠஁ 𝛿መ௥௠஁ )cos𝜓௥௠cos𝛽௕௠ସ௠ୀଵ + (𝜔ෝ𝐶௥஁𝑦ሶଶ + 𝑘௥஁𝑦ଶ) = 0,

(𝐼௣஁஁/(𝑟௣஁஁)ଶ)𝜔ෝଶ𝑦ሷଷ + ෍ ቀ𝜔ෝ𝐶௥௠஁ 𝛿መሶ௥௠஁ + 𝑘௥௠஁ 𝛿መ௥௠஁ ቁ cos𝛽௕௠ସ
௠ୀଵ + (𝜔ෝ𝐶௥௨஁ 𝑦ሶଷ + 𝑘௥௨஁ 𝑦ଷ)

      +𝑘௥௦௨ଵଶ𝑟௥஁ ൬𝑦ଷ𝑟௥஁ − 𝑦ଶସ𝑟௦஁஁ ൰ + 𝜔ෝ𝐶௥௦௨ଵଶ𝑟௥஁ ൬𝑦ሶଷ𝑟௥஁ − 𝑦ሶଶସ𝑟௦஁஁ ൰ = 0.
 (4)

(2) Dimensionless differential equation of the sun gear of the star gear train: 

⎩⎪⎪⎨
⎪⎪⎧𝑚௦஁𝜔ෝଶ𝑦ሷସ −෍ ቀ𝜔ෝ𝐶௦௠஁ 𝛿መሶ௦௠஁ + 𝑘௦௠஁ 𝛿መ௦௠஁ ቁ sin𝜓௦௠cos𝛽௕௠ସ௠ୀଵ + (𝜔ෝ𝐶௦஁𝑦ሶସ + 𝑘௦஁𝑦ସ) = 0,𝑚௦஁𝜔ෝଶ𝑦ሷହ + ෍ (𝜔ෝ𝐶௦௠஁ 𝛿መሶ௦௠஁ + 𝑘௦௠஁ 𝛿መ௦௠஁ )cos𝜓௦௠cos𝛽௕௠ସ௠ୀଵ + (𝜔ෝ𝐶௦஁𝑦ሶହ + 𝑘௦஁𝑦ହ) = 0,(𝐼௣஁஁/(𝑟௣஁஁)ଶ)𝜔ෝଶ𝑦ሷ଺ + ෍ ቀ𝜔ෝ𝐶௦௠஁ 𝛿መሶ௦௠஁ + 𝑘௦௠஁ 𝛿መ௦௠஁ ቁ cos𝛽௕௠ସ௠ୀଵ + (𝜔ෝ𝐶௦௨஁ 𝑦ሶ଺ + 𝑘௦௨஁ 𝑦଺) = 𝑇௦஁𝑟௦஁𝑒̅௦ଵ஁ . (5)

(3) Dimensionless differential equation of the star gear of the star gear train: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑚௣஁ 𝜔ෝଶ𝑦ሷ଻ାଷ(௠ିଵ) − ቀ𝜔ෝ𝐶௦௠஁ 𝛿መሶ௦௠஁ + 𝑘௦௠஁ 𝛿መ௦௠஁ ቁ sin𝛼௦௠cos𝛽௕௠+(𝜔ෝ𝐶௥௠஁ 𝛿መሶ௥௠஁ + 𝑘௥௠஁ 𝛿መ௥௠஁ )sin𝛼௥௠cos𝛽௕௠ + (𝜔ෝ𝐶௣௠஁ 𝑦ሶ଻ାଷ(௠ିଵ) + 𝑘௣௠஁ 𝑦଻ାଷ(௠ିଵ)) = 0,𝑚௣஁ 𝜔ෝଶ𝑦ሷ଼ାଷ(௠ିଵ) − (𝜔ෝ𝐶௦௠஁ 𝛿መሶ௦௠஁ + 𝑘௦௠஁ 𝛿መ௦௠஁ )cos𝛼௦௠cos𝛽௕௠−(𝜔ෝ𝐶௥௠஁ 𝛿መሶ௥௠஁ + 𝑘௥௠஁ 𝛿መ௥௠஁ )cos𝛼௥௠cos𝛽௕௠ + (𝜔ෝ𝐶௣௠஁ 𝑦ሶ଼ାଷ(௠ିଵ) + 𝑘௣௠஁ 𝑦଼ାଷ(௠ିଵ)) = 0,(𝐼௣஁/(𝑟௣஁)ଶ)𝜔ෝଶ𝑦ሷଽାଷ(௠ିଵ) + (𝜔ෝ𝐶௦௠஁ 𝛿መሶ௦௠஁ + 𝑘௦௠஁ 𝛿መ௦௠஁ )cos𝛽௕௠−(𝜔ෝ𝐶௥௠஁ 𝛿መሶ௥௠஁ + 𝑘௥௠஁ 𝛿መ௥௠஁ )cos𝛽௕௠ + (𝜔ෝ𝐶௣௠௨஁ 𝑦ሶଽାଷ(௠ିଵ) + 𝑘௣௠௨஁ 𝑦ଽାଷ(௠ିଵ)) = 0.

 (6)

On the basis of the non-dimensionalized equation, the incremental harmonic balance method 
and the multi-scale perturbation analysis method based on the arc-length continuation technology 
are respectively used to obtain It is suitable for the solution of TsSCS kinetic equation. 

2.2. Dimensionless differential equation of the second-stage planetary gear train 

(1) Dimensionless differential equation of the planet carrier of the planetary gear train: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑚௖஁஁𝜔ෝଶ𝑦ሷଵଽ + ෍ [𝑘௣௡஁஁ (𝛿መ௡௥஁஁ cos𝜓௡ − 𝛿መ௡௧஁஁ sin𝜓௡) + 𝜔ෝ𝐶௣௡஁஁ (𝛿መሶ௡௥஁஁ cos𝜓௡ − 𝛿መሶ௡௧஁஁ sin𝜓௡)]ସ௡ୀଵ      +(𝜔ෝ𝐶௖஁஁𝑦ሶଵଽ + 𝑘௖஁஁𝑦ଵଽ) = 0,𝑚௖஁஁𝜔ෝଶ𝑦ሷଶ଴ + ෍ [𝑘௣௡஁஁ (𝛿መ௡௥஁஁ sin𝜓௡ + 𝛿መ௡௧஁஁ cos𝜓௡) + 𝜔ෝ𝐶௣௡஁஁ (𝛿መሶ௡௥஁஁ sin𝜓௡ + 𝛿መሶ௡௧஁஁ cos𝜓௡)]ସ௡ୀଵ      +(𝜔ෝ𝐶௖஁஁𝑦ሶଶ଴ + 𝑘௖஁஁𝑦ଶ଴) = 0,(𝐼௖஁஁ 𝑟௖஁஁)ଶ𝜔ෝଶ𝑦ሷଶଵ⁄ + ෍ቀ𝑘௣௡஁஁ 𝛿መ௡௧஁஁ + 𝜔ෝ𝐶௣௡஁஁ 𝛿መሶ௡௧஁஁ ቁ + (𝜔ෝ𝐶௖௨஁஁ 𝑦ሶଶଵ + 𝑘௖௨஁஁ 𝑦ଶଵ) = 𝑇௖஁஁ 𝑟௖஁஁𝑒̅௦ଵ஁⁄ .

 (7)

(2) Dimensionless differential equation of the sun gear of the planetary gear train: 
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⎩⎪⎪
⎨⎪
⎪⎧𝑚௦஁஁𝜔ෝଶ𝑦ሷଶଶ −෍ ቀ𝜔ෝ𝐶௦௡஁஁ 𝛿መሶ௦௡஁஁ + 𝑘௦௡஁஁ 𝛿መ௦௡஁஁ ቁ sin𝜓௦௡cos𝛽௕௡ସ௡ୀଵ + (𝜔ෝ𝐶௦஁஁𝑦ሶଶଶ + 𝑘௦஁஁𝑦ଶଶ) = 0,𝑚௦஁஁𝜔ෝଶ𝑦ሷଶଷ + ෍ (𝜔ෝ𝐶௦௡஁஁ 𝛿መሶ௦௡஁஁ + 𝑘௦௡஁஁ 𝛿መ௦௡஁஁ )cos𝜓௦௡cos𝛽௕௡ସ௡ୀଵ + (𝜔ෝ𝐶௦஁஁𝑦ሶଶଷ + 𝑘௦஁஁𝑦ଶଷ) = 0,(𝐼௦஁஁/(𝑟௦஁஁)ଶ)𝜔ෝଶ𝑦ሷଶସ + ෍ (𝜔ෝ𝐶௦௡஁஁ 𝛿መሶ௦௡஁஁ + 𝑘௦௡஁஁ 𝛿መ௦௡஁஁ )cos𝛽௕௡ସ௡ୀଵ + (𝜔ෝ𝐶௦௨஁஁ 𝑦ሶଶସ + 𝑘௦௨஁஁ 𝑦ଶସ)      +[𝜔ෝ𝐶௥௦௨ଵଶ (𝑦ሶଶସ/𝑟௦஁஁ − 𝑦ሶଷ/𝑟௥஁) + 𝑘௥௦௨ଵଶ (𝑦ଶସ/𝑟௦஁஁ − 𝑦ଷ/𝑟௥஁)]/𝑟௦஁஁ = 𝑇௦஁஁/𝑟௦஁஁𝑒̅௦ଵ஁

 (8)

(3) Dimensionless differential equation of the planetary gear of the planetary gear train: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑚௣஁஁𝜔ෝଶ𝑦ሷଶହାଷ(௡ିଵ) − (𝜔ෝ𝐶௦௡஁஁ 𝛿መሶ௦௡஁஁ + 𝑘௦௡஁஁ 𝛿መ௦௡஁஁ )sin𝛼௦௡cos𝛽௕௡      +(𝜔ෝ𝐶௥௡஁஁ 𝛿መሶ௥௡஁஁ + 𝑘௥௡஁஁ 𝛿መ௥௡஁஁ )sin𝛼௥௡cos𝛽௕௡ − (𝜔ෝ𝐶௣௡஁஁ 𝛿መሶ௡௥஁஁ + 𝑘௣௡஁஁ 𝛿መ௡௥஁஁ ) = 0,𝑚௣஁஁𝜔ෝଶ𝑦ሷଶ଺ାଷ(௡ିଵ) − (𝜔ෝ𝐶௦௡஁஁ 𝛿መሶ௦௡஁஁ + 𝑘௦௡஁஁ 𝛿መ௦௡஁஁ )cos𝛼௦௡cos𝛽௕௡      −(𝜔ෝ𝐶௥௡஁஁ 𝛿መሶ௥௡஁஁ + 𝑘௥௡஁஁ 𝛿መ௥௡஁஁ )cos𝛼௥௡cos𝛽௕௡ − (𝜔ෝ𝐶௣௡஁஁ 𝛿መሶ௡௥஁஁ + 𝑘௣௡஁஁ 𝛿መ௡௧஁஁ ) = 0,(𝐼௣஁஁/(𝑟௣஁஁)ଶ)𝜔ෝଶ𝑦ሷଶ଻ାଷ(௡ିଵ) + (𝜔ෝ𝐶௦௡஁஁ 𝛿መሶ௦௡஁஁ + 𝑘௦௡஁஁ 𝛿መ௦௡஁஁ )cos𝛽௕௡ − (𝜔ෝ𝐶௥௡஁஁ 𝛿መሶ௥௡஁஁ + 𝑘௥௡஁஁ 𝛿መ௥௡஁஁ )cos𝛽௕௡      −(𝜔ෝ𝐶௣௨௡஁஁ 𝑦ሶଶ଻ାଷ(௡ିଵ) + 𝑘௣௨௡஁஁ 𝑦ଶ଻ାଷ(௡ିଵ)) = 0.

 (9)

Rewriting Eq. (9) in its matrix form: 𝑀෡𝑦ሷ + 𝑐̂(𝑦ሶ , 𝜏) + ℎ෠(𝑦, 𝜏) = 𝑀෡𝑦ሷ + 𝐶መ(𝑦ሶ , 𝜏)𝑦ሶ + 𝐾෡(𝑦,𝜔௠௜𝜏)𝑦 = 𝐹෠(𝜏). (10)

It is noteworthy that the stiffness matrix 𝐾෡ is no longer symmetric due to the transient nature 
of the phase angle of the planetary gears. 

3. Incremental harmonic balance and arc length extension method 

The harmonic balance method uses a description function to approximate the nonlinearity 
caused by the gap and is widely used in planetary transmission systems. The excitation and 
response parameters are assumed to be harmonic functions and are substituted in the nonlinear 
equation. The approximate expressions of the response and phase parameters can thus be obtained 
by using the condition of equal power coefficients. Since this method is not limited by the degree 
of nonlinearity, all the frequency response values can be obtained. However, owing to the 
limitations of the assumed excitation and response form, the accuracy of this method is not 
satisfactory, particularly if the first harmonic is considered. It results in the artificial loss of the 
superharmonic, subharmonic, or chaotic responses. Lau and Cheung proposed the incremental 
harmonic balance (IHB) method in 1981 to improve the accuracy of the existing harmonic balance 
method. A Taylor series expansion was performed on the nonlinear differential equations while 
ignoring the higher-order derivatives to obtain the differential equations in an incremental form. 
The Fourier series and the Galerkin method were then used to obtain nonlinear algebraic  
equations. The entire process is divided into an incremental component (Newton-Raphson  
method) and a harmonic balance component (Galerkin method). This method has the advantage 
of free control algorithm convergence accuracy, among many others, and is thus an effective 
method for solving complex nonlinear problems [27]. Rohan and Lukeš used the incremental 
harmonic balance method for a two-stage star gear train with multiple degrees of freedom; 
however, it is only used the response as an incremental parameter [28]. If a singular point is 
encountered along the path of the solution branch, the quasi-arc length parameter is introduced. 
The original variables and parameters are assumed to be functions of the arc length. This condition 
is added to the original equation to smoothly track the path through the singular point [29]. The 
harmonic balance method, based on the continuation of the arc-length, has been applied to the 
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pure torsion model of a fixed shaft and a single-stage planetary transmission [30]. The incremental 
harmonic balance method, based on the continuation of the arc length, is used to calculate the 
dynamic characteristic equation of the system used in this study. The two incremental parameters 
(response and fundamental frequency) are expressed in terms of the arc length to smoothly 
overcome the singular points along the path. The formula to calculate the steady-state response of 
a two-stage herringbone planetary transmission system is presented in this study. This method has 
not yet been applied to planetary gear transmission systems. 

3.1. Incremental harmonic balance method 

A new time variable 𝜏௛ = Ω𝜏  is introduced in this method. The expression of 𝑦, initially 
written in terms of 𝜏, is rewritten in terms of 𝜏௛. As a result, Eq. (10) is written as: Ωଶ𝑀෡𝑦ᇳ + 𝛺𝐶መ(𝑦ሶ , 𝜏௛)𝑦ᇱ + 𝐾෡ ቀ𝑦,𝜔௠௜Ω 𝜏௛ቁ 𝑦 = 𝐹෠(𝜏௛). (11)

The incremental process is the first component of the IHB method. If 𝑦௝଴  and Ω଴  are the 
solutions of Eq. (11), their neighboring points can be expressed as: 𝑦௝ = 𝑦௝଴ + Δ𝑦௝ ,     Ω = Ω଴ + ΔΩ,     𝑗 = 1,2,⋯ ,𝑀 + 𝑁, (12)

where Δ𝑦௝ and ΔΩ are the incremental parameters.  
By substituting Eq. (12) into Eq. (11) and omitting high-order small quantities, the incremental 

equation matrix can be obtained with Δ𝑦௝ and ΔΩ as the unknown quantities: Ω଴ଶ𝑀෡Δ𝑦ᇳ + Ω଴𝐶መΔ𝑦ᇱ + 𝐾෡Δ𝑦 = 𝑅 − ൫2Ω଴𝑀෡𝑦଴ᇳ + 𝐶መ𝑦଴ᇱ ൯ΔΩ, (13)𝑅 = 𝐹෠(𝜏௛) − ൣΩ଴ଶ𝑀෡𝑦଴ᇳ + Ω଴𝐶መ𝑦଴ᇱ + 𝐾෡𝑦଴൧, (14)

where 𝑅 is the unbalanced force vector (also referred to as the residual correction term in some 
studies). If 𝑦௝଴ and Ω଴ are exact solutions, then 𝑅 = 0. 

The second component of the IHB method involves the harmonic balance process. The 
steady-state response of the system is described by a Fourier series. The response contains only 
odd harmonics and is given as follows: 

𝑦௝଴ = 𝑎௝଴ + ෍ [𝑎௝௞ cos𝑘 𝜏௛ + 𝑏௝௞ sin 𝑘 𝜏௛]ே೎௞ୀଵ = 𝐶௦𝐴௝ , (15)

Δ𝑦௝଴ = Δ𝑎௝଴ + ෍[Δ𝑎௝௞ cos𝑘 𝜏௛ + Δ𝑏௝௞ sin 𝑘 𝜏௛]ே೎
௞ୀଵ = 𝐶௦Δ𝐴௝ . (16)

The response of the system and its increment can be written in the following matrix form: 𝑦଴ = 𝑆𝐴,    Δ𝑦 = 𝑆Δ𝐴. (17)

After substituting Eq. (17) into the incremental Eq. (13) and the unbalanced force Eq. (14), the 
Galerkin averaging process is applied to obtain the equations for the unknown quantities Δ𝐴 and ΔΩ: 𝐾ሜ௝௖Δ𝐴 = 𝑅ሜ − 𝑅ሜ௝௖ΔΩ, (18)

where: 
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𝐾ሜ௝௖ = න 𝑆்(Ω଴ଶ𝑀෡𝑆′′ + Ω଴𝐶መ𝑆ᇱ + 𝐾෡𝑆)𝑑𝜏௛ଶగ
଴ , 𝑅ሜ = න 𝑆்𝐹෠(𝜏௛)ଶగ

଴ − න 𝑆்(Ω଴ଶ𝑀෡𝑆′′ + Ω଴𝐶መ𝑆ᇱ + 𝐾෡𝑆)]𝑑𝜏௛ଶగ
଴ 𝐴, 𝑅ሜ௝௖ = න 𝑆்(2Ω଴𝑀෡𝑆′′ + 𝐶መ𝑆ᇱ)𝑑𝜏௛ଶగ

଴ 𝐴. 
3.2. Arc length extension method 

The arc length parameter equation, corresponding to Eq. (11), can be expressed as: 𝑔(𝑝) − 𝑠 = 0. (19)

Assuming 𝑔(𝑝) = 𝑝்𝑝 and 𝑝 = [𝐴்,Ω]்  and substituting the increments of 𝐴, Ω, and 𝑠 in 
Eq. (19), the increment equation can be obtained, as shown below: 𝜕𝑔𝜕𝐴் ሼΔ𝐴ሽ + 𝜕𝑔𝜕ΩΔΩ − Δ𝑠 + 𝑔 − 𝑠 = 0. (20)

Fig. 2 shows a part of the analytical balance path of the arc-length extension method. 
Eq. (19) can be rewritten as: 𝑔(𝑝) − 𝑠 = ሼ𝑝ᇱሽ்ሼ𝑝 − 𝑝௖ሽ = 0, (21)𝑃௨ = 𝑃௖ + Δ𝑠 ቆሼ𝑃௖ − 𝑃௖௖ሽ‖𝑃௖ − 𝑃௖௖‖ቇ. (22)

The initial values of the upper and lower points 𝑃௨ of the balance path are determined by the 
values of the previous two points, 𝑃௖ , and 𝑃௖௖. 

 
Fig. 2. Partial schematic diagram of the balance path based on the arc length extension method 

The complete incremental equation can be obtained by combining Eqs. (18) and (20): 

ൣ𝐽ሜ௣൧ሼΔ𝑝ሽ = ൦ ൣ𝐾ሜ௝௖൧ ൣ𝑅ሜ௝௖൧൜𝜕𝑔𝜕𝐴ൠ் 𝜕𝑔𝜕Ω ൪ ቄ∆𝐴∆Ωቅ = ൜ 𝑅ሜ−𝑔 + ∆𝑠 + 𝑠ൠ = [𝑅෨], (23)

where ൣ𝐽ሜ௣൧ is the Jacobian matrix relative to ሼ𝑝ሽ. 
The above equation is expressed in an iterative form that can be easily calculated, as shown 

below: 
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𝑝௜ାଵ = 𝑝௜ + [𝐽ሜ௣]ିଵ(𝑝௜)𝑅෨(𝑝௜). (24)

Eq. (24) represents the Newton-Raphson iterative equation that is obtained after introducing 
the arc length parameter. The arc length parameter is used to predict the value of the next solution 
from the current solution and is used as the initial value in the next iteration. 

4. Application of the improved method 

The transmission diagram of the double-wide helical planetary compound system, with a two-
level power branch, for high speed and heavy duty applications, is shown in Fig. 3. The system is 
composed of a star gear train I (sun gear 𝑧௦Ι , planet gear 𝑧௠, and ring gear 𝑧௥஁ ) that is connected to 
a planet gear train II (sun gear 𝑧௦ΙΙ , planet gear 𝑧௡ , ring gear 𝑧௥஁஁ , and planet carrier 𝐻). The 
superscripts I and II correspond to the series of the component. The input power is transmitted to 
the load 𝐿 by the sun gear 𝑧௦Ι . The input speed of the second-stage planetary gear train is reduced 
according to the deceleration of the first stage planetary gear train, thereby increasing the stability 
and smoothness of the transmission. The system parameters are listed in Table 1 and Table 2. The 
calculated nonlinear response characteristics of the system are shown in Figs. 4 to 6, which 
correspond to the time domain response history, phase diagram, and Poincare mapping of the 
system, respectively. Owing to the space constraints in this manuscript, we have only mentioned 
the torsional response of the representative components. However, this does not imply that the 
translational response of the components can be neglected. 

Since the number of unknowns exceeds the number of equations, the expected increment must 
be specified before performing the actual calculation. The increment specified in this article is 
equal to ΔΩ. Based on the structural flowchart of the improved incremental harmonic balance 
method depicted in Fig. 4 and the dimensionless parameters listed in Table 1 and Table 2, the 
specific iterative process of the improved method is given as follows. 

 
Fig. 3. Transmission diagram of a double-wide helical planetary compound  

system with a two-level power branch 

(1) The initial value 𝑦଴ is fixed according to the excitation frequency Ω = Ω଴. 
(2) The increment Δ𝐴 is obtained by substituting the value of ΔΩ in Eq. (18). Replace 𝐴 with 𝐴 + Δ𝐴 to obtain the updated values of Δ𝐴 from Eq. (18). This is used to obtain Δ𝑦 from Eq. (17). 

The modified solution 𝑦 is then obtained from Eq. (12). The process is repeated until the value 
of 𝐴 satisfies 𝑅 = 0.  

(3) A new increment is provided to Ω଴ such that Ω = Ω଴ + ΔΩ. The value of 𝐴 that is obtained 
in (2) is set as the initial value. The harmonic balance process is repeated and the value of 𝐴 is 
updated until it meets the condition 𝑅 = 0.  

(4) The arc length parameter 𝑠 is introduced to determine the initial value of the next point 
from the value of 𝐴 and Ω obtained in Eqs. (2) and (3). This is substituted as the initial value in 
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Eq. (18), and the iteration step mentioned in Eq. (2) is repeated. 

 
Fig. 4. Flowchart of the numerical integral calculation system response 

The amplitude-frequency characteristic curves of the system operating at the approximate 
working speed are shown in Fig. 5. The figure compares the results obtained by the incremental 
harmonic balance method and those obtained by the numerical integration (NI) method. The latter 
is based on the 4th and 5th step variable step Runge-Kutta method. 

The meshing frequency lies in the range of 3.3-3.7 kHz, as shown in Figs. 5(a), (b) and (c). 
Amplitude jumps are observed in both the sun gear and star gear of the star gear system. The two 
methods are in this area. The amplitude values obtained from both the methods do not match as 
well in this region as they do in the others. In addition, the results of the numerical integration 
method indicate the presence of a resonance peak in other regions; however, the IHB method does 
not seem to indicate the presence of a resonance peak. This is because the number of harmonic 
response terms is insufficient. 
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Table 1. System parameters 

Physical quantity 
\Transmission parts 

marking 

Sun gear Ring gear Planet carrier Star / Planet 
gears 

Level 
1 

Level 
2 Level 1 Level 2 Level 

1 
Level 

2 
Level 

1 
Level 

2 
Quality (kg) 102 398 258 647  1300 300 647 

Equivalent moment of 
inertia 𝛪/𝑟ଶ (kg) 51.5 199 244 613  1300 150 324 

Base circle diameter 
(mm) 385.27 479.24 1700.84 1700.84   657.78 610.80 

Number of teeth 41 51 181 181   70 65 
Meshing stiffness 

(N/m) 
𝑘௦௣஁ = 21.532 × 10ଽ; 𝑘௥௣஁ = 3.393 × 10ଽ;  𝑘௦௣஁஁ = 21.802 × 10ଽ; 𝑘௥௣஁஁ = 3.281 × 10ଽ 

Support stiffness (N/m) 𝑘௥஁ = 𝑘௖஁஁ = 𝑘௥஁஁ = 𝑘௦஁஁ = 𝑘௣஁ = 𝑘௣஁஁ = 1.0 × 10ଵ଴; 𝑘௦஁ = 100; 𝑘௥௦ଵଶ = 0 
Torsional stiffness of 

central member (N/m) 𝑘௦௨஁ = 𝑘௥௨஁ = 𝑘௦௨஁஁ = 𝑘௥௨஁஁ = 𝑘௖௨஁஁ = 𝑘௣௠௨ = 𝑘௣௡௨ = 10ଵ଴ 

Torsional stiffness of 
shaft (Nm/rad) 𝑘௥௦௨ଵଶ = 2.0 × 10଼ 

Pressure angle (°) 𝛼௦௠ = 𝛼௥௠ = 𝛼௦௡ = 𝛼௥௡ = 20 
Helix angle (°) 𝛽௕௠ = 𝛽௕௡ = 24.62 

 

 
a) Ring gear of star gear train 

 
b) Sun gear of star gear train 

 
c) Star gear of star gear train 

 
d) Planet carrier of planetary gear train 
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e) Sun gear of planetary gear train 

 
f) Planet gear of planetary gear train 

Fig. 5. Variation of the torsional response amplitude of each component  
of the planetary transmission system by using the IHB method 

Table 2. Dimensionless parameters 
Parameter representation Star gear train Planetary gear train 

Dimensionless parameter 𝜔ෝ 𝜔ෝ = 1.1893𝑒 + 004 
Dimensionless parameter 𝑒̅௦ଵ஁  𝑒̅௦ଵ஁ = 3.6059𝑒 − 005 

Dimensionless meshing frequency 𝜔௠௜ 𝜔௠ଵ = 0.2758 𝜔௠ଵ = 0.2758 
Damping ratio 𝜁 𝜁 = 0.02 

Dimensionless error amplitude 𝑒̂௦௠஁ = 𝑒̂௦௡஁஁ = 1.1093 

The ring gear of the star gear system, shown in Figs. 5(a), (b) and (c), and the sun gear of the 
planetary gear system, shown in Fig. 5(e), produces minimal amplitude resonance. The results 
obtained by the numerical method and IHB method follow a similar trend; however, a significant 
difference exists between the amplitude values. The variations in the amplitude of the planetary 
carrier, shown in Fig. 5(d), and the planetary gears, shown in Fig. 5(f), are relatively gentle. The 
curves obtained from the two methods gradually tend to become consistent with increasing mesh 
frequency, resulting in a significant amplitude variation of the planetary gears. This is consistent 
at a 4.0 kHz bit frequency. The above analysis demonstrates that the improved method is in 
agreement with the law of amplitude-frequency change for each part of the system, thereby 
illustrating the feasibility of this method. 

5. Application of the multi-scale perturbation analysis method 

The incremental harmonic balance method, which is based on the arc-length continuation 
technique, is a semi-analytical and semi-numerical method. It is necessary to perform a purely 
analytical study of the dynamic characteristic equation of the system. Current studies adopt the 
multi-scale perturbation analysis method to obtain the analytical solutions of parametric excitation 
and gap nonlinear system equations [31]. The multi-scale perturbation method (MsPM) can obtain 
the analytical frequency response functions of a system, including the fundamental, subharmonic, 
and superharmonic resonance responses. Thus, this technique demonstrates the impact of 
important parameters on the response of the nonlinear dynamic characteristics, unlike 
conventional numerical methods. 

The small parameter 𝜀 = ห𝑐̂௦௡(ଵ)ห/𝑘௦௣஁஁ , 𝑐̂௦௡(ଵ) is introduced in the first-order Fourier coefficient of 
the meshing stiffness of the sun and planetary gears in the planetary gear system. 𝑘௦௣୍୍  refers to the 
average meshing stiffness and is written in its dimensionless form for each gear pair: 
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𝑘௦௠௶ (𝜏) = 𝑘௦௣௶ ൤1 + 𝜀෍ ൫𝑏௦௠(௟)𝑒௝௟ఠ೘భఛ + 𝑐𝑐൯ஶ௟ୀଵ ൨,     𝑘௥௠௶ (𝜏) = 𝑘௥௣௶ ൤1 + 𝜀෍ ൫𝑏௥௠(௟) 𝑒௝௟ఠ೘భఛ + 𝑐𝑐൯ஶ௟ୀଵ ൨, (25)

𝑘௦௡௶௶ (𝜏) = 𝑘௦௣௶௶ ൤1 + 𝜀෍ ൫𝑐௦௡(௟)𝑒௝௟ఠ೘మఛ + 𝑐𝑐൯ஶ௟ୀଵ ൨,      𝑘௥௡௶௶ (𝜏) = 𝑘௥௣௶௶ ൤1 + 𝜀෍ ൫𝑐௥௡(௟)𝑒௝௟ఠ೘మఛ + 𝑐𝑐൯ஶ௟ୀଵ ൨, (26)

where: 

𝑐௦௡(௟) = 𝑐̂௦௡(௟)ห𝑐̂௦௡(ଵ)ห = 𝑂(1),     𝑐௥௡(௟) = 𝑐̂௥௡(௟)ห𝑐̂௦௡(ଵ)ห 𝑘௦௣஁஁𝑘௥௣஁஁ = 𝑂(1), 
𝑏௦௠(௟) = 𝑘௦௣஁஁𝑘௦௣஁ 𝑏෠௦௠(௟)ห𝑐̂௦௡(ଵ)ห = 𝑂(1),      𝑏௥௠(௟) = 𝑘௦௣஁஁𝑘௥௣஁ 𝑏෠௥௠(௟)ห𝑐̂௦௡(ଵ)ห = 𝑂(1). 

The time required for the contact gear pair to disengage is assumed to be negligible with 
respect to the response period, i.e., 𝜉 𝑇⁄ = 𝑂(𝜀) , where 𝜉  is the disengagement time, and  𝑇 = 2𝜋 Ω⁄  is the response period. The Fourier expansion of the non-meshed function of the 
contact gear pair is expressed in terms of the fundamental frequency Ω, as follows: 𝛩(𝛿௦௠௶ ) = 1 + 𝜀෍ ൫𝑔ො௦௠(௛)𝑒௝௛ஐఛ + 𝑐𝑐൯ஶ௛ୀ଴ ,      𝛩(𝛿௥௠௶ ) = 1 + 𝜀෍ ൫𝑔ො௥௠(௛)𝑒௝௛ஐఛ + 𝑐𝑐൯ஶ௛ୀ଴ , (27)Θ(𝛿௦௡஁஁ ) = 1 + 𝜀෍ ൫𝜃෠௦௡(௛)𝑒௝௛ஐఛ + 𝑐𝑐൯ஶ௛ୀ଴ ,      Θ(𝛿௥௡஁஁ ) = 1 + 𝜀෍ ൫𝜃෠௥௡(௛)𝑒௝௛ஐఛ + 𝑐𝑐൯ஶ௛ୀ଴ . (28)

The corresponding eigenvalue of Eq. (11) is expressed as: ൫𝐾෡௕ + 𝐾෡଴൯𝑉௜ = 𝑐௜ଶ𝑀෡𝑉௜ , (29)

where 𝐾෡଴ is the linear time-invariant average meshing stiffness matrix, and 𝐾෡(𝑦, 𝑡) = 𝐾෡௖ + 𝐾෡௕ +𝐾෡଴ + 𝐾෡ௗ(𝑦, 𝑡). 𝐾෡ௗ represents the change range matrix of the average meshing stiffness 𝐾෡଴, with 
its mean value equal to zero. 𝐾෡௕ is the support torsional stiffness matrix (including the support 
stiffness of the star and planet gears). 𝐾෡௖  is the additional stiffness matrix generated due the 
transient phase angle of the planetary gear. 𝐾෡௖ = 𝐶መ௣௡஁஁ + 𝐶መ௦௡஁஁ + 𝐶መ௥௡஁஁ , where 𝐶መ௣௡஁஁ , 𝐶መ௦௡஁஁ , and 𝐶መ௥௡஁஁  are 
the coefficient matrices related to 𝐶௣௡஁஁ , 𝐶௦௡஁஁ , and 𝐶௥௡ΙΙ , respectively. 

The vibration mode is given by 𝑉 = [𝑉ଵ,⋯ ,𝑉ଷ(ெାேାସ)] , and it satisfies the relation  𝑉்𝑀෡𝑉 = 𝐼. The average stiffness matrix 𝐾෡ is given below: 

𝐾෡ = 𝐾෡଴ + 𝐾෡௕ = ෍ (𝑘௦௣஁ 𝐾෡௦௠஁ + 𝑘௥௣஁ 𝐾෡௥௠஁ )ெ௠ୀଵ + ෍ (𝑘௦௣஁஁ 𝐾෡௦௡஁஁ + 𝑘௥௣஁஁ 𝐾෡௥௡஁஁ )ே௡ୀଵ , (30)

where 𝐾෡௦௠஁ , 𝐾෡௥௠஁ , 𝐾෡௦௡஁஁ , and 𝐾෡௥௡஁஁  are the coefficient matrices related to 𝑘௦௣஁ , 𝑘௥௣஁ , 𝑘௦௣஁஁ , and 𝑘௥௣୍୍ . 
Substituting Eqs. (25)-(28) into Eqs. (11), we obtain: 

𝑀෡𝑦 + 𝐶መ𝑦ሷ + 𝐾෡௖𝑦 + ൫𝐾෡௕ + 𝐾෡଴൯𝑦 + 𝜀෍ 𝑘௦௣஁஁ 𝑄௦஁஁𝐾෡௦௡஁஁ 𝑦ே௡ୀଵ + 𝜀෍ 𝑘௥௣஁஁ 𝑄௥஁஁𝐾෡௥௡஁஁ 𝑦ே௡ୀଵ+ 𝜀෍ 𝑘௦௣஁ 𝑄௦஁𝐾෡௦௠஁ 𝑦ெ௠ୀଵ + 𝜀෍ 𝑘௥௣஁ 𝑄௥஁𝐾෡௥௠஁ 𝑦ெ௠ୀଵ + 𝑂(𝜀ଶ) = 𝐹෠ , (31)
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where: 

𝑄௦஁ = ൥෍𝑏௦௠(௟)𝑒௝௟ఠ೘భఛஶ
௟ୀଵ + ෍𝑔ො௦௠(௛)𝑒௝௛ஐఛஶ

௛ୀ଴ ൩ + 𝑐𝑐,       𝑄௥஁ = ൥෍𝑏௥௠(௟) 𝑒௝௟ఠ೘భఛஶ
௟ୀଵ + ෍𝑔ො௥௠(௛)𝑒௝௛ஐఛஶ

௛ୀ଴ ൩ + 𝑐𝑐, 
𝑄௦஁஁ = ൥෍𝑐௦௡(௟)𝑒௝௟ఠ೘మఛஶ

௟ୀଵ + ෍𝜃෠௦௡(௛)𝑒௝௛ஐఛஶ
௛ୀ଴ ൩ + 𝑐𝑐,     𝑄௥஁஁ = ൥෍𝑐௥௡(௟)𝑒௝௟ఠ೘మఛஶ

௟ୀଵ + ෍𝜃෠௥௡(௛)𝑒௝௛ஐఛஶ
௛ୀ଴ ൩ + 𝑐𝑐. 

The modal coordinate transformation 𝑦 = 𝑉𝑧 can be used to write the additional stiffness 
matrix coefficients in terms of the small parameters. The resulting modal coordinate form, 
obtained after the transformation of the Eq. (31), is given as: 

𝑧ሷ௤ + 𝜀𝜆௤𝑧ሶ௤ + 𝑐௤ଶ𝑧௤ + 𝜀𝑛௖஁஁ ෍ ൥෍𝐶௣௡஁஁ 𝐸௣௡௤௪ே
௡ୀଵ + ෍𝐶௦௡஁஁ 𝐸௦௡௤௪ே

௡ୀଵ + ෍𝐶௥௡஁஁ 𝐸௥௡௤௪ே
௡ୀଵ ൩ଷ(ெାேାସ)

௪ୀଵ 𝑧௪ 
       +𝜀 ෍ ൥෍(𝑘௦௣஁ 𝑄௦஁𝐺௦௠௤௪ + 𝑘௥௣஁ 𝑄௥஁𝐺௥௠௤௪)ெ

௠ୀଵ
ଷ(ெାேାସ)

௪ୀଵ  
       +෍(𝑘௦௣஁஁ 𝑄௦஁஁𝐺௦௡௤௪ + 𝑘௥௣஁஁ 𝑄௥஁஁𝐺௥௡௤௪)ே

௡ୀଵ ൩ 𝑧௪ = 𝑉௤் 𝐹෠ = 𝑓௤ , 
(32)

where  𝐺௦௠ = 𝑉்𝐾෡௦௠Ι 𝑉 , 𝐺௥௠ = 𝑉்𝐾෡௥௠Ι 𝑉 , 𝐺௦௡ = 𝑉்𝐾෡௦௡୍୍ 𝑉 , 𝐺௥௡ = 𝑉்𝐾෡௥௡୍୍ 𝑉 , 𝐸௣௡ = 𝑉்𝐶መ௣௡୍୍ 𝑉 ,  𝐸௦௡ = 𝑉்𝐶መ௦௡୍୍ 𝑉, 𝐸௥௡ = 𝑉்𝐶መ௥௡୍୍ 𝑉. 𝐸௣௡௤௪, 𝐸௦௡௤௪, and 𝐸௥௡௤௪ represent the elements in the 𝑞th row and 𝑤th column of the matrices 𝐸௣௡, 𝐸௦௡, and 𝐸௥௡, respectively. 𝐺௦௠௤௪, 𝐺௥௠௤௪, 𝐺௦௡௤௪, and 𝐺௥௡௤௪ represent the elements in the 𝑞௧௛ row and the 𝑤th column of the matrices 𝐺௦௠, 𝐺௥௠, 𝐺௦௡, and 𝐺௥௡, respectively. The modal 
damping factor 2𝜁௤𝑐௤has been introduced and rewritten in terms of the small parameter 𝜀  as  𝜆௤ = 2𝜁௤𝑐௤ . 𝜀𝑛௖஁஁ = 𝜔௖஁஁ , where 𝜔௖୍୍  is the speed of the second stage planet carrier. The small 
parameter 𝜀 is related to the time change of the phase angle of the planet gear in the second stage. 

A multi-scale method is applied by introducing multi-scale variables such as 𝜏௡ = 𝜀௡𝜏 and 𝑧௤(𝜏଴, 𝜏ଵ,⋯ ) = 𝑧௤଴(𝜏଴, 𝜏ଵ,⋯ ) + 𝜀𝑧௤ଵ(𝜏଴, 𝜏ଵ,⋯ ) + 𝑂(𝜀ଶ) . Based on the abovementioned 
variables, the perturbation equation with the first approximate solution is proposed, as shown 
below: 𝜕ଶ𝜕𝜏଴ଶ 𝑧௤଴ + 𝑐௤ଶ𝑧௤଴ = 𝑓௤ , (33)𝜕ଶ𝜕𝜏଴ଶ 𝑧௤ଵ + 𝑐௤ଶ𝑧௤ଵ = −2 𝜕ଶ𝑧௤଴𝜕𝜏଴𝜕𝜏ଵ − 𝜆௤ 𝜕𝑧௤଴𝜕𝜏଴  
    −𝑛௖௶௶ ෍ ൭෍𝐶௣௡஁஁ 𝐸௣௡௤௪ே

௡ୀଵ + ෍𝐶௦௡஁஁ 𝐸௦௡௤௪ே
௡ୀଵ + ෍𝐶௥௡஁஁ 𝐸௥௡௤௪ே

௡ୀଵ ൱ଷ(ெାேାସ)
௪ୀଵ 𝑧௪଴ 

    − ෍ ൥෍൫𝑘௦௣஁ 𝑄௦஁𝐺௦௠௤௪ + 𝑘௥௣஁ 𝑄௥஁𝐺௥௠௤௪൯ெ
௠ୀଵ + ෍൫𝑘௦௣஁஁ 𝑄௦஁஁𝐺௦௡௤௪ + 𝑘௥௣஁஁ 𝑄௥஁஁𝐺௥௡௤௪൯ே

௡ୀଵ ൩ଷ(ெାேାସ)
௪ୀଵ 𝑧௪଴. 

(34)

Eq. (34) is the perturbation equation used to calculate the closed solution. The frequency 
response characteristics of the system under different excitations can be studied by using this 
equation. 
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a) Ring gear of star gear train 

 
b) Sun gear of star gear train 

 
c) Star gear of star gear train 

 
d) Planet carrier of planetary gear train 

 
e) Sun gear of planetary gear train 

 
f) Planet gear of planetary gear train 

Fig. 6. Amplitude-frequency variation curve of each component of the planetary gear system 

6. Analysis of the frequency response characteristics  

The amplitude-frequency characteristics of the system are obtained and studied after solving 
the frequency response equations under different resonance conditions according to the 
multi-scale perturbation analysis method. 

A natural frequency of 973.1 Hz is selected to study the frequency response characteristics of 
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the system during resonance in the vibration mode of the planetary gear system. The 
amplitude-frequency characteristics of the system are analyzed and compared with the results 
obtained by using the numerical integration method. The calculated amplitude-frequency 
characteristic curve is shown in Fig. 6. Fig. 6(a) shows that the response amplitude of the ring gear 
of the star gear train calculated by the multi-scale method is differs significantly from that of the 
numerical method. However, the trends followed by the variation of the responses in both methods 
are identical, as shown in Fig. 6(e). The variation of the sun gear in the middle planetary gear 
system is similar to that of the ring gear in the star gear system. The response amplitudes of the 
sun gear and the star gear in the star gear system are not consistent with those obtained from the 
numerical method. The variation trends obtained through both methods were also different. No 
amplitude jump was observed, as shown in Figs. 6(b) and 6(c). The variation trends of the 
planetary carrier and gears of the planetary gear train, as shown in Figs. 6(d) and 6(f), are identical. 
The larger difference is also the magnitude of the amplitude. The difference between the values 
of the amplitude obtained through both methods is relatively large for the planet carrier and small 
for the planet gear. 

The impact of the variation of the damping ratio on the amplitude-frequency response 
characteristics, upon the introduction of the 3rd harmonic error, is studied. It can be seen from 
Fig. 7 that the bifurcation characteristics of the system are complex, and the introduction of errors 
increases the influence of the damping ratio. After increasing the damping ratio, the response 
amplitude of sun and star gears in the star gear system is reduced. The component response 
amplitude has increased. In the follow-up research, the influence of the damping ratio on the 
system’s amplitude-frequency characteristics can be further confirmed. 

 
a) Ring gear of star gear train 

 
b) Sun gear of star gear train 

 
c) Star gear of star gear train 

 
d) Planet carrier of planetary gear train 
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e) Sun gear of planetary gear train 

 
f) Planet gear of planetary gear train 

Fig. 7. Bifurcation diagram of the variation of damping ratio with the error  

The steady-state response of the ring and sun gears of the star gear train is either a 
non-harmonic periodic response or a simple harmonic periodic response, as shown in Figs. 7(a) 
and (e). The gears of the planetary gear train always maintain a harmonic response without 
bifurcation, as shown in Fig. 7(f). The steady-state response of the planetary carrier of the 
planetary gear train, as shown in Fig. 7(d), is bifurcated from a single period to a double period 
when the damping ratio 𝜁 is equal to 0.03. The steady-state response of the sun gear of the star 
gear system, as shown in Fig. 7(b), directly branches from period doubling to a harmonic period 
response at 𝜁 = 0.035, and attains a chaotic state at 𝜁 = 0.023. The steady-state response of the 
star gear, as shown in Fig. 6(c), involves a period-doubling bifurcation from a single-cycle 
bifurcation at 𝜁 = 0.036. The steady-state response then bifurcates from period-doubling to a 
chaotic state at 𝜁 = 0.023. 

The nonlinear response characteristics are depicted through a phase diagram of the 
system-time domain in Fig. 8. The phase diagrams shown in Figs. 8(a), (b), and (c) form a closed 
curve loop, irregular shape, and an open curve, respectively. The phase diagrams shown in 
Figs. 8(d) and (f) are ellipses. The response carrier of the planetary gear train produces a 
pseudo-periodic response, as shown in Fig. 8(e). 

The above analysis shows that the results obtained by the multi-scale method can predict the 
trend of variation of the responses of each component in a few regions. However, it produces 
linear changes in the region involving an increase in the amplitude. This behavior is attributed to 
the fact that only one approximate solution was obtained in this study. It is very difficult to increase 
the order of the solution for a nonlinear system having multiple degrees of freedom. Thus, the 
numerical method of calculation is more suited to be the main method, with the analytical method 
serving as an auxiliary option. 

 
a) Ring gear of star gear train 

 
b) Sun gear of star gear train 
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c) Star gear of star gear train 

 
d) Planet carrier of planetary gear train 

 
e) Sun gear of planetary gear train 

 
f) Planet gear of planetary gear train 

Fig. 8. Phase plan of the composite transmission system 

7. Conclusions 

The current paper proposes the application of the semi-numerical incremental harmonic 
balance and semi-analytical multi-scale perturbation methods to a two-stage series compound 
planetary transmission system. Through this study, we attempt to solve the dynamic characteristic 
equation of a two-stage series composite planetary transmission system through an analytical 
calculation. 

The arc-length continuation technology is introduced to improve the incremental harmonic 
balance method. The improved method is used to calculate and analyze the amplitude-frequency 
characteristics of the system. The feasibility and effectiveness of the method are verified by 
comparing the results with those obtained using the numerical integration method. 

The analytical multi-scale perturbation method is then applied to a two-stage series compound 
planetary transmission system. The frequencies of the main resonance, subharmonic resonance, 
and superharmonic resonance are obtained. A comparison between the current results and those 
obtained from the numerical integration method suggests that it is feasible to use the multi-scale 
method to analyze the two-stage series compound planetary transmission system. However, the 
results may not be accurate in some regions. 
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